Search results

Search for "electric field" in Full Text gives 384 result(s) in Beilstein Journal of Nanotechnology. Showing first 200.

The role of the Ge mole fraction in improving the performance of a nanoscale junctionless tunneling FET: concept and scaling capability

  • Hichem Ferhati,
  • Fayçal Djeffal and
  • Toufik Bentrcia

Beilstein J. Nanotechnol. 2018, 9, 1856–1862, doi:10.3762/bjnano.9.177

Graphical Abstract
  • temperatures in the current equations [25]. Moreover, models for carrier recombination (Shockley–Read–Hall (SRH), Auger and surface recombination) are also adopted [26]. In fact, the carrier mobility mainly depends on three quantities, transverse and parallel electric field, doping and temperature, which were
  • superior control of the channel conductivity through modulating the electric field at the heterojunction interfaces. In this regard, it is of great importance to illustrate the electric field distribution for a better understanding of the physical rules governing the obtained improvements of the
  • electrostatic behavior. Figure 3b compares the distribution of the electric field along the channel of the proposed Si1−xGex/Si/Ge DG-HJ-JL TFET design to that of the conventional Ge-DG-JL TFET counterpart. Clearly, a considerable change in the electric field distribution can be achieved by including the
PDF
Album
Full Research Paper
Published 22 Jun 2018

Know your full potential: Quantitative Kelvin probe force microscopy on nanoscale electrical devices

  • Amelie Axt,
  • Ilka M. Hermes,
  • Victor W. Bergmann,
  • Niklas Tausendpfund and
  • Stefan A. L. Weber

Beilstein J. Nanotechnol. 2018, 9, 1809–1819, doi:10.3762/bjnano.9.172

Graphical Abstract
  • a strong stray electric field. Due to the stronger contribution of the cantilever on the measured surface potentials in AM-KPFM, the exposure of the cantilever to a stray electric field had a strong impact both on the potential difference and on the absolute potential. With these new results, we now
  • stronger lateral averaging of the AM-KPFM in lift mode and the presence of a stray electric field. Such a field could originate from gallium ions deposited into the glass substrate during the focused ion beam polishing of the cross section. Our general recommendation for quantitative device measurements is
PDF
Album
Supp Info
Full Research Paper
Published 15 Jun 2018

A visible-light-controlled platform for prolonged drug release based on Ag-doped TiO2 nanotubes with a hydrophobic layer

  • Caihong Liang,
  • Jiang Wen and
  • Xiaoming Liao

Beilstein J. Nanotechnol. 2018, 9, 1793–1801, doi:10.3762/bjnano.9.170

Graphical Abstract
  • electric field [33] and results in the generation of e− and h+ even under irradiation with lower energy light. Thus, doping with AgNPs has evidently enhanced the TiO2 photocatalysis under visible-light irradiation. However, after loading with the Zn2+-based drug and coating with the NDM layer, the
PDF
Album
Full Research Paper
Published 14 Jun 2018

Multimodal noncontact atomic force microscopy and Kelvin probe force microscopy investigations of organolead tribromide perovskite single crystals

  • Yann Almadori,
  • David Moerman,
  • Jaume Llacer Martinez,
  • Philippe Leclère and
  • Benjamin Grévin

Beilstein J. Nanotechnol. 2018, 9, 1695–1704, doi:10.3762/bjnano.9.161

Graphical Abstract
  • internal electric field distribution and photocarrier recombination mechanisms in polycrystalline perovskite thin films [6][7]. However, considering the results of earlier works shows that it is sometimes difficult to draw definitive conclusions about the detrimental (or beneficial) impact of the GBs on
  • single crystals [28]. Here, the band bending is due to the existence of surface states which are filled by forming a charge-depleted layer (also called a space-charge layer) beneath the surface [15]. The resulting internal built-in electric field induces a spatial separation of the photogenerated
  • for systems where the bulk recombination is purely (or almost completely) bimolecular. This scenario is remarkably consistent with our previous deduction about the existence of surface states (which are here a key ingredient at the origin of the built-in electric field and photocarrier spatial
PDF
Album
Supp Info
Full Research Paper
Published 07 Jun 2018

Toward the use of CVD-grown MoS2 nanosheets as field-emission source

  • Geetanjali Deokar,
  • Nitul S. Rajput,
  • Junjie Li,
  • Francis Leonard Deepak,
  • Wei Ou-Yang,
  • Nicolas Reckinger,
  • Carla Bittencourt,
  • Jean-Francois Colomer and
  • Mustapha Jouiad

Beilstein J. Nanotechnol. 2018, 9, 1686–1694, doi:10.3762/bjnano.9.160

Graphical Abstract
  • factor) is a particular value of the principal Schottky–Nordheim barrier function U. β is the local electrical field enhancement factor. is the work function of the emitter (considered to be 4.04 eV here [29]). In Figure 6a, the current density versus electric field (J–E) curve of the transferred MoS2
  • increasing of the applied electric field (Figure 6a). The turn-on field, defined at a current density of 10 µA/cm2, and the threshold field at 1 mA/cm2, are 3.1 and 5.3 V/µm, respectively. These data are found to be better than the previously reported values for MoS2 nanoflowers [13] or multilayered MoS2 [8
  • geometrical morphology of the emitter surface and thus it is important to control the surface morphology for producing better field emitters [9][30][31]. The emitter surface is rough for nanomaterials deposited as a planar cathode and, therefore, for a given emission site the applied electric field varies
PDF
Album
Supp Info
Full Research Paper
Published 07 Jun 2018

Nanoscale electrochemical response of lithium-ion cathodes: a combined study using C-AFM and SIMS

  • Jonathan Op de Beeck,
  • Nouha Labyedh,
  • Alfonso Sepúlveda,
  • Valentina Spampinato,
  • Alexis Franquet,
  • Thierry Conard,
  • Philippe M. Vereecken,
  • Wilfried Vandervorst and
  • Umberto Celano

Beilstein J. Nanotechnol. 2018, 9, 1623–1628, doi:10.3762/bjnano.9.154

Graphical Abstract
  • strong and localized electric field. Second, the combination of C-AFM and SIMS is used to correlate electrical conductivity and local chemistry in different cathodes for application in ASB. Finally, a promising starting point towards quantitative electrochemical information starting from C-AFM is
  • for its pristine state (Figure 1b). The different conductivity changes between MnO2 and LMO can be attributed to the presence of lithium in LMO as this can migrate and locally accumulate at the surface driven by the applied electric field. The impact of the 10 V stress is described later in the text
  • due to the presence of a water meniscus on all the surfaces. As shown elsewhere, this water layer can act as a Li-ion reservoir and in combination with an applied electric field at the AFM tip it can induce multiple oxidation processes leading to the formation of insulating Li-compounds (e.g., Li2O
PDF
Album
Supp Info
Letter
Published 04 Jun 2018

Interaction-tailored organization of large-area colloidal assemblies

  • Silvia Rizzato,
  • Elisabetta Primiceri,
  • Anna Grazia Monteduro,
  • Adriano Colombelli,
  • Angelo Leo,
  • Maria Grazia Manera,
  • Roberto Rella and
  • Giuseppe Maruccio

Beilstein J. Nanotechnol. 2018, 9, 1582–1593, doi:10.3762/bjnano.9.150

Graphical Abstract
  • experimentally demonstrated for nanostructured system characterized by greater average interparticle spacing, owing to the wider distribution of the electric field when the resonance conditions are satisfied [35][36]. It appears clear that, for practical purposes, a proper compromise between size and average
PDF
Album
Full Research Paper
Published 29 May 2018

Evaluation of replicas manufactured in a 3D-printed nanoimprint unit

  • Manuel Caño-García,
  • Morten A. Geday,
  • Manuel Gil-Valverde,
  • Xabier Quintana and
  • José M. Otón

Beilstein J. Nanotechnol. 2018, 9, 1573–1581, doi:10.3762/bjnano.9.149

Graphical Abstract
  • UV-curable molds. In either case, the samples can be used as such, or undergo further processes such as chemical etching [6] or electric-field-assisted steps [7]. In recent months, we have developed a NIL system [8] using free software and public hardware designs created in a simple 3D printer. The
PDF
Album
Full Research Paper
Published 28 May 2018

Correlative electrochemical strain and scanning electron microscopy for local characterization of the solid state electrolyte Li1.3Al0.3Ti1.7(PO4)3

  • Nino Schön,
  • Deniz Cihan Gunduz,
  • Shicheng Yu,
  • Hermann Tempel,
  • Roland Schierholz and
  • Florian Hausen

Beilstein J. Nanotechnol. 2018, 9, 1564–1572, doi:10.3762/bjnano.9.148

Graphical Abstract
  • small tip radius on the order of 15 nm. Hence, the interaction between the electric field and the local structure of the material can be studied with high spatial resolution. Mobile ions are accelerated by the electric field towards or away from the tip. Consequently, the concentration of ions changes
  • . However, it is currently discussed to what extent the ESM amplitude signal can be attributed to an increased molar volume induced by the electric field in the vicinity of the tip, as proposed by Balke et al. [22]. This mechanism implies that the mobile ions in the material are attracted towards the
  • to LATP as the primary phase and AlPO4 as the secondary. ESM was employed to locally identify regions of increased interaction of the material with an applied alternating electric field. It was found that the secondary phase exhibits significantly lower interaction than the primary phase. It was
PDF
Album
Full Research Paper
Published 28 May 2018

Photoluminescence of CdSe/ZnS quantum dots in nematic liquid crystals in electric fields

  • Margarita A. Kurochkina,
  • Elena A. Konshina and
  • Daria Khmelevskaia

Beilstein J. Nanotechnol. 2018, 9, 1544–1549, doi:10.3762/bjnano.9.145

Graphical Abstract
  • , Russia 10.3762/bjnano.9.145 Abstract We have experimentally investigated the effect of the reorientation of a nematic liquid crystal (LC) in an electric field on the photoluminescence (PL) of CdSe/ZnS semiconductor quantum dots (QDs). To the LC with positive dielectric anisotropy, 1 wt % QDs with a core
  • matrix without reorientation of the LC molecules. With increasing electric field strength, the quenching of QDs luminescence occurred in the active LC matrix, while the PL intensity did not change in the passive LC matrix. The change in the decay time with increasing electric field strength was similar
  • the electric field strength. At the same time, no significant changes occurred in the passive LC matrix. With the reorientation of LC molecules from the planar in vertical position in the LC active matrix, quenching of QD luminescence and an increase of the ion current took place simultaneously. The
PDF
Album
Full Research Paper
Published 23 May 2018

Optical near-field mapping of plasmonic nanostructures prepared by nanosphere lithography

  • Gitanjali Kolhatkar,
  • Alexandre Merlen,
  • Jiawei Zhang,
  • Chahinez Dab,
  • Gregory Q. Wallace,
  • François Lagugné-Labarthet and
  • Andreas Ruediger

Beilstein J. Nanotechnol. 2018, 9, 1536–1543, doi:10.3762/bjnano.9.144

Graphical Abstract
  • (gold or silver) nanotriangles deposited on a glass or Si substrate, are of high interest to study plasmonics, and more specifically localised surface plasmon resonance (LSPR) [23][24]. Indeed, their geometry and their metallic nature result in the spatial confinement of the electric field at their
PDF
Album
Full Research Paper
Published 23 May 2018

Robust topological phase in proximitized core–shell nanowires coupled to multiple superconductors

  • Tudor D. Stanescu,
  • Anna Sitek and
  • Andrei Manolescu

Beilstein J. Nanotechnol. 2018, 9, 1512–1526, doi:10.3762/bjnano.9.142

Graphical Abstract
  • basis includes the spin and the isospin. The variable Zeeman energy is generated by a uniform magnetic field B longitudinal to the wire. In addition we consider a relatively weak electric field E transverse to the wire as a technical tool to break the symmetry of the polygon, indicated by the red arrows
  • symmetries. Third, a generic electric field can be seen as a tunable parameter that can change the topological phase diagram. We characterize the lateral size of the wire with the radius R of a circle surrounding the shell, and with the shell thickness d. In the present calculations we use R = 50 nm for both
  • ], whereas in the presence of a weak electric field E, here corresponding to 0.22 mV across the radius R, they separate. The wave functions still have some exponential tails along the sides of the polygon, which are equivalent to the inter-chain hopping introduced earlier. The phase diagram shown in Figure
PDF
Album
Full Research Paper
Published 22 May 2018

Absence of free carriers in silicon nanocrystals grown from phosphorus- and boron-doped silicon-rich oxide and oxynitride

  • Daniel Hiller,
  • Julian López-Vidrier,
  • Keita Nomoto,
  • Michael Wahl,
  • Wolfgang Bock,
  • Tomáš Chlouba,
  • František Trojánek,
  • Sebastian Gutsch,
  • Margit Zacharias,
  • Dirk König,
  • Petr Malý and
  • Michael Kopnarski

Beilstein J. Nanotechnol. 2018, 9, 1501–1511, doi:10.3762/bjnano.9.141

Graphical Abstract
  • –voltage (I–V) measurements. The results clearly show that no free carriers, neither from P- nor from B-doping, exist in the Si NCs, although in some configurations charge carriers can be generated by electric field ionization. The absence of free carriers in Si NCs ≤5 nm in diameter despite the presence
  • 10 nm-thick SiO2 buffer and capping layers to prevent low-field injection of carriers from either substrate or gate, so that only transient displacement currents are measured. The current density over electric field (J–E) curves of B- or P-incorporating SRO and SRON samples, together with dopant-free
PDF
Album
Supp Info
Full Research Paper
Published 18 May 2018

Cathodoluminescence as a probe of the optical properties of resonant apertures in a metallic film

  • Kalpana Singh,
  • Evgeniy Panchenko,
  • Babak Nasr,
  • Amelia Liu,
  • Lukas Wesemann,
  • Timothy J. Davis and
  • Ann Roberts

Beilstein J. Nanotechnol. 2018, 9, 1491–1500, doi:10.3762/bjnano.9.140

Graphical Abstract
  • the sample. Nevertheless, progress has been made into the use of scanning probe methods for analysing modes of optical antennas [37]. Electron microscopy systems can also be used to probe various modes of optical nanostructures. Electrons in motion are accompanied by an electric field that varies in
  • where the electric field in each aperture is radially directed from the centroid of the configuration and another, almost degenerate, radiant mode with a net dipole moment (see Supporting Information File 1). In both cases the electric fields in each aperture are similar to the dipole mode of a single
  • radiated power to position confined to the central region defined by the slots. We can gain further insight by examining the electric field produced inside the cavities on resonance when excited by a centred dipole and the accompanying surface charge on the dielectric–metal or air–dielectric boundary
PDF
Album
Supp Info
Full Research Paper
Published 18 May 2018

Excitation of nonradiating magnetic anapole states with azimuthally polarized vector beams

  • Aristeidis G. Lamprianidis and
  • Andrey E. Miroshnichenko

Beilstein J. Nanotechnol. 2018, 9, 1478–1490, doi:10.3762/bjnano.9.139

Graphical Abstract
  • local magnetic to electric field intensity, could be significantly improved by employing these nano-optical properties that a magnetic anapole can offer. In this paper we discuss in detail the possibility of magnetic anapole excitation under various configurations and suggest how they can be tested
  • ], such a beam, after being focused by a lens, has an electric field intensity that is given near its focal point, with respect to the O(r) coordinate system, by the following formula: where is a constant, with being the focal length of the objective and λ0 the free-space wavelength. k0 is the
PDF
Album
Supp Info
Full Research Paper
Published 17 May 2018

Cr(VI) remediation from aqueous environment through modified-TiO2-mediated photocatalytic reduction

  • Rashmi Acharya,
  • Brundabana Naik and
  • Kulamani Parida

Beilstein J. Nanotechnol. 2018, 9, 1448–1470, doi:10.3762/bjnano.9.137

Graphical Abstract
  • field at the interface of electron–hole diffusion. The inner electric field thus formed acts as a potential barrier to inhibit the recombination of these charge carriers by escalating the transport of electrons from p-type to n-type and that of holes from n-type to p-type semiconductors. Several studies
  • on TiO2 nanoparticles to form TiO2/Cu2O nanocomposites, a p–n nano-heterojunction having a built-in electric field at the interfaces. This built-in electric field largely prevented the recombination of photoexcited charge carriers, resulting in increased lifetime of photocarriers, induced higher
  • [161]. The inner electric field developed by the thus formed p–n junction separated the photogenerated holes and electrons effectively by transferring the holes into NiO and electrons into TiO2. As a result, the coupled photocatalyst exhibited a higher photovoltage intensity and enhanced photocatalytic
PDF
Album
Review
Published 16 May 2018

Tailoring polarization and magnetization of absorbing terahertz metamaterials using a cut-wire sandwich structure

  • Hadi Teguh Yudistira,
  • Shuo Liu,
  • Tie Jun Cui and
  • Han Zhang

Beilstein J. Nanotechnol. 2018, 9, 1437–1447, doi:10.3762/bjnano.9.136

Graphical Abstract
  • works on metamaterial absorbers have been presented such as split-ring resonators [15], electric-field-coupled (ELC) resonators [16], lossy cut-wire bars [17], and donut-type resonators [18]. Most previous works on the perfect absorber have been explained by interference theory [19][20][21][22][23], for
  • relative permeability can be defined as μr = 1 + M / H, where E, H, P, and M are the electric field, magnetic field, polarization, and magnetization [12], respectively. Magnetization and polarization are two factors that can be used to tailor the relative permeability and relative permittivity
  • could be explained as follows. The existence of the cut-wire width of the cross-shaped sandwich structure at = 90° reduced the metallic bar length parallel to the external electric field by a few micrometers, thereby, increasing the resonance frequency. Figure 4 shows the simulation result of the
PDF
Album
Full Research Paper
Published 16 May 2018

Robust midgap states in band-inverted junctions under electric and magnetic fields

  • Álvaro Díaz-Fernández,
  • Natalia del Valle and
  • Francisco Domínguez-Adame

Beilstein J. Nanotechnol. 2018, 9, 1405–1413, doi:10.3762/bjnano.9.133

Graphical Abstract
  • presence of crossed electric and magnetic fields, the electric field being applied along the growth direction of a band-inverted junction. We show that the Dirac cone is robust and persists even if the fields are strong. In addition, we point out that Landau levels of electron states lying in the
  • semiconductor bands can be tailored by the electric field. Tunable devices are thus likely to be realizable, exploiting the properties studied herein. Keywords: crystalline topological insulators; electric and magnetic fields; Landau levels; midgap states; Introduction In 1982, Thouless et al. [1] made a
  • recently studied band-inverted junctions based on IV–VI compounds using a two-band model when an electric field is applied along the growth direction [25]. We have demonstrated that the Dirac cone of midgap states is robust against moderate values of the electric field but Fermi’s velocity decreases
PDF
Album
Full Research Paper
Published 14 May 2018

New 2D graphene hybrid composites as an effective base element of optical nanodevices

  • Olga E. Glukhova,
  • Igor S. Nefedov,
  • Alexander S. Shalin and
  • Мichael М. Slepchenkov

Beilstein J. Nanotechnol. 2018, 9, 1321–1327, doi:10.3762/bjnano.9.125

Graphical Abstract
  • of the incident wave with respect to the atomic cell of the hybrid nanocomposite. In this case a plane electromagnetic wave with the wave vector k falls on the composite, which lies in the XZ-plane. The angle θ is the angle of incidence, the vectors E and H correspond to the electric field strength
  • -known scheme for obtaining the relations between the amplitudes of the incident, refracted and reflected s- and p-polarized waves when passing through the interface based on Maxwell's equations was used [15]. Assuming a value of the amplitude of the electric field equal to 1, one can write for the case
  • of a p-polarized wave: where R and T are the reflection and the transmission coefficient, respectively. Due to continuity of the tangent components of the electric field at the composite surface one can write: For the tangent components of the magnetic field at the composite surface one can write
PDF
Album
Letter
Published 30 Apr 2018

Formation and development of nanometer-sized cybotactic clusters in bent-core nematic liquid crystalline compounds

  • Yuri P. Panarin,
  • Sithara P. Sreenilayam,
  • Jagdish K. Vij,
  • Anne Lehmann and
  • Carsten Tschierske

Beilstein J. Nanotechnol. 2018, 9, 1288–1296, doi:10.3762/bjnano.9.121

Graphical Abstract
  • compounds, two relaxation processes are identified and assigned to (i) collective dynamics of molecules in nanometer-sized cybotactic clusters and (ii) individual molecular relaxations, in the ascending order of frequency of the probe field. The temperature and the bias electric field dependence of the
  • biaxiality was highly debatable. A major issue arises as to whether the measurable biaxiality in the nematic phase is spontaneous or whether it is entirely induced by the electric field or surface effects [22]. As this issue is unresolved, the topic continues to be highly debated among the scientific LC
  • molecules were aligned by surface treatment and one of the short axes was also aligned by the electric field. In more recent studies, the biaxiality of the sample studied was confirmed [3][4][5] by electro-optical switching [23], polarizing infrared spectroscopy (PIR) [24], polarizing optical microscopy
PDF
Album
Full Research Paper
Published 25 Apr 2018

Electro-optical interfacial effects on a graphene/π-conjugated organic semiconductor hybrid system

  • Karolline A. S. Araujo,
  • Luiz A. Cury,
  • Matheus J. S. Matos,
  • Thales F. D. Fernandes,
  • Luiz G. Cançado and
  • Bernardo R. A. Neves

Beilstein J. Nanotechnol. 2018, 9, 963–974, doi:10.3762/bjnano.9.90

Graphical Abstract
  • experiments and their results. Initially, a graphite microplate (gray)/RA SAM (orange) sample is electrically connected to the microscope, in which a white LED is mounted and illuminates the sample (Figure 4a). The EFM tip can be biased within the range −6 V < Vtip < 6 V, creating a strong electric field at
PDF
Album
Supp Info
Full Research Paper
Published 23 Mar 2018

Nanoscale mapping of dielectric properties based on surface adhesion force measurements

  • Ying Wang,
  • Yue Shen,
  • Xingya Wang,
  • Zhiwei Shen,
  • Bin Li,
  • Jun Hu and
  • Yi Zhang

Beilstein J. Nanotechnol. 2018, 9, 900–906, doi:10.3762/bjnano.9.84

Graphical Abstract
  • electric field [33]. At the nanometre scale, EW has also been observed to modify the adhesion force [35][36][37]. The adhesion force between an AFM tip with radius R and a flat surface with liquid absorbed on it can be expressed as [35][36][37][38]: where V is the voltage applied on the AFM tip, γ is the
PDF
Album
Supp Info
Full Research Paper
Published 16 Mar 2018

Effect of ferroelectric BaTiO3 particles on the threshold voltage of a smectic A liquid crystal

  • Abbas R. Imamaliyev,
  • Mahammadali A. Ramazanov and
  • Shirkhan A. Humbatov

Beilstein J. Nanotechnol. 2018, 9, 824–828, doi:10.3762/bjnano.9.76

Graphical Abstract
  • reduce the threshold voltage. The obtained result is explained by two factors: an increase of dielectric anisotropy of the liquid crystals and the formation of a strong electric field near polarized particles of BaTiO3. It was shown that the role of the second factor is dominant. The explanations of some
  • electric field [10]. The Fréedericksz transition occurs at least in two stages when the BaTiO3 nanoparticles are added to the liquid crystal [11][12]. In colloids of ferroelectric particles in nematic LCs, as a rule, oleic acid is present as a stabilizer, the role of which is to prevent the aggregation of
  • the LC. The threshold voltage is defined as the voltage at which the capacitance starts to increase. Results and Discussion The homeotropic-planar transition in a smectic A LC occurs in the form of deformation, destruction and rearrangement of smectic layers under the action of an electric field
PDF
Album
Full Research Paper
Published 07 Mar 2018

Facile synthesis of a ZnO–BiOI p–n nano-heterojunction with excellent visible-light photocatalytic activity

  • Mengyuan Zhang,
  • Jiaqian Qin,
  • Pengfei Yu,
  • Bing Zhang,
  • Mingzhen Ma,
  • Xinyu Zhang and
  • Riping Liu

Beilstein J. Nanotechnol. 2018, 9, 789–800, doi:10.3762/bjnano.9.72

Graphical Abstract
  • heterojunctions could promote increased photocatalytic activity efficiency. Once the p–n junction has been formed, the inner electric field between the inner surface of two semiconductors will promote the separation efficiency of photoinduced electron–hole pairs [30][31]. Consequently, coupling an n-type metal
  • equilibrium state, hence the band bending and the electric field are created consequently [56] and photoinduced electrons are transferred to the conduction band of ZnO and leave the holes in the valence band of BiOI (Figure 7b). This indicates that the separation efficiency of the ZnO/BiOI nanocomposite is
PDF
Album
Supp Info
Full Research Paper
Published 05 Mar 2018

Valley-selective directional emission from a transition-metal dichalcogenide monolayer mediated by a plasmonic nanoantenna

  • Haitao Chen,
  • Mingkai Liu,
  • Lei Xu and
  • Dragomir N. Neshev

Beilstein J. Nanotechnol. 2018, 9, 780–788, doi:10.3762/bjnano.9.71

Graphical Abstract
  • π/2 phase difference for the electric quadrupole. Thus, there is naturally a π/2 relative phase difference between the electric dipole and quadrupole contribution to the far-field emission, when their corresponding charges oscillate in phase. In this case, the parallel electric field components of
  • edges, we model the gold bars having rounded corners with a radius of curvature of 5 nm. The permittivity of the gold in the visible and near-infrared spectral region is modeled based on experimental data from [48]. The intensity of the electric field along X direction (I) and phase information (φ) at
  • ), the field induced by the X-oriented point-dipole (Ih) dominates in the wavelength range of 700–750 nm. In contrast, the excited field from the Y-oriented point-dipole (Iv) dominates for the long bar in the same wavelength range (Figure 2d). Importantly, both of the electric field intensities show a
PDF
Album
Supp Info
Full Research Paper
Published 02 Mar 2018
Other Beilstein-Institut Open Science Activities