Search results

Search for "crystallinity" in Full Text gives 329 result(s) in Beilstein Journal of Nanotechnology. Showing first 200.

Properties of tin oxide films grown by atomic layer deposition from tin tetraiodide and ozone

  • Kristjan Kalam,
  • Peeter Ritslaid,
  • Tanel Käämbre,
  • Aile Tamm and
  • Kaupo Kukli

Beilstein J. Nanotechnol. 2023, 14, 1085–1092, doi:10.3762/bjnano.14.89

Graphical Abstract
  • stoichiometric SnO2 as the major phase at temperatures higher than 300 °C. Film structure Increasing the deposition temperature increased the crystallinity of films, as can be seen in Figure 8. Diffractograms of all crystalline films revealed the presence of tetragonal SnO2 (PDF Card 01-071-5324). Depositions
PDF
Album
Supp Info
Full Research Paper
Published 13 Nov 2023

Dual-heterodyne Kelvin probe force microscopy

  • Benjamin Grévin,
  • Fatima Husainy,
  • Dmitry Aldakov and
  • Cyril Aumaître

Beilstein J. Nanotechnol. 2023, 14, 1068–1084, doi:10.3762/bjnano.14.88

Graphical Abstract
  • to this, they are very promising for the use in many applications, such as LEDs, solar cells, and photodetectors. Reducing their size down to the nanoscale by synthesizing colloidal nanocrystals in solution can allow high control over the perovskite crystallinity and access to various morphologies
PDF
Album
Supp Info
Full Research Paper
Published 07 Nov 2023

Nanoarchitectonics of photothermal materials to enhance the sensitivity of lateral flow assays

  • Elangovan Sarathkumar,
  • Rajasekharan S. Anjana and
  • Ramapurath S. Jayasree

Beilstein J. Nanotechnol. 2023, 14, 988–1003, doi:10.3762/bjnano.14.82

Graphical Abstract
  • nanoparticles. COF–CuSe can also increase the photothermal conversion efficiency up to 26%, which is higher than that of COF-Fe3O4 [36]. Nanoarchitectonics of photothermal materials The photon-to-heat conversion efficiency of nanomaterials depends on intrinsic factors, such as shape, size, crystallinity, and
PDF
Album
Review
Published 04 Oct 2023

Upscaling the urea method synthesis of CoAl layered double hydroxides

  • Camilo Jaramillo-Hernández,
  • Víctor Oestreicher,
  • Martín Mizrahi and
  • Gonzalo Abellán

Beilstein J. Nanotechnol. 2023, 14, 927–938, doi:10.3762/bjnano.14.76

Graphical Abstract
  • development of efficient and reproducible large-scale synthesis processes. Unfortunately, reliable methods that allow for the production of large quantities of two-dimensional LDHs with well-defined morphologies and high crystallinity are very scarce. In this work, we carry out a scale-up of the urea-based
  • alkalinization rate, which (mainly) controls the nucleation and growth processes, and therefore particle size, morphology, and crystallinity [33][36][37]. Attempts to upscale the production of LDHs included incrementing the concentration of the reactants [38][39], the use of large-scale reactors [40][41], byway
  • co-precipitation, and mechanochemical approaches [27]. Although these methods can produce materials on a large scale, they are very limited in providing materials with controlled morphology, size, or crystallinity [42]. This issue can be partially solved using continuous flow techniques [43][44]. Yet
PDF
Album
Supp Info
Full Research Paper
Published 11 Sep 2023

Nanostructured lipid carriers containing benznidazole: physicochemical, biopharmaceutical and cellular in vitro studies

  • Giuliana Muraca,
  • María Esperanza Ruiz,
  • Rocío C. Gambaro,
  • Sebastián Scioli-Montoto,
  • María Laura Sbaraglini,
  • Gisel Padula,
  • José Sebastián Cisneros,
  • Cecilia Yamil Chain,
  • Vera A. Álvarez,
  • Cristián Huck-Iriart,
  • Guillermo R. Castro,
  • María Belén Piñero,
  • Matias Ildebrando Marchetto,
  • Catalina Alba Soto,
  • Germán A. Islan and
  • Alan Talevi

Beilstein J. Nanotechnol. 2023, 14, 804–818, doi:10.3762/bjnano.14.66

Graphical Abstract
  • thermograms are shown in Figure 2, whereas the melting temperature (Tm), the enthalpy of fusion (ΔHf), and crystallinity index (CI) are presented in Table 1. Whereas BNZ showed an endothermic peak at its melting point (191.2 °C) [23], the formulation showed two endothermic peaks in the range of 40–50 °C
  • 5 mg of the dry sample after freeze drying the formulations was used. Scans were run in the range from 0 to 250 °C at a heating rate of 10 °C/min. The degree of crystallinity (% crystallinity index, CI) was calculated using the following equation [55]: where ΔHNLC and ΔHbulk material are the melting
  • to identify significant differences against the control group. *p < 0.05, **p < 0.01. Thermal properties of benznidazole (BNZ), myristyl myristate, poloxamer 188, and nanoparticles (NLC-VEHICLE and NLC-BNZ). Abbreviations: Tm, melting temperature; ΔHf, fusion enthalpy; CI (%), crystallinity index
PDF
Album
Supp Info
Full Research Paper
Published 28 Jul 2023

Control of morphology and crystallinity of CNTs in flame synthesis with one-dimensional reaction zone

  • Muhammad Hilmi Ibrahim,
  • Norikhwan Hamzah,
  • Mohd Zamri Mohd Yusop,
  • Ni Luh Wulan Septiani and
  • Mohd Fairus Mohd Yasin

Beilstein J. Nanotechnol. 2023, 14, 741–750, doi:10.3762/bjnano.14.61

Graphical Abstract
  • flame is conducted regarding the morphology and crystallinity of the as-grown nanotubes. The premixed burner configuration created a flame that is stabilized through axisymmetric stagnation flow through sintered metal with one-dimensional geometry, different from a conventional co-flow flame. The
  • radial directions but significantly different in the vertical direction. 17.3% variation in temperature in the axial direction successfully led to 44% and 66% variation in CNT diameter and crystallinity, respectively. The morphology control capability demonstrated in the present study is important for
  • CNT functionalization for energy storage, nanosensor, and nanocomposite applications, where diameter and crystallinity are influential properties that govern the overall performance of the components. Keywords: carbon nanotubes; crystallinity; flame synthesis; morphology; one-dimensional flame
PDF
Album
Full Research Paper
Published 21 Jun 2023

The microstrain-accompanied structural phase transition from h-MoO3 to α-MoO3 investigated by in situ X-ray diffraction

  • Zeqian Zhang,
  • Honglong Shi,
  • Boxiang Zhuang,
  • Minting Luo and
  • Zhenfei Hu

Beilstein J. Nanotechnol. 2023, 14, 692–700, doi:10.3762/bjnano.14.55

Graphical Abstract
  • 1147.0 (↓ 20.5%), indicating the improvement of the crystallinity of the h-MoO3 phase through annealing. When h-MoO3 transformed into α-MoO3 (i.e., the mass fraction increased from 2.2% to 86%), the corresponding microstrain increased sharply from 1147.0 to 2246.9 (↑ 95.9%), indicating that the h-MoO3→α
PDF
Album
Supp Info
Full Research Paper
Published 07 Jun 2023

Mixed oxides with corundum-type structure obtained from recycling can seals as paint pigments: color stability

  • Dienifer F. L. Horsth,
  • Julia de O. Primo,
  • Nayara Balaba,
  • Fauze J. Anaissi and
  • Carla Bittencourt

Beilstein J. Nanotechnol. 2023, 14, 467–477, doi:10.3762/bjnano.14.37

Graphical Abstract
  • indicates a rhombohedral structure [18]. The same crystallographic charts were indexed for materials with 5 and 20 wt % of coloring ions (Figure S1, Supporting Information File 1). The crystallinity of the samples was calculated considering the entire diffractogram. It is similar among the oxides, ranging
  • from 57.3% (alumina) to 63.9% (sample 2) (Table 1). The crystallinity of the synthesized oxides is superior to the ones obtained via coprecipitation [1]. Raman spectroscopy The Raman spectrum observed for sample 1 (Figure 2a) is characteristic of chromium oxide (Cr2O3), in agreement with what was
  • and (b) alkaline environment. Scheme of the synthetic route used to obtain mixed oxides. Phase, crystallographic chart and crystallinity of alumina, sample 1, and sample 2. Composition of alumina, sample 1, and sample 2 samples determined by XPS. Colorimetric parameters of alumina, sample 1, and
PDF
Album
Supp Info
Full Research Paper
Published 05 Apr 2023

Antimicrobial and mechanical properties of functionalized textile by nanoarchitectured photoinduced Ag@polymer coating

  • Jessica Plé,
  • Marine Dabert,
  • Helene Lecoq,
  • Sophie Hellé,
  • Lydie Ploux and
  • Lavinia Balan

Beilstein J. Nanotechnol. 2023, 14, 95–109, doi:10.3762/bjnano.14.11

Graphical Abstract
  • high crystallinity of the synthesized NPs and the diffraction rings which indicate the polycrystalline nature of the AgNPs have been indexed to the (111), (200), (220) and (311) planes and correspond only to the face-centered cubic (fcc) crystal structure of metallic silver (JCPDS, No. 04-0783) (Figure
PDF
Album
Full Research Paper
Published 12 Jan 2023

Electrical and optical enhancement of ITO/Mo bilayer thin films via laser annealing

  • Abdelbaki Hacini,
  • Ahmad Hadi Ali,
  • Nurul Nadia Adnan and
  • Nafarizal Nayan

Beilstein J. Nanotechnol. 2022, 13, 1589–1595, doi:10.3762/bjnano.13.133

Graphical Abstract
  • structural results show that both the as-deposited and the annealed ITO/Mo thin films have a polycrystalline structure, and that the annealing treatment enhanced the crystallinity of samples. Moreover, the XRD patterns exhibited a cubic structure preferentially oriented along the (222) and (400) planes. The
  • analyses show that the ITO/Mo has a polycrystalline structure. As well, it can be seen from the grain size analysis that the energy of 120 mJ gives the highest grain size and good crystallinity because most of the orientation of the crystallites appears in the XRD results. Figure 5 shows the optical
  • increase in the transmittance with the increase of laser energy until they attain a maximum of 94% for 120 mJ. Above 120 mJ, the optical transmission decreases with the increase of the energy up to 240 mJ. This increase in transmittance is due to the improvement in crystallinity caused by the laser. The
PDF
Album
Full Research Paper
Published 28 Dec 2022

Induced electric conductivity in organic polymers

  • Konstantin Y. Arutyunov,
  • Anatoli S. Gurski,
  • Vladimir V. Artemov,
  • Alexander L. Vasiliev,
  • Azat R. Yusupov,
  • Danfis D. Karamov and
  • Alexei N. Lachinov

Beilstein J. Nanotechnol. 2022, 13, 1551–1557, doi:10.3762/bjnano.13.128

Graphical Abstract
  • , transparency in the visible spectrum, and high mechanical strength [3][4]. PDP has an amorphous structure with a degree of crystallinity not exceeding 15%. It is characterized by unusually high chemical resistance. The conditions for the selective production of PDP with a molecular weight of more than (50–60
PDF
Album
Full Research Paper
Published 19 Dec 2022

Hydroxyapatite–bioglass nanocomposites: Structural, mechanical, and biological aspects

  • Olga Shikimaka,
  • Mihaela Bivol,
  • Bogdan A. Sava,
  • Marius Dumitru,
  • Christu Tardei,
  • Beatrice G. Sbarcea,
  • Daria Grabco,
  • Constantin Pyrtsac,
  • Daria Topal,
  • Andrian Prisacaru,
  • Vitalie Cobzac and
  • Viorel Nacu

Beilstein J. Nanotechnol. 2022, 13, 1490–1504, doi:10.3762/bjnano.13.123

Graphical Abstract
  • width at half maximum) is the width at the half height of the peak, θ is the Bragg angle at which the reflection takes place, and hkl are the Miller indices associated with the crystallographic plane. The crystallinity fraction was evaluated using the following formula: where V112/300 represents the
  • decomposition of HA into TCP. The average size of the crystallites (Dhkl) and the crystallinity fraction (Xc) are presented in Table 3. The obtained data can be summarized as follows: (i) The average size of the crystallites proves the nanocrystalline structure of the composites, (ii) the crystallinity fraction
  • , plastic or fragile behavior is influenced, besides the porosity, by other structural parameters such as crystallinity fraction, form and size of constituent particles, and their bonding strength. For a deeper understanding of the influence of these parameters on the plastic or fragile behavior of the
PDF
Full Research Paper
Published 12 Dec 2022

Electrocatalytic oxygen reduction activity of AgCoCu oxides on reduced graphene oxide in alkaline media

  • Iyyappan Madakannu,
  • Indrajit Patil,
  • Bhalchandra Kakade and
  • Kasibhatta Kumara Ramanatha Datta

Beilstein J. Nanotechnol. 2022, 13, 1020–1029, doi:10.3762/bjnano.13.89

Graphical Abstract
  • and crystallinity of the assembled binary and ternary metallic oxide NPs, powder X-ray diffraction (PXRD) measurements were carried out. The PXRD patterns of the binary and ternary NPs on rGO showed peaks located at 2θ = 38.1°, 44.2°, 64.3°, and 77.1°, which could be indexed to the (111), (200), (220
PDF
Album
Supp Info
Full Research Paper
Published 26 Sep 2022

Solar-light-driven LaFexNi1−xO3 perovskite oxides for photocatalytic Fenton-like reaction to degrade organic pollutants

  • Chao-Wei Huang,
  • Shu-Yu Hsu,
  • Jun-Han Lin,
  • Yun Jhou,
  • Wei-Yu Chen,
  • Kun-Yi Andrew Lin,
  • Yu-Tang Lin and
  • Van-Huy Nguyen

Beilstein J. Nanotechnol. 2022, 13, 882–895, doi:10.3762/bjnano.13.79

Graphical Abstract
  • ratios (1/9, 3/7, 5/5, 7/3, 9/1). The samples were examined by XRD, DRS, BET, and SEM to reveal their crystallinity, light-absorption ability, specific surface area, and surface features, respectively. The photocatalytic Fenton reaction was conducted using various LaFexNi1−xO3 perovskite oxides to
  • calculated by Scherrer's equation were obtained. The crystal diameters was 18.5 nm, 25.4 nm, 29.1 nm, 35.0 nm for LaFeO3-500, LaFeO3-600, LaFeO3-700, LaFeO3-800, respectively, suggesting higher calcination temperature caused higher crystallinity for LaFeO3. Moreover, all LaFeO3 samples revealed higher
  • crystallinity caused less recombination of electron-and-hole pairs, and subsequent reactions might occur more effectively [44]. On the other hand, The unit cell parameters and cell volume were also estimated from the XRD patterns and summarized in Supporting Information File 1, Table S2. Since the peaks of
PDF
Album
Supp Info
Full Research Paper
Published 05 Sep 2022

Self-assembly of C60 on a ZnTPP/Fe(001)–p(1 × 1)O substrate: observation of a quasi-freestanding C60 monolayer

  • Guglielmo Albani,
  • Michele Capra,
  • Alessandro Lodesani,
  • Alberto Calloni,
  • Gianlorenzo Bussetti,
  • Marco Finazzi,
  • Franco Ciccacci,
  • Alberto Brambilla,
  • Lamberto Duò and
  • Andrea Picone

Beilstein J. Nanotechnol. 2022, 13, 857–864, doi:10.3762/bjnano.13.76

Graphical Abstract
  • the cell efficiency [21]. It has been shown that a buffer layer interposed between the substrate and the molecular film can improve the crystallinity of the latter and reduce the electronic coupling with the support [22]. The buffer layer can either be a thin oxide film [23][24][25][26] or a single
PDF
Album
Full Research Paper
Published 30 Aug 2022

Optimizing PMMA solutions to suppress contamination in the transfer of CVD graphene for batch production

  • Chun-Da Liao,
  • Andrea Capasso,
  • Tiago Queirós,
  • Telma Domingues,
  • Fatima Cerqueira,
  • Nicoleta Nicoara,
  • Jérôme Borme,
  • Paulo Freitas and
  • Pedro Alpuim

Beilstein J. Nanotechnol. 2022, 13, 796–806, doi:10.3762/bjnano.13.70

Graphical Abstract
  • that the PMMA mixture features good mechanical strength and cleanness (i.e., the acetone bath can thoroughly remove it). The transferred graphene samples were investigated via Raman spectroscopy to evaluate crystallinity, layer number, and structural defect level [23]. The relative intensities of the G
  • ± 3.0 cm−1 (Figure 2f,i), implying high-quality monolayer graphene. Together, the data further support uniformity and crystallinity of the sample. The G phonon band arises from double degeneracy of iTO and iLO phonon modes (E2g symmetry) at the Brillouin zone center, which is an in-plane vibration of
PDF
Album
Supp Info
Full Research Paper
Published 18 Aug 2022

Hierarchical Bi2WO6/TiO2-nanotube composites derived from natural cellulose for visible-light photocatalytic treatment of pollutants

  • Zehao Lin,
  • Zhan Yang and
  • Jianguo Huang

Beilstein J. Nanotechnol. 2022, 13, 745–762, doi:10.3762/bjnano.13.66

Graphical Abstract
  • presence of the hierarchical TiO2 nanotubes influences and inhibits the crystallinity of Bi2WO6 in between the interface of the two phases, revealing the strong interaction between TiO2 and Bi2WO6 phases [35][36]. Figure 2b displays the FTIR spectra of the hierarchical Bi2WO6/TiO2-NT nanocomposites, pure
PDF
Album
Supp Info
Full Research Paper
Published 04 Aug 2022

Nanoarchitectonics of the cathode to improve the reversibility of Li–O2 batteries

  • Hien Thi Thu Pham,
  • Jonghyeok Yun,
  • So Yeun Kim,
  • Sang A Han,
  • Jung Ho Kim,
  • Jong-Won Lee and
  • Min-Sik Park

Beilstein J. Nanotechnol. 2022, 13, 689–698, doi:10.3762/bjnano.13.61

Graphical Abstract
  • the same content of CNTs in the composites, the differences in the intensity ratio of the D to the G band (Id/Ig) are mainly attributable to the crystallinity of the ZnxCoy–C particles. The Zn1Co4–C/CNT composite has the best crystallinity with a ratio of 1.02, which is lower than that of the Zn1Co1–C
  • /CNT (1.13) and Zn4Co1–C/CNT (1.23) composites. Transmission electron microscopy (TEM) observations with corresponding fast Fourier transform (FFT) patterns confirm the different crystallinity of ZnxCoy–C particles, depending on the concentration of Co during the synthesis. After the carbonization, the
  • crystallinity of ZnxCoy–C particles can be enhanced by decreasing the Zn/Co ratio during synthesis [35]. Unlike Zn4Co1–C particles (Figure 3a), which have a typical amorphous carbon structure, both Zn1Co1–C (Figure 3b) and Zn1Co4–C (Figure 3c) particles contain some short-range graphitic carbon structures with
PDF
Album
Supp Info
Full Research Paper
Published 21 Jul 2022

Sodium doping in brookite TiO2 enhances its photocatalytic activity

  • Boxiang Zhuang,
  • Honglong Shi,
  • Honglei Zhang and
  • Zeqian Zhang

Beilstein J. Nanotechnol. 2022, 13, 599–609, doi:10.3762/bjnano.13.52

Graphical Abstract
  • photodegradation of the orange II dye of brookite varies with the annealing temperature [20]. These differences in the photocatalytic activity of brookite were generally considered as factors such as the specific surface area, crystallite size, and crystallinity [9][21]. But whether the local atomic structure of
PDF
Album
Supp Info
Full Research Paper
Published 05 Jul 2022

Zinc oxide nanostructures for fluorescence and Raman signal enhancement: a review

  • Ioana Marica,
  • Fran Nekvapil,
  • Maria Ștefan,
  • Cosmin Farcău and
  • Alexandra Falamaș

Beilstein J. Nanotechnol. 2022, 13, 472–490, doi:10.3762/bjnano.13.40

Graphical Abstract
  • controllable morphology [28]. Various morphologies including nanoworms, nanowires, and nanorods with excellent crystallinity were also obtained using the solvothermal method [25]. According to Chieng et al., the particle sizes of the synthesized ZnO nanoparticles are in correlation with the glycol chain length
PDF
Album
Review
Published 27 May 2022

The role of sulfonate groups and hydrogen bonding in the proton conductivity of two coordination networks

  • Ali Javed,
  • Felix Steinke,
  • Stephan Wöhlbrandt,
  • Hana Bunzen,
  • Norbert Stock and
  • Michael Tiemann

Beilstein J. Nanotechnol. 2022, 13, 437–443, doi:10.3762/bjnano.13.36

Graphical Abstract
  • coordination polymers (CPs), such as (porous) metal-organic frameworks (MOFs) and (non-porous, yet cross-linked) coordination networks [12], may offer alternatives to Nafion because of their structural controllability and high crystallinity [13]. The quest to develop new proton-conducting network materials is
  • h in dry air. This process is supposed to remove surface-adsorbed water, such as residues from the synthesis process or from exposure to humid conditions. Powder X-ray diffraction confirmed that this process does not affect the crystallinity of the two materials, and no phase transformation was
PDF
Album
Supp Info
Full Research Paper
Published 04 May 2022

A non-enzymatic electrochemical hydrogen peroxide sensor based on copper oxide nanostructures

  • Irena Mihailova,
  • Vjaceslavs Gerbreders,
  • Marina Krasovska,
  • Eriks Sledevskis,
  • Valdis Mizers,
  • Andrejs Bulanovs and
  • Andrejs Ogurcovs

Beilstein J. Nanotechnol. 2022, 13, 424–436, doi:10.3762/bjnano.13.35

Graphical Abstract
  • amorphous background indicates a high degree of crystallinity of the obtained samples. The X-ray diffraction pattern shows a large number of crystallographic planes corresponding to the CuO (tenorite) lattice; however, the dominant orientation corresponds to the direction perpendicular to the (002) and (111
PDF
Album
Full Research Paper
Published 03 May 2022

Interfacial nanoarchitectonics for ZIF-8 membranes with enhanced gas separation

  • Season S. Chen,
  • Zhen-Jie Yang,
  • Chia-Hao Chang,
  • Hoong-Uei Koh,
  • Sameerah I. Al-Saeedi,
  • Kuo-Lun Tung and
  • Kevin C.-W. Wu

Beilstein J. Nanotechnol. 2022, 13, 313–324, doi:10.3762/bjnano.13.26

Graphical Abstract
  • -ray diffraction were measured on a Rigaku Ultima IV with Cu Kα radiation (λ = 1.5418 Å) to check the crystallinity of the synthesized ZIF-8 thin films. The morphology of the supports, the free-standing thin films, and the supported membranes was observed by FE-SEM (NovaTM NanoSEM 230). The elemental
  • the support did not change. The intensity ratio of the strongest XRD peaks between ZIF-8 crystals ((011) at ca. 7.3°) and α-Al2O3 crystals ((104) at ca. 35.1°) was adopted as an indicator of ZIF-8 crystallinity, since the crystallinity of all commercial α-Al2O3 disks was consistent. Therefore, a
  • higher intensity ratio indicated a higher crystallinity of ZIF-8. As the synthesis temperature increased from 40 to 120 °C, the intensity ratio increased from 23.44 to 45.90% (Table 1), suggesting a higher crystallinity of ZIF-8 synthesized at higher reaction temperatures. Grain size of ZIF-8 crystals
PDF
Album
Supp Info
Full Research Paper
Published 22 Mar 2022

Effects of drug concentration and PLGA addition on the properties of electrospun ampicillin trihydrate-loaded PLA nanofibers

  • Tuğba Eren Böncü and
  • Nurten Ozdemir

Beilstein J. Nanotechnol. 2022, 13, 245–254, doi:10.3762/bjnano.13.19

Graphical Abstract
  • ][18] and crystallization properties of the polymer [19]. Since the crystallinity of PLGA is known to be lower than that of PLA [20] and its structure is different, the increase in diameter with the addition of PLGA may be related to the lower crystallinity and different structure of PLGA. In our
PDF
Album
Full Research Paper
Published 21 Feb 2022

Engineered titania nanomaterials in advanced clinical applications

  • Padmavati Sahare,
  • Paulina Govea Alvarez,
  • Juan Manual Sanchez Yanez,
  • Gabriel Luna-Bárcenas,
  • Samik Chakraborty,
  • Sujay Paul and
  • Miriam Estevez

Beilstein J. Nanotechnol. 2022, 13, 201–218, doi:10.3762/bjnano.13.15

Graphical Abstract
  • generated free electrons (e−) react with molecular oxygen to generate superoxide radicals by reduction. Several factors contribute to the photocatalytic performance of TiO2, such as the structural phase (anatase, brookite, or rutile), defects in the lattice, the degree of crystallinity, morphology
PDF
Album
Review
Published 14 Feb 2022
Other Beilstein-Institut Open Science Activities