Search results

Search for "electronic properties" in Full Text gives 265 result(s) in Beilstein Journal of Nanotechnology. Showing first 200.

Silicene, germanene and other group IV 2D materials

  • Patrick Vogt

Beilstein J. Nanotechnol. 2018, 9, 2665–2667, doi:10.3762/bjnano.9.248

Graphical Abstract
  • layered parent crystals from which single layers can be exfoliated. From this it follows that these materials have to be synthesized either chemically or by epitaxial growth on a supporting substrate. Thus, it should be considered that the substrate could influence the structural and electronic properties
PDF
Album
Editorial
Published 10 Oct 2018

Impact of the anodization time on the photocatalytic activity of TiO2 nanotubes

  • Jesús A. Díaz-Real,
  • Geyla C. Dubed-Bandomo,
  • Juan Galindo-de-la-Rosa,
  • Luis G. Arriaga,
  • Janet Ledesma-García and
  • Nicolas Alonso-Vante

Beilstein J. Nanotechnol. 2018, 9, 2628–2643, doi:10.3762/bjnano.9.244

Graphical Abstract
  • length, fluorine content, and capacitance of the space charge region increased, affecting the opto-electronic properties (bandgap, bathochromic shift, band-edge position) and surface hydrophilicity of TiO2 NTs. These properties are at the origin of the photocatalytic activity (PCA), as proved with the
  • importantly, it has been recognized that several parameters of the anodization, such as electric field strength, water content in the electrolyte, concentration of fluorine ions and pH value, have a direct influence on the electronic properties of the TNTs [20]. Nevertheless, the modification procedures for
  • the as-prepared TiO2 materials usually report the use of wet-chemical routes, ion implantation, and calcination under reducing atmospheres, among others approaches [4][24][25]. However, some of these methods have shown detrimental effects on the opto-electronic properties of TiO2. Su et al. [26
PDF
Album
Supp Info
Full Research Paper
Published 04 Oct 2018

Intrinsic ultrasmall nanoscale silicon turns n-/p-type with SiO2/Si3N4-coating

  • Dirk König,
  • Daniel Hiller,
  • Noël Wilck,
  • Birger Berghoff,
  • Merlin Müller,
  • Sangeeta Thakur,
  • Giovanni Di Santo,
  • Luca Petaccia,
  • Joachim Mayer,
  • Sean Smith and
  • Joachim Knoch

Beilstein J. Nanotechnol. 2018, 9, 2255–2264, doi:10.3762/bjnano.9.210

Graphical Abstract
  • of Si nanowires relevant to devices As we will show below, a Si-NWire with a combined SiO2-/Si3N4-coating can work as a highly scalable, high-performance and dopant-free metal-insulator-silicon (MIS) FET device. Using the same h-DFT methods as above, we computed the electronic properties of a Si233
  • severely deteriorated device performance. Our simulations underline the great importance of alternatives to conventional doping for increased performance of future ULSI transistors. Conclusion We demonstrated quantitatively in theory and experiment that the intrinsic electronic properties of usn-Si can
  • File 1. Electronic properties obtained by h-DFT for Si233(NH2)87(OH)81 NWire of 1.4 nm diameter and 5.2 nm length, terminated with NH2 on its left half emulating Si3N4-embedding and with OH on its right half emulating SiO2-embedding: (a) DOS over energy relative to vacuum level Evac. Red (blue) lines
PDF
Album
Supp Info
Full Research Paper
Published 23 Aug 2018

A scanning probe microscopy study of nanostructured TiO2/poly(3-hexylthiophene) hybrid heterojunctions for photovoltaic applications

  • Laurie Letertre,
  • Roland Roche,
  • Olivier Douhéret,
  • Hailu G. Kassa,
  • Denis Mariolle,
  • Nicolas Chevalier,
  • Łukasz Borowik,
  • Philippe Dumas,
  • Benjamin Grévin,
  • Roberto Lazzaroni and
  • Philippe Leclère

Beilstein J. Nanotechnol. 2018, 9, 2087–2096, doi:10.3762/bjnano.9.197

Graphical Abstract
  • , its high hole mobility and its donor-like electronic properties [15]. Upon light absorption by the polymer, excitons are generated and they can be dissociated at the interface with TiO2, the polymer also acting as the hole-transporting layer. In this work, we investigated nanostructured TiO2 layers
  • tremendously the Vcpd contrast. Thus, the observed Vcpd contrast most probably originates therefore from local variations in the electronic properties of the surface, such as a possibly different free electron density at the top and at the side of the columns. This explanation is further supported by the PC
  • columns might originate from a locally lower initial (i.e., prior to illumination) electron density at the TiO2 surface. Among various possible factors, this variation of electron density might be due to the presence of different TiO2 crystal facets, as the latter are shown to influence the electronic
PDF
Album
Supp Info
Full Research Paper
Published 01 Aug 2018

A variable probe pitch micro-Hall effect method

  • Maria-Louise Witthøft,
  • Frederik W. Østerberg,
  • Janusz Bogdanowicz,
  • Rong Lin,
  • Henrik H. Henrichsen,
  • Ole Hansen and
  • Dirch H. Petersen

Beilstein J. Nanotechnol. 2018, 9, 2032–2039, doi:10.3762/bjnano.9.192

Graphical Abstract
  • , Kapeldreef 75, B-3001 Leuven, Belgium 10.3762/bjnano.9.192 Abstract Hall effect metrology is important for a detailed characterization of the electronic properties of new materials for nanoscale electronics. The micro-Hall effect (MHE) method, based on micro four-point probes, enables a fast
PDF
Album
Full Research Paper
Published 20 Jul 2018

Metal-free catalysis based on nitrogen-doped carbon nanomaterials: a photoelectron spectroscopy point of view

  • Mattia Scardamaglia and
  • Carla Bittencourt

Beilstein J. Nanotechnol. 2018, 9, 2015–2031, doi:10.3762/bjnano.9.191

Graphical Abstract
  • mechanism of nitrogen-doped carbon nanostructures is still under intense debate. In this review, we link the fundamental electronic properties to the catalytic performance from a photoelectron spectroscopy point of view. We focus on the discussion of the inherent ORR activity of nitrogen-doped graphene and
  • characteristics in structure and properties, such as high aspect ratio, good mechanical properties and extraordinary electronic properties. The one atom thick two-dimensional planar structure of a graphene sheet makes it superior to CNTs for certain applications because it facilitates the electron transport [22
  • graphene and carbon nanotubes. Among the strategies adopted to dope graphene, heteroatom doping is a promising way to improve its reactivity by introducing active sites that facilitate the interaction with foreign gases already at room temperature [29]. Heteroatoms change the electronic properties of
PDF
Album
Review
Published 18 Jul 2018

Defect formation in multiwalled carbon nanotubes under low-energy He and Ne ion irradiation

  • Santhana Eswara,
  • Jean-Nicolas Audinot,
  • Brahime El Adib,
  • Maël Guennou,
  • Tom Wirtz and
  • Patrick Philipp

Beilstein J. Nanotechnol. 2018, 9, 1951–1963, doi:10.3762/bjnano.9.186

Graphical Abstract
  • , ion irradiation can also be used to modify the electronic properties. The presence of defects can increase the resistivity by several orders of magnitude [2][16]. When combining low-fluence ion irradiation with subsequent annealing, the electrical conductivity of SWCNTs can be improved [17]. The
PDF
Album
Supp Info
Full Research Paper
Published 09 Jul 2018

Improving the catalytic activity for hydrogen evolution of monolayered SnSe2(1−x)S2x by mechanical strain

  • Sha Dong and
  • Zhiguo Wang

Beilstein J. Nanotechnol. 2018, 9, 1820–1827, doi:10.3762/bjnano.9.173

Graphical Abstract
  • non-noble metals and earth-abundant elements is a promising pathway for achieving practical electrochemical water splitting. In this work, the electronic properties and catalytic activity of monolayer SnSe2(1−x)S2x (x = 0–1) under compressive and tensile strain were investigated using density
  • activity of the SnSe2(1-x)S2x monolayer. Keywords: density functional theory (DFT); electronic properties; hydrogen evolution reaction; mechanical strain; SnSe2(1−x)S2x monolayer; Introduction Hydrogen is a clean energy source with outstanding properties such as high specific energy per mass, easy
  • ][33][34][35][36][37]. For example, Komsa et al. [34] have investigated the electronic properties of monolayer MoS2xSe2(1−x) and found that the bandgaps can be continuously tuned with the variation of Se composition. Liu et al. [38] have studied Mo1−xWxS2 and observed variations of the direct bandgap
PDF
Album
Full Research Paper
Published 18 Jun 2018

Free-radical gases on two-dimensional transition-metal disulfides (XS2, X = Mo/W): robust half-metallicity for efficient nitrogen oxide sensors

  • Chunmei Zhang,
  • Yalong Jiao,
  • Fengxian Ma,
  • Sri Kasi Matta,
  • Steven Bottle and
  • Aijun Du

Beilstein J. Nanotechnol. 2018, 9, 1641–1646, doi:10.3762/bjnano.9.156

Graphical Abstract
  • observed after the adsorption of other free radical gases such as NO2. The unique change in electronic properties after the adsorption of NO on transition-metal sulfides highlights an effective strategy to distinguish NO from other gas species by experimentally measuring spin-resolved transmission. Our
  • −201meV, respectively, for single-layer MoS2 and WS2 (Figure 1). An adsorption distance of approximately 3 Å suggests that NO and NO2 are physically adsorbed. After determining the most favorable adsorption positions, we calculated the electronic properties after the adsorption of NO and NO2. Both NO and
  • gas concentrations to confirm that the predicted half-metallicity is indeed robust. Differences in electronic properties and orbital analysis between NO and NO2 adsorption show that half-metallicity is only observed when NO is adsorbed. Since single/multi-layer MoS2 FET sensors for NO have been
PDF
Album
Supp Info
Full Research Paper
Published 05 Jun 2018

Predicting the strain-mediated topological phase transition in 3D cubic ThTaN3

  • Chunmei Zhang and
  • Aijun Du

Beilstein J. Nanotechnol. 2018, 9, 1399–1404, doi:10.3762/bjnano.9.132

Graphical Abstract
  • 1 eV, but its electronic properties remain largely unexplored. By using density functional theory, we find that the band gap of ThTaN3 is very sensitive to the hydrostatic pressure/strain. A Dirac cone can emerge around the Γ point with an ultrahigh Fermi velocity at a compressive strain of 8
  • nonlinear optical response [2] due to its large band gap and non-centrosymmetry. As protons are found to be significantly stable in nitrides, c-PV ThTaN3 is also evaluated as an ideal proton-conducting ceramic [1]. Nevertheless, theoretical understanding of the electronic properties of ThTaN3 is so far very
PDF
Album
Supp Info
Full Research Paper
Published 11 May 2018

The electrical conductivity of CNT/graphene composites: a new method for accelerating transmission function calculations

  • Olga E. Glukhova and
  • Dmitriy S. Shmygin

Beilstein J. Nanotechnol. 2018, 9, 1254–1262, doi:10.3762/bjnano.9.117

Graphical Abstract
  • (CNTs)/graphene. The electrical conductance of different models of this material was calculated in two mutually perpendicular directions. Regularities in resistance values were found. Keywords: carbon composites; electronic properties; interpolation; quantum transport; transmission function
PDF
Album
Full Research Paper
Published 20 Apr 2018

Computational exploration of two-dimensional silicon diarsenide and germanium arsenide for photovoltaic applications

  • Sri Kasi Matta,
  • Chunmei Zhang,
  • Yalong Jiao,
  • Anthony O'Mullane and
  • Aijun Du

Beilstein J. Nanotechnol. 2018, 9, 1247–1253, doi:10.3762/bjnano.9.116

Graphical Abstract
  • 700 nm. It has been reported that exterior strain on semiconductor nanostructures, especially at the two-dimensional level, influences the electronic properties and the corresponding optical properties [37][38]. We, therefore, studied the PBE functional band gap variation as a function of tensile
PDF
Album
Supp Info
Full Research Paper
Published 19 Apr 2018
Graphical Abstract
  • ], catalysis [10] and electronic measurements [11][12][13]. Investigations of porphyrins at interfaces have focused on elucidation of magnetic, photonic and electronic properties as well as the manner in which the molecules assemble on a surface. The adsorption of free-base tetraphenylporphyrin on Cu(111) was
PDF
Album
Supp Info
Full Research Paper
Published 17 Apr 2018

Electrodeposition of reduced graphene oxide with chitosan based on the coordination deposition method

  • Mingyang Liu,
  • Yanjun Chen,
  • Chaoran Qin,
  • Zheng Zhang,
  • Shuai Ma,
  • Xiuru Cai,
  • Xueqian Li and
  • Yifeng Wang

Beilstein J. Nanotechnol. 2018, 9, 1200–1210, doi:10.3762/bjnano.9.111

Graphical Abstract
  • for phenolic compounds owing to the special advantages of graphene such as its excellent electronic properties, large surface area, and high adsorption capability for phenolic compounds [44][45]. As a proof-of-concept experiment, the electrochemical detection capability of the deposited HACC-rGO/CS
PDF
Album
Full Research Paper
Published 17 Apr 2018

Electro-optical interfacial effects on a graphene/π-conjugated organic semiconductor hybrid system

  • Karolline A. S. Araujo,
  • Luiz A. Cury,
  • Matheus J. S. Matos,
  • Thales F. D. Fernandes,
  • Luiz G. Cançado and
  • Bernardo R. A. Neves

Beilstein J. Nanotechnol. 2018, 9, 963–974, doi:10.3762/bjnano.9.90

Graphical Abstract
  • microscopy; self-assembly; Introduction Organic semiconductors offer a wide range of possible applications, from thin-film transistors to sensors and solar cells [1][2][3][4][5][6]. Their optical and electronic properties are strongly linked to intermolecular interaction parameters associated with molecular
PDF
Album
Supp Info
Full Research Paper
Published 23 Mar 2018

A review of carbon-based and non-carbon-based catalyst supports for the selective catalytic reduction of nitric oxide

  • Shahreen Binti Izwan Anthonysamy,
  • Syahidah Binti Afandi,
  • Mehrnoush Khavarian and
  • Abdul Rahman Bin Mohamed

Beilstein J. Nanotechnol. 2018, 9, 740–761, doi:10.3762/bjnano.9.68

Graphical Abstract
  • an attractive catalyst support for SCR catalysts due to their electronic properties and unique nanostructure [71][72][73]. CNT-supported metal oxide catalysts are well-known in the adsorption field and present interesting properties for the denitrification of NOx species [74][75]. Ma et al. [56
PDF
Review
Published 27 Feb 2018

Dynamics and fragmentation mechanism of (C5H4CH3)Pt(CH3)3 on SiO2 surfaces

  • Kaliappan Muthukumar,
  • Harald O. Jeschke and
  • Roser Valentí

Beilstein J. Nanotechnol. 2018, 9, 711–720, doi:10.3762/bjnano.9.66

Graphical Abstract
  • and shape selective deposition process capable of writing low dimensional, sub-10 nm patterns on conducting and insulating substrates with tunable electronic properties [1][2][3][4][5]. However, the deposits obtained often contain less than 50% of metal, which is detrimental to their conductivity. The
PDF
Album
Full Research Paper
Published 23 Feb 2018

Sensing behavior of flower-shaped MoS2 nanoflakes: case study with methanol and xylene

  • Maryam Barzegar,
  • Masoud Berahman and
  • Azam Iraji zad

Beilstein J. Nanotechnol. 2018, 9, 608–615, doi:10.3762/bjnano.9.57

Graphical Abstract
  • electro-activity of MoS2 nanosheets. Furthermore, sulfur vacancies contribute significantly to the electronic properties of MoS2 [36][37]. Hence, such sulfur vacancy is desirable for the gas sensing properties of MoS2. To study the application of the flower-shaped MoS2 for gas sensing, the Brunauer–Emmett
PDF
Album
Full Research Paper
Published 16 Feb 2018

Facile synthesis of ZnFe2O4 photocatalysts for decolourization of organic dyes under solar irradiation

  • Arjun Behera,
  • Debasmita Kandi,
  • Sanjit Manohar Majhi,
  • Satyabadi Martha and
  • Kulamani Parida

Beilstein J. Nanotechnol. 2018, 9, 436–446, doi:10.3762/bjnano.9.42

Graphical Abstract
  • Engineering, Division of Advanced Materials Science and Engineering, Chonbuk National University, Jeonju, 561-756, Republic of Korea 10.3762/bjnano.9.42 Abstract ZnFe2O4 was fabricated by a simple solution-combustion method. The structural, optical and electronic properties are investigated by XRD, TEM
PDF
Album
Full Research Paper
Published 05 Feb 2018

Engineering of oriented carbon nanotubes in composite materials

  • Razieh Beigmoradi,
  • Abdolreza Samimi and
  • Davod Mohebbi-Kalhori

Beilstein J. Nanotechnol. 2018, 9, 415–435, doi:10.3762/bjnano.9.41

Graphical Abstract
  • oxides for metal-free catalysis [15] or in synergy with metal oxides [16][17], especially for sustainable energy applications [18][19]. Because of their electronic properties, CNT composites offer unmatched opportunities for conductive tissue regeneration [20], particularly if alignment, and thus 3D
  • (PU) or polystyrene (PS), is stretched too far. Fracture occurs and the oriented CNTs are formed in the fracture gap as shown in Figure 4. Since CNTs have the desired electronic properties and the method is easy to perform, this technique might be suitable for making CNT electronic devices such as
PDF
Album
Review
Published 05 Feb 2018

Combined scanning probe electronic and thermal characterization of an indium arsenide nanowire

  • Tino Wagner,
  • Fabian Menges,
  • Heike Riel,
  • Bernd Gotsmann and
  • Andreas Stemmer

Beilstein J. Nanotechnol. 2018, 9, 129–136, doi:10.3762/bjnano.9.15

Graphical Abstract
  • be applied reliably. Other scanning probe methods sensitive to surface electronic properties, for example conductive atomic force microscopy (c-AFM) [15] or scanning tunnelling potentiometry (STP) [16], require a current passing through the tip at each point. As such, the tip–sample contact geometry
PDF
Album
Supp Info
Full Research Paper
Published 11 Jan 2018

Transition from silicene monolayer to thin Si films on Ag(111): comparison between experimental data and Monte Carlo simulation

  • Alberto Curcella,
  • Romain Bernard,
  • Yves Borensztein,
  • Silvia Pandolfi and
  • Geoffroy Prévot

Beilstein J. Nanotechnol. 2018, 9, 48–56, doi:10.3762/bjnano.9.7

Graphical Abstract
  • spectroscopy; scanning tunneling microscopy; silicene; silicon; silver; Introduction Since their discovery in 2012 [1], silicene layers have been attracting a great interest, due to the expectation of electronic properties similar to the ones of graphene, based on theoretical studies [2]. Because of their
  • close to the one of free standing silicene, silicene/Ag(111) displays different electronic properties [14][15]. This is due to a strong electronic coupling between the substrate and the silicene layer. Thus, the features in the angle resolved photoemission spectrometry (ARPES) [1], initially attributed
PDF
Album
Full Research Paper
Published 05 Jan 2018

Electro-optical characteristics of a liquid crystal cell with graphene electrodes

  • Nune H. Hakobyan,
  • Hakob L. Margaryan,
  • Valeri K. Abrahamyan,
  • Vladimir M. Aroutiounian,
  • Arpi S. Dilanchian Gharghani,
  • Amalya B. Kostanyan,
  • Timothy D. Wilkinson and
  • Nelson Tabirian

Beilstein J. Nanotechnol. 2017, 8, 2802–2806, doi:10.3762/bjnano.8.279

Graphical Abstract
  • with ITO (18.6 ms – reorientation, 11.7 ms – relaxation). Conclusion Hybrid graphene–ITO nematic LC devices have been investigated to characterize the electronic properties of graphene. The optical switching time characteristics of LC cells with graphene are slightly worse than those of cells with ITO
PDF
Album
Full Research Paper
Published 28 Dec 2017

Ab initio study of adsorption and diffusion of lithium on transition metal dichalcogenide monolayers

  • Xiaoli Sun and
  • Zhiguo Wang

Beilstein J. Nanotechnol. 2017, 8, 2711–2718, doi:10.3762/bjnano.8.270

Graphical Abstract
  • Xiaoli Sun Zhiguo Wang School of Physical Electronics, University of Electronic Science and Technology of China, Chengdu, 610054, P.R. China 10.3762/bjnano.8.270 Abstract Using first principles calculations, we studied the stability and electronic properties of transition metal dichalcogenide
  • with high electronic and ion mobility and large energy storage capacity. Conclusion Using density functional theory (DFT) simulations, the stability and electronic properties of MX2 monolayers were investigated. TiX2, VSe2, CrX2, ZrX2 and HfX2 are energetically favourable in the 1T phase, and 1T-VS2
PDF
Album
Full Research Paper
Published 15 Dec 2017

Patterning of supported gold monolayers via chemical lift-off lithography

  • Liane S. Slaughter,
  • Kevin M. Cheung,
  • Sami Kaappa,
  • Huan H. Cao,
  • Qing Yang,
  • Thomas D. Young,
  • Andrew C. Serino,
  • Sami Malola,
  • Jana M. Olson,
  • Stephan Link,
  • Hannu Häkkinen,
  • Anne M. Andrews and
  • Paul S. Weiss

Beilstein J. Nanotechnol. 2017, 8, 2648–2661, doi:10.3762/bjnano.8.265

Graphical Abstract
  • ” used during the transfer have a different composition than the inks originally deposited onto the substrates. While other types of thin Au films and Au nanoparticles are identified through their measurable geometry- or size-dependent optical and electronic properties (e.g., localized surface plasmons
  • features onto PDMS [74][75][76], CLL is parallel, high-throughput, and is performed under ambient conditions. Further studies will test the impact of the composition of the supporting molecules on the properties of the lifted-off Au monolayer. The structural and electronic properties of the Au monolayer
PDF
Album
Supp Info
Full Research Paper
Published 08 Dec 2017
Other Beilstein-Institut Open Science Activities