Search results

Search for "confinement" in Full Text gives 224 result(s) in Beilstein Journal of Nanotechnology. Showing first 200.

Block copolymers for designing nanostructured porous coatings

  • Roberto Nisticò

Beilstein J. Nanotechnol. 2018, 9, 2332–2344, doi:10.3762/bjnano.9.218

Graphical Abstract
  • weights to obtain a high molecular weight PS homopolymer with “hard confinement”, whereas the low molecular weight one led to “soft confinement”. Thus the thermodynamic stability of the PEO domains can be modulated in a controlled fashion. In a previous study [64], solutions containing PS-b-PEO block
PDF
Album
Review
Published 29 Aug 2018

Performance analysis of rigorous coupled-wave analysis and its integration in a coupled modeling approach for optical simulation of complete heterojunction silicon solar cells

  • Ziga Lokar,
  • Benjamin Lipovsek,
  • Marko Topic and
  • Janez Krc

Beilstein J. Nanotechnol. 2018, 9, 2315–2329, doi:10.3762/bjnano.9.216

Graphical Abstract
  • wavelength-dependent R for different numbers of sublayers and modes used in simulations, we introduce another quantitative measure that highlights the deviations of the different simulations. As the JSC of the solar cell is the most important quantity related to optical confinement in solar cells, we
PDF
Album
Full Research Paper
Published 28 Aug 2018

Metal–dielectric hybrid nanoantennas for efficient frequency conversion at the anapole mode

  • Valerio F. Gili,
  • Lavinia Ghirardini,
  • Davide Rocco,
  • Giuseppe Marino,
  • Ivan Favero,
  • Iännis Roland,
  • Giovanni Pellegrini,
  • Lamberto Duò,
  • Marco Finazzi,
  • Luca Carletti,
  • Andrea Locatelli,
  • Aristide Lemaître,
  • Dragomir Neshev,
  • Costantino De Angelis,
  • Giuseppe Leo and
  • Michele Celebrano

Beilstein J. Nanotechnol. 2018, 9, 2306–2314, doi:10.3762/bjnano.9.215

Graphical Abstract
  • -field enhancement, which are characteristic of this mode. Plasmonic nanostructures, on the other hand, remain the most promising solution to achieve strong local field confinement, especially in the NIR, where metals such as gold display relatively low losses. Results: We present a nonlinear hybrid
  • antenna based on an AlGaAs nanopillar surrounded by a gold ring, which merges in a single platform the strong field confinement typically produced by plasmonic antennas with the high nonlinearity and low loss characteristics of dielectric nanoantennas. This platform allows enhancing the coupling of light
  • enhancement is only the result of the better field confinement inside the dielectric material brought about by the hybrid configuration, as shown in Figure 3d. A log–log plot of the emission as a function of the power acquired from a type-2 platform using a narrowband filter at 775 nm (25 nm bandwidth) shows
PDF
Album
Full Research Paper
Published 27 Aug 2018

Intrinsic ultrasmall nanoscale silicon turns n-/p-type with SiO2/Si3N4-coating

  • Dirk König,
  • Daniel Hiller,
  • Noël Wilck,
  • Birger Berghoff,
  • Merlin Müller,
  • Sangeeta Thakur,
  • Giovanni Di Santo,
  • Luca Petaccia,
  • Joachim Mayer,
  • Sean Smith and
  • Joachim Knoch

Beilstein J. Nanotechnol. 2018, 9, 2255–2264, doi:10.3762/bjnano.9.210

Graphical Abstract
  • doping to fail for Si nano-crystals (NCs) showing quantum confinement. To introduce electron- (n-) or hole- (p-) type conductivity, usn-Si may not require doping, but an energy shift of electronic states with respect to the vacuum energy between different regions of usn-Si. We show in theory and
  • Si3N4 is 0.81 eV which clearly confirms our h-DFT calculations. For the 2.6 nm NWell embedded in Si3N4 we obtain a Eion of 0.06 eV below the value of bulk Si (Figure 5b). The ICT may thus overcompensate quantum confinement and induce a negative ΔEion to bulk Si. The ICT impact length on Si-NWells can be
PDF
Album
Supp Info
Full Research Paper
Published 23 Aug 2018

Optimization of the optical coupling in nanowire-based integrated photonic platforms by FDTD simulation

  • Nan Guan,
  • Andrey Babichev,
  • Martin Foldyna,
  • Dmitry Denisov,
  • François H. Julien and
  • Maria Tchernycheva

Beilstein J. Nanotechnol. 2018, 9, 2248–2254, doi:10.3762/bjnano.9.209

Graphical Abstract
  • vector distributions are almost independent from the phase and that these variations can be neglected (more details are given in Supporting Information File 1). The SiNx waveguide shows efficient vertical and horizontal confinement of the propagating light. By comparing Figure 2b and Figure 4c, a
  • significant improvement at the LED–waveguide coupling was achieved by removing the spin-on-glass SiOx layer. As shown in Figure 4b, the leakage caused by the multimode nature at the waveguide–detector coupling is mostly reduced thanks to the lateral confinement of the waveguide with a reduced width. The final
  • efficiency detected by the NW photodetector and calculated using the 3D model is 65.5%, which is even better than the 2D simulation result due to better confinement in the 3D structure. Conclusion By using FDTD simulations, the efficiency of light coupling in a NW LED–waveguide–NW photodetector integrated
PDF
Album
Supp Info
Full Research Paper
Published 22 Aug 2018

Dumbbell gold nanoparticle dimer antennas with advanced optical properties

  • Janning F. Herrmann and
  • Christiane Höppener

Beilstein J. Nanotechnol. 2018, 9, 2188–2197, doi:10.3762/bjnano.9.205

Graphical Abstract
  • electromagnetic field enhancement and confinement. This ratio, taken as a measure of the performance of an antenna, can even exceed that exhibited by trimer AuNP antennas composed of comparable building blocks with larger gap sizes. Fluctuations in the far-field and near-field properties are observed, which are
  • likely caused by distinct deviations of the gap geometry arising from the faceted structure of the applied colloidal AuNPs. Keywords: atomistic plasmonics; dumbbell dimer antennas; electromagnetic field enhancement; light confinement; nanolens; nanoscale morphology; Introduction The introduction of the
  • applications, is the ability of optical antennas to provide a high signal enhancement ratio and light confinement across the UV–vis–NIR spectral range. The development of new configurations has always come along with the question of fundamental limitations in regard to the obtainable electromagnetic field
PDF
Album
Full Research Paper
Published 17 Aug 2018

Interaction-induced zero-energy pinning and quantum dot formation in Majorana nanowires

  • Samuel D. Escribano,
  • Alfredo Levy Yeyati and
  • Elsa Prada

Beilstein J. Nanotechnol. 2018, 9, 2171–2180, doi:10.3762/bjnano.9.203

Graphical Abstract
  • some critical Zeeman field without the expected oscillatory pattern [12][19][24][25]. Several mechanisms have been proposed to account for the reduction or lack of oscillations, such as smooth confinement [21][26][27][28], strong spin–orbit coupling [29], position-dependent pairing [30], orbital
  • unexplored before is the creation of deep potential wells at the ends of the wire close to the bulk metallic electrodes. These wells, obtained explicitly here through the self-consistent calculation, are similar to the confinement potentials typical of quantum dots. Localized quantum dot-like energy levels
PDF
Album
Supp Info
Full Research Paper
Published 15 Aug 2018

Light–Matter interactions on the nanoscale

  • Mohsen Rahmani and
  • Chennupati Jagadish

Beilstein J. Nanotechnol. 2018, 9, 2125–2127, doi:10.3762/bjnano.9.201

Graphical Abstract
  • graphene with electromagnetic radiation is fascinating due to the two-dimensional confinement of electrons and the exceptional band structure of graphene. Graphene has a simple band structure with zero band gap, but its optical response is nontrivial. Subsequently, other two-dimensional (2D) materials
PDF
Editorial
Published 10 Aug 2018

Recent highlights in nanoscale and mesoscale friction

  • Andrea Vanossi,
  • Dirk Dietzel,
  • Andre Schirmeisen,
  • Ernst Meyer,
  • Rémy Pawlak,
  • Thilo Glatzel,
  • Marcin Kisiel,
  • Shigeki Kawai and
  • Nicola Manini

Beilstein J. Nanotechnol. 2018, 9, 1995–2014, doi:10.3762/bjnano.9.190

Graphical Abstract
  • ][112][113] induced by the interplay of the surface-induced confinement and the structural correlations of charged and hydrophobic molecular sections, has potential implications for the nanoscale lubrication properties of the resulting interfaces. These properties can be affected not only by the
  • probing what each mobile particle in the sliding layer is doing instant after instant at the interface. In short, charged polystyrene spheres in aqueous solution repel each other, forming, under confinement, a 2D hexagonal crystal [158][159][160][161][162][163]. This crystal is driven across an either
PDF
Album
Review
Published 16 Jul 2018

Electromigrated electrical optical antennas for transducing electrons and photons at the nanoscale

  • Arindam Dasgupta,
  • Mickaël Buret,
  • Nicolas Cazier,
  • Marie-Maxime Mennemanteuil,
  • Reinaldo Chacon,
  • Kamal Hammani,
  • Jean-Claude Weeber,
  • Juan Arocas,
  • Laurent Markey,
  • Gérard Colas des Francs,
  • Alexander Uskov,
  • Igor Smetanin and
  • Alexandre Bouhelier

Beilstein J. Nanotechnol. 2018, 9, 1964–1976, doi:10.3762/bjnano.9.187

Graphical Abstract
  • wavelength of 800 nm. At the operating voltage, the emission of the electron-fed antenna is typically spanning the visible and near-infrared spectral region. For the TiO2 geometries discussed here, the confinement loss is calculated to be about 10−2 dB for a 10 μm long waveguide. We may therefore neglect
  • engineering a cladding material surrounding the active emitting area [65], by a heterogeneous integration of the source in a structured waveguide [66][67], or by using extreme modal confinement [68]. We have tried simple steps to increase the apparent coupling yield to the modes sustained by the geometries
  • confinement while maintaining micrometer-range propagation [69]. Excitation of the mode from free-space radiation is usually insured by the mediation of passive antenna couplers [70]. In the example shown in Figure 7, the 130 nm wide slot is directly excited in situ by the emission of the electron-fed antenna
PDF
Album
Full Research Paper
Published 11 Jul 2018

A differential Hall effect measurement method with sub-nanometre resolution for active dopant concentration profiling in ultrathin doped Si1−xGex and Si layers

  • Richard Daubriac,
  • Emmanuel Scheid,
  • Hiba Rizk,
  • Richard Monflier,
  • Sylvain Joblot,
  • Rémi Beneyton,
  • Pablo Acosta Alba,
  • Sébastien Kerdilès and
  • Filadelfo Cristiano

Beilstein J. Nanotechnol. 2018, 9, 1926–1939, doi:10.3762/bjnano.9.184

Graphical Abstract
  • limitations should be considered in view of the implementation of a DHE methodology on ultrashallow layers. One is quantum confinement, which has been shown to induce band modifications in ultrathin SOI layers with thicknesses close to ca. 3 nm [36]. However, the SOI and SiGeOI layers to be investigated in
  • this work will have a minimum thickness of about 6 nm, so that the quantum-confinement effect can be neglected. An additional low-dimension effect is the dielectric confinement, which has been investigated in silicon nanowires surrounded by a dielectric material (such as its native oxide) [37][38]. For
  • ] indicated a perfect correlation between measured activation and simulated activation, suggesting that dielectric confinement affects more significantly 3D than 2D structures at low dimensions. Finally, when quantifying the active dopant and mobility depth profiles with DHE, the surface-depletion effect
PDF
Album
Supp Info
Full Research Paper
Published 05 Jul 2018

The role of the Ge mole fraction in improving the performance of a nanoscale junctionless tunneling FET: concept and scaling capability

  • Hichem Ferhati,
  • Fayçal Djeffal and
  • Toufik Bentrcia

Beilstein J. Nanotechnol. 2018, 9, 1856–1862, doi:10.3762/bjnano.9.177

Graphical Abstract
  • Figure 1, L is the channel length, tch refers to the channel thickness, Nd is the doping concentration of the channel, and Ls and Ld denote the extension lengths of source and drain, respectively. The accurate modeling of the nanoscale DG-HJ-JL TFET requires taking into account quantum-confinement
PDF
Album
Full Research Paper
Published 22 Jun 2018

Toward the use of CVD-grown MoS2 nanosheets as field-emission source

  • Geetanjali Deokar,
  • Nitul S. Rajput,
  • Junjie Li,
  • Francis Leonard Deepak,
  • Wei Ou-Yang,
  • Nicolas Reckinger,
  • Carla Bittencourt,
  • Jean-Francois Colomer and
  • Mustapha Jouiad

Beilstein J. Nanotechnol. 2018, 9, 1686–1694, doi:10.3762/bjnano.9.160

Graphical Abstract
  • to the (002) and (004) planes of 2H-MoS2 [18]. However, a slightly higher interplanar distance of 0.63 nm near the edges (in agreement with plane-view TEM) was also observed. It indicates that the NSs possess a slightly different lattice parameter due to the crystal confinement at the top end
PDF
Album
Supp Info
Full Research Paper
Published 07 Jun 2018

Nitrogen-doped carbon nanotubes coated with zinc oxide nanoparticles as sulfur encapsulator for high-performance lithium/sulfur batteries

  • Yan Zhao,
  • Zhengjun Liu,
  • Liancheng Sun,
  • Yongguang Zhang,
  • Yuting Feng,
  • Xin Wang,
  • Indira Kurmanbayeva and
  • Zhumabay Bakenov

Beilstein J. Nanotechnol. 2018, 9, 1677–1685, doi:10.3762/bjnano.9.159

Graphical Abstract
  • precise control of its morphology, these carbon materials can also play an active role in S confinement [4]. For example, it has been reported that the functional nitrogen groups in N-doped graphene (NG) sheets have a good binding capability for lithium polysulfides, which can greatly enhance the life of
  • to 822 mAh·g−1. This indicates that the as-prepared S/ZnO@NCNT composite is very stable and can tolerate the abusive condition of high-rate Li ion insertion and deletion. In addition to a strong S “confinement” effect of the active ZnO surface, this might also be attributed to the NCNT network and
PDF
Album
Full Research Paper
Published 06 Jun 2018

Optical near-field mapping of plasmonic nanostructures prepared by nanosphere lithography

  • Gitanjali Kolhatkar,
  • Alexandre Merlen,
  • Jiawei Zhang,
  • Chahinez Dab,
  • Gregory Q. Wallace,
  • François Lagugné-Labarthet and
  • Andreas Ruediger

Beilstein J. Nanotechnol. 2018, 9, 1536–1543, doi:10.3762/bjnano.9.144

Graphical Abstract
  • (gold or silver) nanotriangles deposited on a glass or Si substrate, are of high interest to study plasmonics, and more specifically localised surface plasmon resonance (LSPR) [23][24]. Indeed, their geometry and their metallic nature result in the spatial confinement of the electric field at their
PDF
Album
Full Research Paper
Published 23 May 2018

Absence of free carriers in silicon nanocrystals grown from phosphorus- and boron-doped silicon-rich oxide and oxynitride

  • Daniel Hiller,
  • Julian López-Vidrier,
  • Keita Nomoto,
  • Michael Wahl,
  • Wolfgang Bock,
  • Tomáš Chlouba,
  • František Trojánek,
  • Sebastian Gutsch,
  • Margit Zacharias,
  • Dirk König,
  • Petr Malý and
  • Michael Kopnarski

Beilstein J. Nanotechnol. 2018, 9, 1501–1511, doi:10.3762/bjnano.9.141

Graphical Abstract
  • Si, typical dopant ionization energies are in the range of ≈50 meV. If the size of the Si crystal approaches the exciton Bohr-radius, strong quantum confinement sets in and the valence- and conduction band ground state energies shift to lower and higher energies, respectively. As a consequence, the
  • dielectric occurs. Irrespective of quantum confinement, this so-called dielectric confinement increased the dopant ionization energy even further [2]. At the nanoscale, the incorporation of an impurity on a lattice site is also subject to an increased formation energy as compared to the bulk, so that despite
  • Due to quantum confinement effects the ground state energy of Si NCs increases and the k-space overlap of electron and hole wave functions are significantly enhanced (Heisenberg’s uncertainty principle). Therefore, excitons formed in Si NCs are subject to significantly higher radiative recombination
PDF
Album
Supp Info
Full Research Paper
Published 18 May 2018

Disorder-induced suppression of the zero-bias conductance peak splitting in topological superconducting nanowires

  • Jun-Tong Ren,
  • Hai-Feng Lü,
  • Sha-Sha Ke,
  • Yong Guo and
  • Huai-Wu Zhang

Beilstein J. Nanotechnol. 2018, 9, 1358–1369, doi:10.3762/bjnano.9.128

Graphical Abstract
  • ][24][25][26][27][28]. However, it is suggested that such zero-bias features could also be induced by non-topological physics such as Kondo effect [31], smooth confinement [32], or strong disorder [33][34][35]. In one-dimensional case, the hybridization of the pair of MBSs localized at the wire ends
PDF
Album
Full Research Paper
Published 04 May 2018

Computational exploration of two-dimensional silicon diarsenide and germanium arsenide for photovoltaic applications

  • Sri Kasi Matta,
  • Chunmei Zhang,
  • Yalong Jiao,
  • Anthony O'Mullane and
  • Aijun Du

Beilstein J. Nanotechnol. 2018, 9, 1247–1253, doi:10.3762/bjnano.9.116

Graphical Abstract
  • in the thickness of both SiAs2 and GeAs2 leads to a quantum confinement effect [36] and thus the band gap is increased significantly from the bulk to the monolayer structures in both materials. In addition, the experimentally reported indirect band gap of 1.06 eV by Rau et al. for single crystal
PDF
Album
Supp Info
Full Research Paper
Published 19 Apr 2018

Surface characterization of nanoparticles using near-field light scattering

  • Eunsoo Yoo,
  • Yizhong Liu,
  • Chukwuazam A. Nwasike,
  • Sebastian R. Freeman,
  • Brian C. DiPaolo,
  • Bernardo Cordovez and
  • Amber L. Doiron

Beilstein J. Nanotechnol. 2018, 9, 1228–1238, doi:10.3762/bjnano.9.114

Graphical Abstract
  • iron oxide nanoparticles (IPC-SPIOs). Nanophotonic force microscopy pushes particles against a waveguide surface, optically trapping the particles by light confinement [10][19][20]. The evanescent fields are created by the waveguide, and there are four forces operating on the field: the gradient force
PDF
Album
Full Research Paper
Published 18 Apr 2018
Graphical Abstract
  • the uncovered sites of Si(111) to enable spatial confinement of the surface reaction. Silica spheres with a diameter of 500 nm were used as a surface mask to prepare nanoscopic holes within the OTS matrix film. Next, the samples were immersed in solutions of CMPS dissolved in toluene or bicyclohexane
  • exposed nanoholes of Si(111). Spatial confinement facilitated the growth of CMPS layers in the vertical direction, which was produced by cross-linking to form intramolecular siloxane bonds. Spatial selectivity for the preparation of heterostructures of CMPS and H2TPyP Heterostructures of CMPS-porphyrin
PDF
Album
Supp Info
Full Research Paper
Published 17 Apr 2018

Understanding the performance and mechanism of Mg-containing oxides as support catalysts in the thermal dry reforming of methane

  • Nor Fazila Khairudin,
  • Mohd Farid Fahmi Sukri,
  • Mehrnoush Khavarian and
  • Abdul Rahman Mohamed

Beilstein J. Nanotechnol. 2018, 9, 1162–1183, doi:10.3762/bjnano.9.108

Graphical Abstract
  • supported catalyst showed that the confinement of pore walls inhibited the Ni particle aggregation. Meanwhile, the MgO coating showed a higher dispersion of Ni metal and highly basic sites than the MgO impregnated method. It was also found that this structure improved stability and could inhibit the
PDF
Album
Review
Published 13 Apr 2018

Field-controlled ultrafast magnetization dynamics in two-dimensional nanoscale ferromagnetic antidot arrays

  • Anulekha De,
  • Sucheta Mondal,
  • Sourav Sahoo,
  • Saswati Barman,
  • Yoshichika Otani,
  • Rajib Kumar Mitra and
  • Anjan Barman

Beilstein J. Nanotechnol. 2018, 9, 1123–1134, doi:10.3762/bjnano.9.104

Graphical Abstract
  • ], spin-wave filters [14], spin-logic [15] and reprogrammable magnonic devices [16]. The edges of the antidots lead to quantization of SW modes due to lateral confinement as well as the generation of a periodically modulated internal magnetic field due to the demagnetization effect. A number of parameters
  • of shape, size and density of antidots [17][18]. Extensive research on the dynamics of standing and propagating SWs in antidot lattices has shown pattern induced splitting [19], confinement, localization and propagation of SWs, depending upon the lattice and antidot geometry, base material and
PDF
Album
Supp Info
Full Research Paper
Published 09 Apr 2018

A simple extension of the commonly used fitting equation for oscillatory structural forces in case of silica nanoparticle suspensions

  • Sebastian Schön and
  • Regine von Klitzing

Beilstein J. Nanotechnol. 2018, 9, 1095–1107, doi:10.3762/bjnano.9.101

Graphical Abstract
  • fitting parameters in the system studied here. Keywords: confinement; depletion; fitting; silica nanoparticles; structural forces; Introduction Oscillatory structural forces are a genuine feature observed for simple and complex fluids in the vicinity of smooth surfaces [1][2]. Due to the ubiquitous
  • approaching two surfaces the resulting density within the confinement will depend on the exact wall-to-wall distance. The oscillating density between the walls compared to the bulk leads to a changing, measurable pressure or force acting on the confining walls [1][2]. It can be measured using a variety of
  • interpreted as the distance between the particles within the confinement, is solely dependent on the particle number density and is equal to λ = c−1/3 [35]. This dependence seems fundamental as it is very robust against multiple parameters such as salt concentration, particle size [36], surface elasticity
PDF
Album
Supp Info
Full Research Paper
Published 05 Apr 2018

Theoretical study of strain-dependent optical absorption in a doped self-assembled InAs/InGaAs/GaAs/AlGaAs quantum dot

  • Tarek A. Ameen,
  • Hesameddin Ilatikhameneh,
  • Archana Tankasala,
  • Yuling Hsueh,
  • James Charles,
  • Jim Fonseca,
  • Michael Povolotskyi,
  • Jun Oh Kim,
  • Sanjay Krishna,
  • Monica S. Allen,
  • Jeffery W. Allen,
  • Rajib Rahman and
  • Gerhard Klimeck

Beilstein J. Nanotechnol. 2018, 9, 1075–1084, doi:10.3762/bjnano.9.99

Graphical Abstract
  • electrons and holes. It is worth noting that the hole ground state has an s-orbital-like shape. QDs have a complicated band profile since multiple effects such as geometric confinement, strain and alloy disorder, can cause major changes in the band edges of the bulk material. It is important to know where
  • . The effects of changing dimensions on the energy transition ΔE between the hole and electron ground states can be understood with a simple analytical model. This transition has two contributions: strain and confinement. The strain shifts the band edges and affects the energy gap Eg, while the
  • confinement increases the minimum allowed energy of electron Eelec and hole Ehole with respect to the band edges. Let Ebox = Eelec + Ehole, then the transition energy E is Due to the sign of the deformation potential and strain, the valence band edge inside the quantum dot is of a heavy hole, from Equation 4
PDF
Album
Full Research Paper
Published 04 Apr 2018

Single-crystalline FeCo nanoparticle-filled carbon nanotubes: synthesis, structural characterization and magnetic properties

  • Rasha Ghunaim,
  • Maik Scholz,
  • Christine Damm,
  • Bernd Rellinghaus,
  • Rüdiger Klingeler,
  • Bernd Büchner,
  • Michael Mertig and
  • Silke Hampel

Beilstein J. Nanotechnol. 2018, 9, 1024–1034, doi:10.3762/bjnano.9.95

Graphical Abstract
  • the filling material due to the confinement of the material within the hollow tubular cavity. Chemical vapor deposition (CVD) is a technique used to fill MNPs into CNTs via in situ filling, in which metallocene precursors are used as a carbon source and MNPs [22][30][37] or hydrocarbons (such as
  • dTEM = 16 ± 5 nm (Figure 4a), whereas the annealed samples have a mean diameter of dTEM = 58 ± 20 nm (Figure 4b). Comparing these values with the mean diameter of the hollow cavity of the CNTs (dCNT = 53 ± 20 nm), one can conclude that confinement of the magnetic nanoparticles to the inner diameter of
PDF
Album
Supp Info
Full Research Paper
Published 29 Mar 2018
Other Beilstein-Institut Open Science Activities