Search results

Search for "nanostructure" in Full Text gives 358 result(s) in Beilstein Journal of Nanotechnology. Showing first 200.

Pattern generation for direct-write three-dimensional nanoscale structures via focused electron beam induced deposition

  • Lukas Keller and
  • Michael Huth

Beilstein J. Nanotechnol. 2018, 9, 2581–2598, doi:10.3762/bjnano.9.240

Graphical Abstract
  • eventually leads to the growth of the desired 3D nanostructure. Ideally, this pattern-definition file should be generated quasi-automatically from a simple geometrical description of the target 3D structure. A simulation-guided generation of pattern-definition files may well prove to be superior for some
PDF
Album
Supp Info
Full Research Paper
Published 27 Sep 2018

ZnO-nanostructure-based electrochemical sensor: Effect of nanostructure morphology on the sensing of heavy metal ions

  • Marina Krasovska,
  • Vjaceslavs Gerbreders,
  • Irena Mihailova,
  • Andrejs Ogurcovs,
  • Eriks Sledevskis,
  • Andrejs Gerbreders and
  • Pavels Sarajevs

Beilstein J. Nanotechnol. 2018, 9, 2421–2431, doi:10.3762/bjnano.9.227

Graphical Abstract
  • were carried out using these nanostructured ZnO coatings on the working electrodes using aqueous solutions of Pb(NO3)2 and Cd(NO3)2 as analytes with different concentrations. Experimental Design and fabrication of the ZnO nanostructure-based electrochemical sensor Three morphologies of well-aligned one
  • , which limits the flow of liquid around the sample and reduces the probability of grown particles to enter covered areas, providing the necessary selectivity of nanostructure growth only on the electrodes. In the second step a temporary extra rubber sealing mask was applied and Cr electrodes were coated
  • series of DPV measurements in Pb(NO3)2 aqueous solution at concentrations of 1.5 μM, 3 μM, 15 μM, 30 μM, 150 μM, and 300 μM were performed. The same configuration of the cell was used in the measurements. Results and Discussion Characterization of the ZnO nanostructure-modified electrodes SEM images show
PDF
Album
Full Research Paper
Published 11 Sep 2018

High-throughput micro-nanostructuring by microdroplet inkjet printing

  • Hendrikje R. Neumann and
  • Christine Selhuber-Unkel

Beilstein J. Nanotechnol. 2018, 9, 2372–2380, doi:10.3762/bjnano.9.222

Graphical Abstract
  • generated on different types of silicon and nickel–titanium (NiTi) materials, thus providing a novel method to micro-nanostructure and functionalize materials, which are relevant in biomaterial and biosensor applications. Results and Discussion Inkjet printing for generating micelle solution droplets The
  • nanostructure inside the printed circles is strongly distorted, and nanostructured patches are formed. Our method can easily be extended to further nanoparticle systems and also to complex printing patterns. Hence, it is relevant in all applications where nanoparticle separation distances and densities need to
PDF
Album
Full Research Paper
Published 04 Sep 2018

Block copolymers for designing nanostructured porous coatings

  • Roberto Nisticò

Beilstein J. Nanotechnol. 2018, 9, 2332–2344, doi:10.3762/bjnano.9.218

Graphical Abstract
  • nanostructure. AFM images reported in this study show that after thermal treatment, a mesoporous titania coating is obtained where the spherical pore systems correspond to the PS spherical domains in the hybrid film before calcination. Depending on the formulation parameters and following the same procedure
  • methods, the principal critical step is the removal of the porogen without losing the designed nanostructure organization [4]. In general, this procedure is a very complex route that requires either strong acids/bases or selective organic solvent washing (not easy to handle or environmentally friendly
PDF
Album
Review
Published 29 Aug 2018

Metal–dielectric hybrid nanoantennas for efficient frequency conversion at the anapole mode

  • Valerio F. Gili,
  • Lavinia Ghirardini,
  • Davide Rocco,
  • Giuseppe Marino,
  • Ivan Favero,
  • Iännis Roland,
  • Giovanni Pellegrini,
  • Lamberto Duò,
  • Marco Finazzi,
  • Luca Carletti,
  • Andrea Locatelli,
  • Aristide Lemaître,
  • Dragomir Neshev,
  • Costantino De Angelis,
  • Giuseppe Leo and
  • Michele Celebrano

Beilstein J. Nanotechnol. 2018, 9, 2306–2314, doi:10.3762/bjnano.9.215

Graphical Abstract
  • in placing a metal nanostructure in the proximity of the dielectric nanoantenna to manipulate the in- and out-coupling of light [34][35]. This hybrid integration was exploited to significantly boost the nonlinear conversion efficiency of nanosystems [32][36][37]. In particular, Maier and co-workers
  • wavelength, surrounded by an Au ring designed to improve light coupling to the nanostructure anapole. This enables the improvement of both the second- and third-order nonlinear efficiencies, with measured enhancement factors of about 30 and 15 for the SHG and THG processes, respectively. The analysis of both
PDF
Album
Full Research Paper
Published 27 Aug 2018

Nanoscale characterization of the temporary adhesive of the sea urchin Paracentrotus lividus

  • Ana S. Viana and
  • Romana Santos

Beilstein J. Nanotechnol. 2018, 9, 2277–2286, doi:10.3762/bjnano.9.212

Graphical Abstract
  • curves and positive thioflavin-T labelling. Conclusion: Our results confirm that like other temporary adhesives, the sea urchin adhesive footprint nanostructure consists of a meshwork of entangled globular nanostructures. Under native conditions, the adhesive footprints of the sea urchin behaved like a
  • adhesives, most studies have focused on permanent adhesives like those of mussels, barnacles and tubeworms, whereas the so-called nonpermanent, temporary or reversible adhesives have received much less attention. To our knowledge, the nanostructure of temporary adhesives has only been examined in a few
  • disc epidermis [15]. The two secretions mix when extruded, producing adhesive footprints composed of proteins, neutral and amino sugars and uronic acid [16]. The adhesive nanostructure of sea stars was studied in two species, Asterias rubens [7] and Marthasterias glacialis [8]. AFM was employed to show
PDF
Album
Full Research Paper
Published 24 Aug 2018

Electrospun one-dimensional nanostructures: a new horizon for gas sensing materials

  • Muhammad Imran,
  • Nunzio Motta and
  • Mahnaz Shafiei

Beilstein J. Nanotechnol. 2018, 9, 2128–2170, doi:10.3762/bjnano.9.202

Graphical Abstract
  • electrospinning practices [58][59][60][61][62]. 3 Nanostructure morphologies generated by electrospinning Recently, a great deal of attention and research effort has been devoted to the development of electrospun fibers incorporated with functional nanoparticles (NPs) [39][40]. This practice significantly
  • (e.g., polypyrrole (PPy), polyaniline (PANI), polythiophene (PTh) and their derivatives) [32][87][88][90], MOx nanofibers surface functionalized by metal nanoparticles [75] and graphene sheets incorporated with MOx nanofibers [89]. 4.1 Conductometric gas sensors Nanostructure-based conductometric
PDF
Album
Supp Info
Review
Published 13 Aug 2018

Localized photodeposition of catalysts using nanophotonic resonances in silicon photocathodes

  • Evgenia Kontoleta,
  • Sven H. C. Askes,
  • Lai-Hung Lai and
  • Erik C. Garnett

Beilstein J. Nanotechnol. 2018, 9, 2097–2105, doi:10.3762/bjnano.9.198

Graphical Abstract
  • nanostructure. Silicon nanocones confine light mostly at the top of the structure at 532 nm (Figure 2b) in contrast to an excitation at 638 nm, where most of the light is absorbed at the bottom of the cone (Figure 2c). In the case of inverted nanocones, light is concentrated primarily at the bottom for both
  • follows: First, preliminary chronoamperometric experiments were conducted to indicate the conditions in which we could easily identify the location of the platinum particles on each nanostructure without the total overgrowth of the latter. A total amount of around 1 mC was needed to obtain well separated
  • optimization of the photo-electrodeposition process is necessary for the fabrication of efficient photocatalytic samples. For each Si nanostructure morphology, overlays of secondary-electron and backscattered-electron (collected with an in-lens mirror detector) SEM images were acquired. This overlay method
PDF
Album
Supp Info
Full Research Paper
Published 03 Aug 2018

A scanning probe microscopy study of nanostructured TiO2/poly(3-hexylthiophene) hybrid heterojunctions for photovoltaic applications

  • Laurie Letertre,
  • Roland Roche,
  • Olivier Douhéret,
  • Hailu G. Kassa,
  • Denis Mariolle,
  • Nicolas Chevalier,
  • Łukasz Borowik,
  • Philippe Dumas,
  • Benjamin Grévin,
  • Roberto Lazzaroni and
  • Philippe Leclère

Beilstein J. Nanotechnol. 2018, 9, 2087–2096, doi:10.3762/bjnano.9.197

Graphical Abstract
  • the electron acceptor materials commonly used for DSSC and HBHJ, titanium dioxide (TiO2) is a well-known metal oxide semiconductor [6][7][8]. Depending on its nanostructure and its crystalline phase, its conductivity varies from 10−4 Ω−1·cm−1 to 10−11 Ω−1·cm−1 [9][10]. TiO2 is very valuable because it
PDF
Album
Supp Info
Full Research Paper
Published 01 Aug 2018

Metal-free catalysis based on nitrogen-doped carbon nanomaterials: a photoelectron spectroscopy point of view

  • Mattia Scardamaglia and
  • Carla Bittencourt

Beilstein J. Nanotechnol. 2018, 9, 2015–2031, doi:10.3762/bjnano.9.191

Graphical Abstract
  • nanostructure. The creation of active sites for interaction is a key step for obtaining an optimal working catalyst as well as for sensing foreign species [29][30][31]. These sites enable the dissociation of molecules and the formation of bonds with the products, for example in the molecular adsorption of
  • ]: Niwa et al. [105] described carbon nanostructure alloys (a precursor of graphene), Nagaiah and co-workers studied nitrogen-doped CNTs [106], and Parvez et al. used N-graphene [107]. In the first report, correlating X-ray absorption spectroscopy (XAS) and ORR activity, the study was focused on the
PDF
Album
Review
Published 18 Jul 2018

Recent highlights in nanoscale and mesoscale friction

  • Andrea Vanossi,
  • Dirk Dietzel,
  • Andre Schirmeisen,
  • Ernst Meyer,
  • Rémy Pawlak,
  • Thilo Glatzel,
  • Marcin Kisiel,
  • Shigeki Kawai and
  • Nicola Manini

Beilstein J. Nanotechnol. 2018, 9, 1995–2014, doi:10.3762/bjnano.9.190

Graphical Abstract
  • force component originating from the interface between nanostructure and substrate [43]. Only for very small structures, dynamic NC-AFM techniques are required in which the interfacial friction can be quantified based on the frequency shift induced by the resistance of the structure against movement [55
  • particles can be of importance. This was demonstrated by MD simulations for gold clusters on HOPG, where a significant reduction of static friction was found by simply increasing the cluster thickness. As a result, the nanostructure becomes elastically stiffer, which goes along with a reduced tendency to
PDF
Album
Review
Published 16 Jul 2018

Numerical analysis of single-point spectroscopy curves used in photo-carrier dynamics measurements by Kelvin probe force microscopy under frequency-modulated excitation

  • Pablo A. Fernández Garrillo,
  • Benjamin Grévin and
  • Łukasz Borowik

Beilstein J. Nanotechnol. 2018, 9, 1834–1843, doi:10.3762/bjnano.9.175

Graphical Abstract
  • nanostructure and photo-transport mechanisms has become of crucial importance for the development of many emerging photovoltaic technologies. In this context, Kelvin probe force microscopy under frequency-modulated excitation has emerged as a useful technique for probing photo-carrier dynamics and gaining
PDF
Album
Full Research Paper
Published 20 Jun 2018

Controllable one-pot synthesis of uniform colloidal TiO2 particles in a mixed solvent solution for photocatalysis

  • Jong Tae Moon,
  • Seung Ki Lee and
  • Ji Bong Joo

Beilstein J. Nanotechnol. 2018, 9, 1715–1727, doi:10.3762/bjnano.9.163

Graphical Abstract
  • synthesize TiO2 photocatalysts with controlled crystallinity while maintaining a high surface area. Since many photocatalysis reactions are a liquid phase reaction, a well-dispersible colloidal TiO2 nanostructure should be one of the most ideal forms. In order to maximize the active surface area as well as
PDF
Album
Supp Info
Full Research Paper
Published 08 Jun 2018

Light extraction efficiency enhancement of flip-chip blue light-emitting diodes by anodic aluminum oxide

  • Yi-Ru Huang,
  • Yao-Ching Chiu,
  • Kuan-Chieh Huang,
  • Shao-Ying Ting,
  • Po-Jui Chiang,
  • Chih-Ming Lai,
  • Chun-Ping Jen,
  • Snow H. Tseng and
  • Hsiang-Chen Wang

Beilstein J. Nanotechnol. 2018, 9, 1602–1612, doi:10.3762/bjnano.9.152

Graphical Abstract
  • high-luminance flip-chip blue LEDs (FC-BLEDs) to enhance the LEE [26][27]. This enhancement may occur through two mechanisms [28][29][30][31][32][33][34]. The nanostructure on the LED can decrease the total light reflectivity, thereby decreasing the critical angle of total reflectivity and enhancing
  • LEE [12][16][35][36]. Whether the nanostructure, which possesses special metallic features, is influenced by the surface plasmon wave and enhances LEE has also been studied [37][38][39][40]. Results and Discussion Scanning electron microscopy and atomic force microscopy measurements The scanning
  • a predominantly regular periodic nanostructure. The nanopore diameters of the three samples are approximately 73–75 nm, 77–79 nm, and 80–85 nm, and the distance between pores is approximately 15, 13, and 10 nm ± 2 nm. Figure 1a shows a relatively complete surface periodic structure; Figure 1b shows
PDF
Album
Full Research Paper
Published 30 May 2018

Interaction-tailored organization of large-area colloidal assemblies

  • Silvia Rizzato,
  • Elisabetta Primiceri,
  • Anna Grazia Monteduro,
  • Adriano Colombelli,
  • Angelo Leo,
  • Maria Grazia Manera,
  • Roberto Rella and
  • Giuseppe Maruccio

Beilstein J. Nanotechnol. 2018, 9, 1582–1593, doi:10.3762/bjnano.9.150

Graphical Abstract
  • different sizes and materials. Keywords: colloidal lithography; electrostatic interactions; large-area nanostructure patterning; localized surface plasmon resonance; spherical nanoparticles; Introduction In recent years, ordered nanostructured arrays have attracted great interest because of their
  • -area nanostructure arrays with controlled size and shape for application in localized surface plasmon resonance (LSPR) sensing and magnonics. Experimental Materials Glass substrates (3.5 × 2.5 cm2) were obtained from Electro Optical Technologies. Polystyrene spheres with diameter of 80 ± 7 nm (sulfate
  • on the whole surface considered. The optical absorbance of the fabricated nanostructure was characterized by a Cary500 UV–visible spectrophotometer. All the spectra were taken in the vis–NIR spectral range at room temperature and compared with expected theoretical results obtained through numerical
PDF
Album
Full Research Paper
Published 29 May 2018

Sheet-on-belt branched TiO2(B)/rGO powders with enhanced photocatalytic activity

  • Huan Xing,
  • Wei Wen and
  • Jin-Ming Wu

Beilstein J. Nanotechnol. 2018, 9, 1550–1557, doi:10.3762/bjnano.9.146

Graphical Abstract
  • assist the photodegradation of phenol in water under UV light illumination. The enhanced photocatalytic activity can be attributed to the significantly increased surface area and enhanced charge separation. Keywords: branched nanostructure; photocatalysis; reduced graphene oxide; TiO2(B); Introduction
  • harvesting efficiency, which also contributes to increased photocatalytic activity [22][27]. Herein, we report a novel approach to synthesize branched TiO2(B) nanobelts incorporated at the same time with reduced graphene oxide (rGO). The unique sheet-on-belt nanostructure demonstrates a high specific surface
  • surface area of the pristine TiO2 nanobelt. The further increased surface area of the branched nanostructure can be explained by the thinner thickness (≈2 nm, Figure 2d) and thus higher specific surface area of the nanosheet branches compared with the nanobelt trunks (≈5 nm in thickness, Figure 2a and
PDF
Album
Supp Info
Full Research Paper
Published 24 May 2018

Cr(VI) remediation from aqueous environment through modified-TiO2-mediated photocatalytic reduction

  • Rashmi Acharya,
  • Brundabana Naik and
  • Kulamani Parida

Beilstein J. Nanotechnol. 2018, 9, 1448–1470, doi:10.3762/bjnano.9.137

Graphical Abstract
PDF
Album
Review
Published 16 May 2018

Preparation and morphology-dependent wettability of porous alumina membranes

  • Dmitry L. Shimanovich,
  • Alla I. Vorobjova,
  • Daria I. Tishkevich,
  • Alex V. Trukhanov,
  • Maxim V. Zdorovets and
  • Artem L. Kozlovskiy

Beilstein J. Nanotechnol. 2018, 9, 1423–1436, doi:10.3762/bjnano.9.135

Graphical Abstract
  • , in oxalate electrolyte). The comparison of the wetting nature of the two surfaces of the PAM allows the contributions due to morphology and chemical properties to wetting of the nanostructure surface to be distinguished. It was shown that the etching method influences the surface morphology of the
PDF
Album
Supp Info
Full Research Paper
Published 15 May 2018

The electrical conductivity of CNT/graphene composites: a new method for accelerating transmission function calculations

  • Olga E. Glukhova and
  • Dmitriy S. Shmygin

Beilstein J. Nanotechnol. 2018, 9, 1254–1262, doi:10.3762/bjnano.9.117

Graphical Abstract
  • of the nanostructure. However, in order to obtain a converged form of the averaged transmission function, it may be necessary to calculate it in a set of points in the reciprocal lattice, which is unattainable for a large number of atoms in the considered system. In this connection, the development
PDF
Album
Full Research Paper
Published 20 Apr 2018
Graphical Abstract
  • . The center-to-center spacing of each nanostructure measures 500 nm which matches to the diameter of the original surface mask of Si spheres. The areas with CMPS have self-polymerized to form multilayer nanostructures. The OTS resist confines the multilayer polymerization of CMPS to form within the
  • Supporting Information File 1, Figure S1) The nanostructures of CMPS also showed growth in lateral dimensions after the addition of porphyrin. A comparison of the nanostructure surface coverage was conducted to evaluate lateral growth of the nanostructures before and after porphyrin addition. The percentage
  • lateral dimensions for CMPS nanodots, the growth was directed in the vertical direction to create taller nanostructures. However, the nanodot structures became taller and wider after reaction with H2TPyP to form heterostructures. This indicates that 3D growth takes place in the nanostructure assembly
PDF
Album
Supp Info
Full Research Paper
Published 17 Apr 2018

Circular dichroism of chiral Majorana states

  • Javier Osca and
  • Llorenç Serra

Beilstein J. Nanotechnol. 2018, 9, 1194–1199, doi:10.3762/bjnano.9.110

Graphical Abstract
  • along the nanostructure perimeter with the excitation operator. This rule is far less obvious than rule (a) and results from the approximately 1D character of the chiral edge modes and the interference induced by the propagation through corners. Indeed, we have seen that for active transitions within
PDF
Album
Full Research Paper
Published 16 Apr 2018

Review on nanoparticles and nanostructured materials: history, sources, toxicity and regulations

  • Jaison Jeevanandam,
  • Ahmed Barhoum,
  • Yen S. Chan,
  • Alain Dufresne and
  • Michael K. Danquah

Beilstein J. Nanotechnol. 2018, 9, 1050–1074, doi:10.3762/bjnano.9.98

Graphical Abstract
  • nanomaterial, it is referred to as nanofiber. Nanocomposite: Multiphase structure with at least one phase on the nanoscale dimension. Nanostructure: Composition of interconnected constituent parts in the nanoscale region. Nanostructured materials: Materials containing internal or surface nanostructure. The use
  • most famous nanostructure property in plants is the superhydrophobicity in lotus leaves that helps in self-cleaning and super-wettability of the leaves [193]. Many studies in the literature have suggested that stacks of nanostructures are responsible for the circular layer in plants and insects which
PDF
Album
Review
Published 03 Apr 2018

Magnetic characterization of cobalt nanowires and square nanorings fabricated by focused electron beam induced deposition

  • Federico Venturi,
  • Gian Carlo Gazzadi,
  • Amir H. Tavabi,
  • Alberto Rota,
  • Rafal E. Dunin-Borkowski and
  • Stefano Frabboni

Beilstein J. Nanotechnol. 2018, 9, 1040–1049, doi:10.3762/bjnano.9.97

Graphical Abstract
  • promise for reliable, high-capacity and high-performance devices [7]. However, in all of the proposed applications, the stability of the magnetic state of the nanostructure depends on factors such as its composition, crystal structure and shape [8]. Co-based magnetic nanostructures can be deposited by
  • coercivity is an important property in applications, as it ensures a stable magnetic state in such a nanostructure. The NWs presented here have a small enough diameter to behave in a single-domain-like manner. Higher coercivities could be achieved by depositing NWs with smaller widths. Lorentz TEM and MFM of
  • surroundings. However, due to the low Co deposit amount in this halo, it does not affect the overall magnetization state of the nanostructure. The halo may at most slightly modify the coercivity of the nanostructures [45]. Conclusion Co NWs and square nanorings were deposited using FEBID from a Co carbonyl
PDF
Album
Full Research Paper
Published 03 Apr 2018

Towards the third dimension in direct electron beam writing of silver

  • Katja Höflich,
  • Jakub Mateusz Jurczyk,
  • Katarzyna Madajska,
  • Maximilian Götz,
  • Luisa Berger,
  • Carlos Guerra-Nuñez,
  • Caspar Haverkamp,
  • Iwona Szymanska and
  • Ivo Utke

Beilstein J. Nanotechnol. 2018, 9, 842–849, doi:10.3762/bjnano.9.78

Graphical Abstract
  • correspond to the full width FW (99.9%) of the SE density [9][27] but exceed the typical nanostructure widths of 3D FEBID [1][3]. Interestingly, the halo diameter tends to increase for decreasing beam current. In view of the results presented in Figure 2, this is most probably caused by forward scattering
  • through the nanostructure. The EDX spectra taken on the apex of the pillars are displayed in Figure 3d. The observed Si peak implies that the EDX spectrum from the primary electrons (tip apex) is superimposed by X-ray signals generated by forward scattered electrons (reaching the substrate). Neglecting
PDF
Album
Letter
Published 08 Mar 2018

A review of carbon-based and non-carbon-based catalyst supports for the selective catalytic reduction of nitric oxide

  • Shahreen Binti Izwan Anthonysamy,
  • Syahidah Binti Afandi,
  • Mehrnoush Khavarian and
  • Abdul Rahman Bin Mohamed

Beilstein J. Nanotechnol. 2018, 9, 740–761, doi:10.3762/bjnano.9.68

Graphical Abstract
  • an attractive catalyst support for SCR catalysts due to their electronic properties and unique nanostructure [71][72][73]. CNT-supported metal oxide catalysts are well-known in the adsorption field and present interesting properties for the denitrification of NOx species [74][75]. Ma et al. [56
PDF
Review
Published 27 Feb 2018
Other Beilstein-Institut Open Science Activities