Search results

Search for "thin film" in Full Text gives 509 result(s) in Beilstein Journal of Nanotechnology. Showing first 200.

Review of advanced sensor devices employing nanoarchitectonics concepts

  • Katsuhiko Ariga,
  • Tatsuyuki Makita,
  • Masato Ito,
  • Taizo Mori,
  • Shun Watanabe and
  • Jun Takeya

Beilstein J. Nanotechnol. 2019, 10, 2014–2030, doi:10.3762/bjnano.10.198

Graphical Abstract
  • ; nanoarchitectonics; sensor; thin film; Review Introduction Detection systems for various chemical, physical, environmental, and biological targets, so-called sensors, have been continuously explored [1][2][3][4]. Although their usefulness was recognized even in the early stages of modern science and technology, the
PDF
Album
Review
Published 16 Oct 2019

Synthesis and potent cytotoxic activity of a novel diosgenin derivative and its phytosomes against lung cancer cells

  • Liang Xu,
  • Dekang Xu,
  • Ziying Li,
  • Yu Gao and
  • Haijun Chen

Beilstein J. Nanotechnol. 2019, 10, 1933–1942, doi:10.3762/bjnano.10.189

Graphical Abstract
  • , Di phytosomes (DiP) and P2 phytosomes (P2P) were prepared by a thin-film rehydration method (Figure 3A). Blank lipid nanoparticles without drugs (P) were also prepared with the same process. Particle size and zeta potential of the phytosomes were measured by dynamic light scattering (DLS). The
  • size distribution of phytosomes seems a little broad. We used the thin-film hydration method followed by sonication to prepare the phytosomes in this study. The mean size and size distribution are significantly influenced by the sonication conditions. Further optimization of the formulation and the
  • activities than Di against human non-small-cell lung cancer A549 and PC9 cells. To further improve the water solubility of Di and P2, DiP and P2P were prepared with a thin-film rehydration method. DiP and P2P exhibited particle sizes less than 100 nm with oval shape and negative charges. Compared with free
PDF
Album
Supp Info
Full Research Paper
Published 24 Sep 2019

Oblique angle deposition of nickel thin films by high-power impulse magnetron sputtering

  • Hamidreza Hajihoseini,
  • Movaffaq Kateb,
  • Snorri Þorgeir Ingvarsson and
  • Jon Tomas Gudmundsson

Beilstein J. Nanotechnol. 2019, 10, 1914–1921, doi:10.3762/bjnano.10.186

Graphical Abstract
  • . Vibrating sample magnetometry (VSM) was performed on 10 × 10 mm2 sized samples at 300 K. Variable magnetic fields up to ±1 T were used for magnetic measurements. Results and Discussion Thin film structure Figure 1 shows the film density, deposition rate and surface roughness of Ni films deposited by HiPIMS
  • tilt angle. We believe that the smaller grain size of HiPIMS-deposited films (shown in Figure 4) is the main reason for soft magnetism of the films. Poolcharuansin et al. [64] have shown that Ni thin film deposition using an inverted gapped-target sputter magnetron results in smaller grain size and
PDF
Album
Full Research Paper
Published 20 Sep 2019

Fabrication and characterization of Si1−xGex nanocrystals in as-grown and annealed structures: a comparative study

  • Muhammad Taha Sultan,
  • Adrian Valentin Maraloiu,
  • Ionel Stavarache,
  • Jón Tómas Gudmundsson,
  • Andrei Manolescu,
  • Valentin Serban Teodorescu,
  • Magdalena Lidia Ciurea and
  • Halldór Gudfinnur Svavarsson

Beilstein J. Nanotechnol. 2019, 10, 1873–1882, doi:10.3762/bjnano.10.182

Graphical Abstract
  • annealing. A rather recent variation of the magnetron sputtering technique, the so-called high-power impulse magnetron sputtering (HiPIMS), provides an alternative approach. It is an ionized physical vapor deposition method and has shown great promise in thin-film processing [25][26]. During HiPIMS the
PDF
Album
Full Research Paper
Published 17 Sep 2019

Remarkable electronic and optical anisotropy of layered 1T’-WTe2 2D materials

  • Qiankun Zhang,
  • Rongjie Zhang,
  • Jiancui Chen,
  • Wanfu Shen,
  • Chunhua An,
  • Xiaodong Hu,
  • Mingli Dong,
  • Jing Liu and
  • Lianqing Zhu

Beilstein J. Nanotechnol. 2019, 10, 1745–1753, doi:10.3762/bjnano.10.170

Graphical Abstract
  • photoelectric property in detail, showing a 300-fold improvement in the photosensitivity. Moreover, due to its attractive properties, mono- or few-layer 1T’-WTe2 was shown to be a promising, novel and fascinating material for high-performance magnetoresistance applications in thin-film electromagnetics [33][34
  • (Figure 1a) in polar coordinates. c) Azimuth-dependent RDM images. Angle-resolved DC conductivity of a 1T’-WTe2 thin film. a) Optical image of s WTe2 flake with 12 electrodes spaced 30° apart. b) and c) are the transfer characteristic curves and the output characteristic curves, respectively. d) Angle
PDF
Album
Correction
Full Research Paper
Published 20 Aug 2019

Hierarchically structured 3D carbon nanotube electrodes for electrocatalytic applications

  • Pei Wang,
  • Katarzyna Kulp and
  • Michael Bron

Beilstein J. Nanotechnol. 2019, 10, 1475–1487, doi:10.3762/bjnano.10.146

Graphical Abstract
  • –300 particles with the software “Lince” (TU Damstadt, Germany) [83]. Raman spectra were measured employing a Renishaw InVia spectrometer with 532 nm excitation wavelength from a Cobolt CW DPSS laser. Due to the considerably thin film of the CNT layers, and thus the low amount of Pt, XRD did not yield
PDF
Album
Supp Info
Full Research Paper
Published 24 Jul 2019

Superconducting switching due to a triplet component in the Pb/Cu/Ni/Cu/Co2Cr1−xFexAly spin-valve structure

  • Andrey Andreevich Kamashev,
  • Nadir Nurgayazovich Garif’yanov,
  • Aidar Azatovich Validov,
  • Joachim Schumann,
  • Vladislav Kataev,
  • Bernd Büchner,
  • Yakov Victorovich Fominov and
  • Ilgiz Abdulsamatovich Garifullin

Beilstein J. Nanotechnol. 2019, 10, 1458–1463, doi:10.3762/bjnano.10.144

Graphical Abstract
  • , 5, 021019, in achieving large values of the switching effect. Keywords: ferromagnet; proximity effect; superconductor; Introduction For decades, metallic thin-film heterostructures have been in the in the focus of fundamental research in condensed matter physics and materials science. They show
PDF
Album
Letter
Published 19 Jul 2019

Growth of lithium hydride thin films from solutions: Towards solution atomic layer deposition of lithiated films

  • Ivan Kundrata,
  • Karol Fröhlich,
  • Lubomír Vančo,
  • Matej Mičušík and
  • Julien Bachmann

Beilstein J. Nanotechnol. 2019, 10, 1443–1451, doi:10.3762/bjnano.10.142

Graphical Abstract
  • Ivan Kundrata Karol Frohlich Lubomir Vanco Matej Micusik Julien Bachmann Institute of Electrical Engineering, SAS, Dúbravská cesta 9, 841 04 Bratislava, Slovakia Friedrich-Alexander University of Erlangen-Nürnberg, Dept. Chemie and Pharmacy, Chair ”Chemistry of Thin Film Materials”, Cauerstr. 3
PDF
Album
Full Research Paper
Published 18 Jul 2019

Highly ordered mesoporous silica film nanocomposites containing gold nanoparticles for the catalytic reduction of 4-nitrophenol

  • Mohamad Azani Jalani,
  • Leny Yuliati,
  • Siew Ling Lee and
  • Hendrik O. Lintang

Beilstein J. Nanotechnol. 2019, 10, 1368–1379, doi:10.3762/bjnano.10.135

Graphical Abstract
  • synthesis method using discotic trinuclear gold(I) pyrazolate complex, were successfully utilized for the fabrication of thin film mesoporous silica nanocomposites containing gold nanoparticles. The material exhibited a highly ordered hexagonal structure when subjected to a thermal hydrogen reduction
  • treatment at 210 °C. In contrast, when the material was subjected to calcination as a heat treatment from 190 to 450 °C, the thin film nanocomposites showed an intense d100 X-ray diffraction peak. Moreover, gold nanoparticles inside the thin film nanocomposites were confirmed by the presence of the d111
  • -nitrophenol at room temperature, the highly ordered structure of the as-fabricated silica/gold nanoparticle thin film composite after thermal hydrogen reduction at 210 °C resulted in an improved catalytic activity for the reduction of 4-nitrophenol to 4-aminophenol compared to the material calcined at 250 °C
PDF
Album
Supp Info
Full Research Paper
Published 05 Jul 2019

Janus-micromotor-based on–off luminescence sensor for active TNT detection

  • Ye Yuan,
  • Changyong Gao,
  • Daolin Wang,
  • Chang Zhou,
  • Baohua Zhu and
  • Qiang He

Beilstein J. Nanotechnol. 2019, 10, 1324–1331, doi:10.3762/bjnano.10.131

Graphical Abstract
  • dispersed on a glass slide to form a monolayer. After sputtering of a 20 nm thin film of Pt, the Janus UCNP-functionalized capsule motors were obtained by removing the silica cores with hydrofluoric acid. To prepare the Janus UCNP capsule motors, NaYF4:Yb3+/Er3+ UCNPs were firstly synthesized following a
PDF
Album
Supp Info
Full Research Paper
Published 28 Jun 2019

Fabrication of phase masks from amorphous carbon thin films for electron-beam shaping

  • Lukas Grünewald,
  • Dagmar Gerthsen and
  • Simon Hettler

Beilstein J. Nanotechnol. 2019, 10, 1290–1302, doi:10.3762/bjnano.10.128

Graphical Abstract
  • (transmission) electron microscopy (S(T)EM). Phase-modulating thin-film devices (phase masks) made of amorphous silicon nitride are commonly used to generate a wide range of different beam shapes. An additional conductive layer on such a device is required to avoid charging under electron-beam irradiation
  • an incoming electron plane wave is generated by an amorphous thin film with locally varying thickness. In general, electrons undergo a thickness-dependent phase shift in a thin, amorphous, non-magnetic material according to [15]: Here CE denotes the energy-dependent interaction constant (6.53 × 10−3
  • rad·nm−1·V−1 for a primary electron energy of E = 300 keV), VMIP is the mean inner potential (MIP) of the material, t is the thickness of the thin film and x and y are the directions perpendicular to the incident electron beam. The underlying effect is analogous to the phase shift that is generated
PDF
Album
Supp Info
Full Research Paper
Published 25 Jun 2019

Alloyed Pt3M (M = Co, Ni) nanoparticles supported on S- and N-doped carbon nanotubes for the oxygen reduction reaction

  • Stéphane Louisia,
  • Yohann R. J. Thomas,
  • Pierre Lecante,
  • Marie Heitzmann,
  • M. Rosa Axet,
  • Pierre-André Jacques and
  • Philippe Serp

Beilstein J. Nanotechnol. 2019, 10, 1251–1269, doi:10.3762/bjnano.10.125

Graphical Abstract
  • works have shown that the ORR activities of Pt catalysts are strongly dependent on the electrolyte [54]. According to these studies, activities were found to increase from H2SO4 to HClO4 due to the specific effect of the adsorbed anion on different Pt(hkl) sites. Furthermore, the thin film RRDE method
  • catalyst. The two highest ECSAs were measured for Pt3Co/N-CNT and Pt3Ni/N-CNTHT at 55.5 m2·gPt−1 and 46 m2·gPt−1, respectively. For the RRDE characterization, a thin film of the catalyst was formed at the surface of the working electrode. For each carbon support used in this study, there was a modification
PDF
Album
Supp Info
Full Research Paper
Published 21 Jun 2019

Quantitative analysis of annealing-induced instabilities of photo-leakage current and negative-bias-illumination-stress in a-InGaZnO thin-film transistors

  • Dapeng Wang and
  • Mamoru Furuta

Beilstein J. Nanotechnol. 2019, 10, 1125–1130, doi:10.3762/bjnano.10.112

Graphical Abstract
  • temperature on the initial electrical characteristics and photo-induced instabilities of amorphous indium gallium zinc oxide (a-IGZO) thin-film transistors (TFTs). The extracted electrical parameters from transfer curves suggest that a low-temperature treatment maintains a high density of defects in the IGZO
  • irrespective of treatment temperature. NBIS-induced critical instability occurs in the high-temperature-annealed TFT. Keywords: metal oxide; photo-induced instabilities; photon energy; thermal annealing; thin-film transistor (TFT) device; Introduction The rapid process of industrialization and
  • commercialization has accelerated the development of consumption electronics and micromachining technology. One of the most successful modern-day microelectronic products are metal-oxide thin-film transistors (TFTs) that guarantee large-scale integrated circuits for applications in transparent and flexible flat
PDF
Album
Full Research Paper
Published 27 May 2019

CuInSe2 quantum dots grown by molecular beam epitaxy on amorphous SiO2 surfaces

  • Henrique Limborço,
  • Pedro M.P. Salomé,
  • Rodrigo Ribeiro-Andrade,
  • Jennifer P. Teixeira,
  • Nicoleta Nicoara,
  • Kamal Abderrafi,
  • Joaquim P. Leitão,
  • Juan C. Gonzalez and
  • Sascha Sadewasser

Beilstein J. Nanotechnol. 2019, 10, 1103–1111, doi:10.3762/bjnano.10.110

Graphical Abstract
  • with the average size of the nanodots. Keywords: copper indium gallium selenide (CuInSe2); quantum dots; Introduction The chalcopyrite compound Cu(In,Ga)Se2 (CIGS) is used as the light absorber layer in thin film solar cells that typically consist of a glass substrate, a Mo back contact, the CIGS
  • these solar cells is a thin film commonly prepared by co-evaporation in vacuum [3]. This technique consists of the simultaneous thermal evaporation of several elements under vacuum conditions and the provision of a thermal budget to the substrate [4]. Due to the excellent optoelectronic properties of
  • solution-based processes [18][19][20][21][22][23][24][25][26]. However, for thin film solar cells prepared by non-vacuum methods the resulting devices usually yield a significantly lower electrical performance compared with vacuum-prepared solar cells [27][28]. This difference between the electrical
PDF
Album
Full Research Paper
Published 22 May 2019

Concurrent nanoscale surface etching and SnO2 loading of carbon fibers for vanadium ion redox enhancement

  • Jun Maruyama,
  • Shohei Maruyama,
  • Tomoko Fukuhara,
  • Toru Nagaoka and
  • Kei Hanafusa

Beilstein J. Nanotechnol. 2019, 10, 985–992, doi:10.3762/bjnano.10.99

Graphical Abstract
  • redox flow batteries (VRFBs), which are in the most advanced stage of research and development: Nanoscale surface etching was attained by coating the surface with a carbonaceous thin film derived from cobalt(II) phthalocyanine (CoPc) and subsequent thermal oxidation followed by acid washing. The
  • carbonaceous thin film was formed by sublimation, deposition, and pyrolysis of CoPc on the carbon fiber surface during a single heat-treatment step using a conventional crucible. The treatment substantially enriched edge planes and produced an enhanced activity for the positive and negative electrode reactions
  • -oxide nanoparticles to further enhance the activity and found that through the thermal oxidation of the carbonaceous thin film derived from SnPc both types of enhancement can be concurrently achieved. The formed metal oxide, SnO2, is one of the candidates for a durable catalyst support used in an acidic
PDF
Album
Supp Info
Full Research Paper
Published 30 Apr 2019

Direct growth of few-layer graphene on AlN-based resonators for high-sensitivity gravimetric biosensors

  • Jimena Olivares,
  • Teona Mirea,
  • Lorena Gordillo-Dagallier,
  • Bruno Marco,
  • José Miguel Escolano,
  • Marta Clement and
  • Enrique Iborra

Beilstein J. Nanotechnol. 2019, 10, 975–984, doi:10.3762/bjnano.10.98

Graphical Abstract
  • quartz crystal microbalances (QCMs), and can be configured in sensor arrays and integrated (on-wafer or in-package) along with their driving electronics and microfluidic arrangements, offering compact and inexpensive measurement systems [5][6]. Among the wide variety of thin-film resonators exploiting
  • of their characteristics and then functionalized to manufacture gravimetric biosensors, which eliminates the need to use complex transfer methods. Defect-free few-layer graphene was selectively grown through a low-temperature (650 °C) CVD process on Ni [16] thin-film catalysts previously evaporated
PDF
Album
Full Research Paper
Published 29 Apr 2019

Novel reversibly switchable wettability of superhydrophobic–superhydrophilic surfaces induced by charge injection and heating

  • Xiangdong Ye,
  • Junwen Hou and
  • Dongbao Cai

Beilstein J. Nanotechnol. 2019, 10, 840–847, doi:10.3762/bjnano.10.84

Graphical Abstract
  • between superhydrophobicity and superhydrophilicity using a folded graphene coating that was prepared by ethanol drying and prewetting. The wettability of droplets on electrodes coated with an insulator thin film can be changed by applying direct or alternating-current potentials. This phenomenon is
PDF
Album
Full Research Paper
Published 10 Apr 2019

Capillary force-induced superlattice variation atop a nanometer-wide graphene flake and its moiré origin studied by STM

  • Loji K. Thomas and
  • Michael Reichling

Beilstein J. Nanotechnol. 2019, 10, 804–810, doi:10.3762/bjnano.10.80

Graphical Abstract
  • plane interacting with a sphere with an effective radius R*. It can be imagined that the thin film of liquid on the surface acts like an object that supports the meniscus with a curvature, R2. That is the spread (x) that contributes is only the volume of the liquid forming a curved meniscus, and not the
PDF
Album
Supp Info
Full Research Paper
Published 01 Apr 2019

An iridescent film of porous anodic aluminum oxide with alternatingly electrodeposited Cu and SiO2 nanoparticles

  • Menglei Chang,
  • Huawen Hu,
  • Haiyan Quan,
  • Hongyang Wei,
  • Zhangyi Xiong,
  • Jiacong Lu,
  • Pin Luo,
  • Yaoheng Liang,
  • Jianzhen Ou and
  • Dongchu Chen

Beilstein J. Nanotechnol. 2019, 10, 735–745, doi:10.3762/bjnano.10.73

Graphical Abstract
  • and optical properties of a series of the electrodeposited AAO-based thin film were investigated. The Cu and SiO2 NPs were found to be uniformly deposited into the porous structure of the AAO film, and the alternating electrodeposition repeating twice led to the formation of the optimal AAO-based thin
  • film that exhibited a rainbow effect and superior anti-corrosion performance. Keywords: aluminum alloys; anodic aluminum oxidation; interference-enabled color production; rainbow effect; structural color; Introduction Due to the low cost, high mechanical strength and ductility, and well-developed
PDF
Album
Supp Info
Full Research Paper
Published 19 Mar 2019

Review of time-resolved non-contact electrostatic force microscopy techniques with applications to ionic transport measurements

  • Aaron Mascaro,
  • Yoichi Miyahara,
  • Tyler Enright,
  • Omur E. Dagdeviren and
  • Peter Grütter

Beilstein J. Nanotechnol. 2019, 10, 617–633, doi:10.3762/bjnano.10.62

Graphical Abstract
  • times of an organic photovoltaic thin film (MDMO-PPV:PCBM), shown in Figure 7, and demonstrated the ability of the technique to spatially resolve heterogeneities. Due to the difficulty in quantitatively extracting τ from the measured τFP, spatially resolved measurements are limited to relative charging
PDF
Album
Supp Info
Review
Published 01 Mar 2019

Direct observation of the CVD growth of monolayer MoS2 using in situ optical spectroscopy

  • Claudia Beatriz López-Posadas,
  • Yaxu Wei,
  • Wanfu Shen,
  • Daniel Kahr,
  • Michael Hohage and
  • Lidong Sun

Beilstein J. Nanotechnol. 2019, 10, 557–564, doi:10.3762/bjnano.10.57

Graphical Abstract
  • furnace, it can be seen that the DT spectrum remains unchanged during the first 33 min, although the temperature measured at the position related of sulfur, MoO3, and the substrate increased. This observation shows that no thin film was deposited during this period. The second section (section II
  • contrast, the features associated with MoS2 vanish. The decrease of the transmittance (the increase of DTS) over the low-energy range could be attributed to the increase of the scattering of the MoO3 thin film deposited on the quartz window. In order to understand the observed evolution of the DT
PDF
Album
Supp Info
Full Research Paper
Published 26 Feb 2019

Nanocomposite–parylene C thin films with high dielectric constant and low losses for future organic electronic devices

  • Marwa Mokni,
  • Gianluigi Maggioni,
  • Abdelkader Kahouli,
  • Sara M. Carturan,
  • Walter Raniero and
  • Alain Sylvestre

Beilstein J. Nanotechnol. 2019, 10, 428–441, doi:10.3762/bjnano.10.42

Graphical Abstract
  • ; Introduction Increasing the dielectric constant of gate dielectrics for oxide thin-film transistors (TFTs) improves the performance of such devices. Challenges are in the processing of these high-k dielectrics and various approaches were tested over time. Among them, low-cost and innovative methods were
PDF
Album
Full Research Paper
Published 12 Feb 2019

Biocompatible organic–inorganic hybrid materials based on nucleobases and titanium developed by molecular layer deposition

  • Leva Momtazi,
  • Henrik H. Sønsteby and
  • Ola Nilsen

Beilstein J. Nanotechnol. 2019, 10, 399–411, doi:10.3762/bjnano.10.39

Graphical Abstract
  • enables control of cell–surface interactions, which plays a major role in controlling the bioactivity of solid surfaces. Biocompatibility can be enhanced by coating the surface using various thin film deposition techniques such as chemical vapor deposition (CVD), physical vapor deposition (PVD) or atomic
  • the films was measured by a Bruker AXS D8 advance film diffractometer equipped with a LynxEye strip detector. The thin film diffractometer had a Göbel mirror and a Ge(220) four bounce monochromater for XRR measurements. X-ray photoelectron spectroscopy (XPS) was performed using a Thermo Scientific
PDF
Album
Supp Info
Full Research Paper
Published 08 Feb 2019

Integration of LaMnO3+δ films on platinized silicon substrates for resistive switching applications by PI-MOCVD

  • Raquel Rodriguez-Lamas,
  • Dolors Pla,
  • Odette Chaix-Pluchery,
  • Benjamin Meunier,
  • Fabrice Wilhelm,
  • Andrei Rogalev,
  • Laetitia Rapenne,
  • Xavier Mescot,
  • Quentin Rafhay,
  • Hervé Roussel,
  • Michel Boudard,
  • Carmen Jiménez and
  • Mónica Burriel

Beilstein J. Nanotechnol. 2019, 10, 389–398, doi:10.3762/bjnano.10.38

Graphical Abstract
  • -based devices fabricated using optimized growth strategies. Keywords: manganite; metal organic chemical vapour deposition (MOCVD); resistive switching; thin film; valence-change memory; Introduction Resistive switching (RS) denotes the phenomena occurring in capacitor-like heterostructures (metal
PDF
Album
Supp Info
Full Research Paper
Published 07 Feb 2019

Geometrical optimisation of core–shell nanowire arrays for enhanced absorption in thin crystalline silicon heterojunction solar cells

  • Robin Vismara,
  • Olindo Isabella,
  • Andrea Ingenito,
  • Fai Tong Si and
  • Miro Zeman

Beilstein J. Nanotechnol. 2019, 10, 322–331, doi:10.3762/bjnano.10.31

Graphical Abstract
  • Thin Film Electronic Laboratory (PV-Lab), Rue de la Maladière 71b, 2002 Neuchâtel, Switzerland 10.3762/bjnano.10.31 Abstract Background: Elongated nanostructures, such as nanowires, have attracted significant attention for application in silicon-based solar cells. The high aspect ratio and
  • from the surface. Plasma-enhanced chemical vapour deposition (PECVD) was used for growing thin-film silicon and silicon alloys layers, to implement surface passivation and front surface field. Intrinsic hydrogenated amorphous silicon (a-Si(i):H), with a thickness equivalent to 30 nm on a flat substrate
  • Simulator” (HFSS) was employed [44], which allows for the modelling of thin-film optoelectronic devices with arbitrarily complex geometries [45][46][47][48][49][50][51][52]. To ensure accuracy, accurately measured optical properties (refractive index n and extinction coefficient κ) of each material of the
PDF
Album
Supp Info
Full Research Paper
Published 31 Jan 2019
Other Beilstein-Institut Open Science Activities