Search results

Search for "methane" in Full Text gives 55 result(s) in Beilstein Journal of Nanotechnology.

A combined gas-phase dissociative ionization, dissociative electron attachment and deposition study on the potential FEBID precursor [Au(CH3)2Cl]2

  • Elif Bilgilisoy,
  • Ali Kamali,
  • Thomas Xaver Gentner,
  • Gerd Ballmann,
  • Sjoerd Harder,
  • Hans-Peter Steinrück,
  • Hubertus Marbach and
  • Oddur Ingólfsson

Beilstein J. Nanotechnol. 2023, 14, 1178–1199, doi:10.3762/bjnano.14.98

Graphical Abstract
  • to these fragments and for m/z 458 (AE = 10.3 ± 0.2 eV), the formation of ethane and HCl, where the threshold values are 10.46 and 10.41 eV at the PBE0-TZVP and DLPNO-CCSD(T)-TZVP levels of theory, respectively, is in good agreement with the experimental AE. The formation of methane and chloromethane
  • values of 13.35 and 13.06 eV, calculated at the DFT and coupled cluster level of theory (TZVP), respectively, for the formation of ethene (CH2CH2), 2HCl, and methane as the neutral counterparts. Considering the formation of ethane (CH3CH3), HCl, and chloromethane as the neutral counterparts lowers the
  • the process. We also calculated the thresholds for the formation of Au(CH3)2 and one ethane molecule as well as AuCH3, ethane, and methane as the neutral counterparts in this process and also found these channels to be exothermic at both levels of theory. The calculated thresholds for the negative ion
PDF
Album
Supp Info
Full Research Paper
Published 06 Dec 2023

Ni, Co, Zn, and Cu metal-organic framework-based nanomaterials for electrochemical reduction of CO2: A review

  • Ha Huu Do and
  • Hai Bang Truong

Beilstein J. Nanotechnol. 2023, 14, 904–911, doi:10.3762/bjnano.14.74

Graphical Abstract
  • . Subsequently, multiple electron transfers occur, leading to the generation of diverse products such as ethanol, methanol, and methane [5][6][7]. Therefore, to reduce the activation energy and to improve selectivity, the meticulous consideration of catalysts becomes imperative [8][9][10][11][12][13][14][15][16
  • an enhancement of CO2 reduction. As a result, this material exhibited a substantial FE of 68.4% for formate generation at a voltage of −1.55 V (Figure 5c,d). However, the performance decreased after 5 h of testing, attributed to a restructuring of the Cu-based MOF. In addition, methane and ethylene
  • were also considered as useful compounds in specific applications. However, the utilization of MOFs as electrocatalysts for the conversion of CO2 into hydrocarbons remains relatively limited. A recent study by Yang et al. presented a potential MOF for the reduction of CO2 to methane and ethylene [36
PDF
Album
Review
Published 31 Aug 2023

Control of morphology and crystallinity of CNTs in flame synthesis with one-dimensional reaction zone

  • Muhammad Hilmi Ibrahim,
  • Norikhwan Hamzah,
  • Mohd Zamri Mohd Yusop,
  • Ni Luh Wulan Septiani and
  • Mohd Fairus Mohd Yasin

Beilstein J. Nanotechnol. 2023, 14, 741–750, doi:10.3762/bjnano.14.61

Graphical Abstract
  • difficult to achieve in a highly heterogeneous environment. Therefore, the analysis of the properties of the reaction zone within the flame is critical for the optimal growth of CNTs. In the present study, a comprehensive comparison between the CNT synthesis using a methane diffusion flame and a premixed
  • ratio was also shown in another study by Hamzah et al. [13], utilizing a methane diffusion flame with different air flow rates. This study aims to synthesize CNTs on nickel wire through methane combustion in a one-dimensional premixed flat flame. The resulting CNT morphology and crystallinity will be
  • compared and analyzed with CNTs grown in a methane diffusion flame. Ultimately, the use of a one-dimensional premixed methane flame, allows for a better understanding of the governing parameters for synthesis control. Results and Discussion Flame characterization and temperature The flames employed in the
PDF
Album
Full Research Paper
Published 21 Jun 2023

Nanomaterials for photocatalysis and applications in environmental remediation and renewable energy

  • Viet Van Pham and
  • Wee-Jun Ong

Beilstein J. Nanotechnol. 2023, 14, 722–724, doi:10.3762/bjnano.14.58

Graphical Abstract
  • fuels generates harmful emissions to the environment, such as carbon dioxide (CO2), methane (CH4), nitrous oxide (N2O), nitric oxide and nitrogen dioxide (together termed NOx), and fluorinated gases (e.g., hydrofluorocarbons, perfluorocarbons, and sulfur hexafluoride) which are currently considered
PDF
Album
Editorial
Published 13 Jun 2023

Recent trends in Bi-based nanomaterials: challenges, fabrication, enhancement techniques, and environmental applications

  • Vishal Dutta,
  • Ankush Chauhan,
  • Ritesh Verma,
  • C. Gopalkrishnan and
  • Van-Huy Nguyen

Beilstein J. Nanotechnol. 2022, 13, 1316–1336, doi:10.3762/bjnano.13.109

Graphical Abstract
PDF
Album
Review
Published 11 Nov 2022

Solar-light-driven LaFexNi1−xO3 perovskite oxides for photocatalytic Fenton-like reaction to degrade organic pollutants

  • Chao-Wei Huang,
  • Shu-Yu Hsu,
  • Jun-Han Lin,
  • Yun Jhou,
  • Wei-Yu Chen,
  • Kun-Yi Andrew Lin,
  • Yu-Tang Lin and
  • Van-Huy Nguyen

Beilstein J. Nanotechnol. 2022, 13, 882–895, doi:10.3762/bjnano.13.79

Graphical Abstract
  • remaining in the aqueous solution during the textile process. The amount of dye wastewater is enormous and has gradually become the main wastewater discharged in the industry [6]. At present, dyes are mainly divided into azo dyes, thiazine dyes, acridine dyes, and aryl methane dyes. Due to their complex
  • precursor for VOCs combustion [32], hydrogen production from ethanol [33], hydrocarbon fuels production from CO2 and H2O [34], syngas production from dry reforming [35], steam reforming of methane [36], or combined reforming of methane with CO2 and O2 [37]. Meanwhile, LaNiO3 photocatalysts also played an
PDF
Album
Supp Info
Full Research Paper
Published 05 Sep 2022

Optimizing PMMA solutions to suppress contamination in the transfer of CVD graphene for batch production

  • Chun-Da Liao,
  • Andrea Capasso,
  • Tiago Queirós,
  • Telma Domingues,
  • Fatima Cerqueira,
  • Nicoleta Nicoara,
  • Jérôme Borme,
  • Paulo Freitas and
  • Pedro Alpuim

Beilstein J. Nanotechnol. 2022, 13, 796–806, doi:10.3762/bjnano.13.70

Graphical Abstract
  • controllers. The Cu foil was first annealed in argon atmosphere (500 sccm, 9.0 Torr) for 30 min in a quartz tube furnace. In the growth process, the gas mixture of argon (250 sccm), hydrogen (100 sccm), and methane (1.2 sccm) was subsequently introduced into the quartz chamber, where a reaction pressure of
PDF
Album
Supp Info
Full Research Paper
Published 18 Aug 2022

Hierarchical Bi2WO6/TiO2-nanotube composites derived from natural cellulose for visible-light photocatalytic treatment of pollutants

  • Zehao Lin,
  • Zhan Yang and
  • Jianguo Huang

Beilstein J. Nanotechnol. 2022, 13, 745–762, doi:10.3762/bjnano.13.66

Graphical Abstract
  • some Bi2WO6/TiO2 composites, which were employed in various photocatalytic applications, such as degradation of organic pollutants [25], oxidation of methane [24], and production of hydrogen by water splitting [26]. According to these reports, Bi2WO6/TiO2 composites have better photocatalytic
PDF
Album
Supp Info
Full Research Paper
Published 04 Aug 2022

Tubular glassy carbon microneedles with fullerene-like tips for biomedical applications

  • Sharali Malik and
  • George E. Kostakis

Beilstein J. Nanotechnol. 2022, 13, 455–461, doi:10.3762/bjnano.13.38

Graphical Abstract
  • the nanoarchitectonics concept of bottom-up creation of functional materials, we use methane rather than a polymer to form glassy carbon. Here we show that tubular glassy carbon microneedles with fullerene-like tips form when methane undergoes pyrolysis on a curved alumina surface. X-ray diffraction
  • article, we have followed the nanoarchitectonics [10] concept to fabricate our glassy carbon material by using methane as building unit and carbon source rather than polymers. There are earlier works on methane pyrolysis in a flow reactor by F. G. Billaud et al. [11] and Z. Bai and co-workers [12]. Bai et
  • al. observed that carbon deposition in the mesopores of alumina is responsible for catalytic activity resulting in the decomposition of methane [12]. Here, we examine the characteristics of the glassy carbon produced by catalytic pyrolysis of methane. Our results show clear experimental evidence for
PDF
Album
Full Research Paper
Published 19 May 2022

Sputtering onto liquids: a critical review

  • Anastasiya Sergievskaya,
  • Adrien Chauvin and
  • Stephanos Konstantinidis

Beilstein J. Nanotechnol. 2022, 13, 10–53, doi:10.3762/bjnano.13.2

Graphical Abstract
  • by a plasma generated in a mixture of argon with a molecular gas, by using dedicated mass flow controllers (MFC). Oxygen, nitrogen, methane, or hydrogen sulfide can be added to deposit metal oxides, nitrides, carbides, or sulfides, respectively. One example of such tailoring of the film chemistry is
PDF
Album
Supp Info
Review
Published 04 Jan 2022

Properties of graphene deposited on GaN nanowires: influence of nanowire roughness, self-induced nanogating and defects

  • Jakub Kierdaszuk,
  • Piotr Kaźmierczak,
  • Justyna Grzonka,
  • Aleksandra Krajewska,
  • Aleksandra Przewłoka,
  • Wawrzyniec Kaszub,
  • Zbigniew R. Zytkiewicz,
  • Marta Sobanska,
  • Maria Kamińska,
  • Andrzej Wysmołek and
  • Aneta Drabińska

Beilstein J. Nanotechnol. 2021, 12, 566–577, doi:10.3762/bjnano.12.47

Graphical Abstract
  • copper foil with methane gas as the precursor [31]. Next, graphene was transferred onto GaN NWs substrates. Due to low adhesive forces between graphene and corrugated substrates, the most common method to transfer graphene with the use of poly(methyl methacrylate) (PMMA) polymer could not be applied for
PDF
Album
Full Research Paper
Published 22 Jun 2021

The patterning toolbox FIB-o-mat: Exploiting the full potential of focused helium ions for nanofabrication

  • Victor Deinhart,
  • Lisa-Marie Kern,
  • Jan N. Kirchhof,
  • Sabrina Juergensen,
  • Joris Sturm,
  • Enno Krauss,
  • Thorsten Feichtner,
  • Sviatoslav Kovalchuk,
  • Michael Schneider,
  • Dieter Engel,
  • Bastian Pfau,
  • Bert Hecht,
  • Kirill I. Bolotin,
  • Stephanie Reich and
  • Katja Höflich

Beilstein J. Nanotechnol. 2021, 12, 304–318, doi:10.3762/bjnano.12.25

Graphical Abstract
  • combination with a thermal stability up to 2600 K [50], renders graphene an exciting candidate for room-temperature bolometry [51]. Single-layer graphene was grown by chemical vapor deposition onto a multicrystalline copper foil using methane as precursor gas at 1035 °C. For the transfer process, the graphene
PDF
Album
Supp Info
Full Research Paper
Published 06 Apr 2021

Unravelling the interfacial interaction in mesoporous SiO2@nickel phyllosilicate/TiO2 core–shell nanostructures for photocatalytic activity

  • Bridget K. Mutuma,
  • Xiluva Mathebula,
  • Isaac Nongwe,
  • Bonakele P. Mtolo,
  • Boitumelo J. Matsoso,
  • Rudolph Erasmus,
  • Zikhona Tetana and
  • Neil J. Coville

Beilstein J. Nanotechnol. 2020, 11, 1834–1846, doi:10.3762/bjnano.11.165

Graphical Abstract
  • reactions, methane reforming, and hydrogen evolution [35][36][37][38][39][40]. Wang et al. [38] reported the growth of nickel phyllosilicate by simultaneous reaction of a silica precursor (tetraethylorthosilicate), nickel chloride, water, and urea in a hydrothermal reactor at 210 °C for 12 h. They obtained
  • , and NiPS. This agrees with previous reports on the catalyst stability of nickel–silica core–shell nanomaterials for the dehydrogenation of organic compounds and for methane reforming owing to the strong metal–support interaction [72][73]. Most importantly, the photocatalytic activity of the mSiO2@NiPS
PDF
Album
Supp Info
Full Research Paper
Published 09 Dec 2020

Long-term entrapment and temperature-controlled-release of SF6 gas in metal–organic frameworks (MOFs)

  • Hana Bunzen,
  • Andreas Kalytta-Mewes,
  • Leo van Wüllen and
  • Dirk Volkmer

Beilstein J. Nanotechnol. 2019, 10, 1851–1859, doi:10.3762/bjnano.10.180

Graphical Abstract
  • as promising materials for gas storage of attractive fuel gases such as hydrogen [6][7][8] or methane [9][10][11]. In these applications the gas is adsorbed inside the pores. To enhance the guest adsorption in MOFs, several different approaches have been introduced over the last few years. These
PDF
Album
Supp Info
Full Research Paper
Published 10 Sep 2019

Hydrophilicity and carbon chain length effects on the gas sensing properties of chemoresistive, self-assembled monolayer carbon nanotube sensors

  • Juan Casanova-Cháfer,
  • Carla Bittencourt and
  • Eduard Llobet

Beilstein J. Nanotechnol. 2019, 10, 565–577, doi:10.3762/bjnano.10.58

Graphical Abstract
  • . In particular, they found that the magnitude of the interaction energy between methane (nonpolar) and polar or nonpolar terminated SAMs was low and not significantly different. In contrast, the interaction energies between water (polar) and nonpolar or polar-terminated SAMs exhibited a more than one
PDF
Album
Supp Info
Full Research Paper
Published 27 Feb 2019

Mo-doped boron nitride monolayer as a promising single-atom electrocatalyst for CO2 conversion

  • Qianyi Cui,
  • Gangqiang Qin,
  • Weihua Wang,
  • Lixiang Sun,
  • Aijun Du and
  • Qiao Sun

Beilstein J. Nanotechnol. 2019, 10, 540–548, doi:10.3762/bjnano.10.55

Graphical Abstract
  • and commodity chemicals [6]. For example, CO2 can be converted to methane, methanol and formic acid, and all of which can be used as energy sources and chemical materials at the global scale [7][8][9][10][11]. In this sense, the CO2 reduction reaction (CRR) by electrochemical methods is promising
PDF
Album
Supp Info
Full Research Paper
Published 22 Feb 2019

Colloidal chemistry with patchy silica nanoparticles

  • Pierre-Etienne Rouet,
  • Cyril Chomette,
  • Laurent Adumeau,
  • Etienne Duguet and
  • Serge Ravaine

Beilstein J. Nanotechnol. 2018, 9, 2989–2998, doi:10.3762/bjnano.9.278

Graphical Abstract
  • nanoparticles; valence; Introduction The molecular world is essentially based on the covalent bonding of atoms displaying valences of 1, 2 (sp), 3 (sp2), 4 (sp3) and, to a lesser extent, 5 (sp3d) and 6 (sp3d2). The molecules of water, ammonia and methane, in which the valence orbitals of the central atom adopt
PDF
Album
Full Research Paper
Published 06 Dec 2018

Improved catalytic combustion of methane using CuO nanobelts with predominantly (001) surfaces

  • Qingquan Kong,
  • Yichun Yin,
  • Bing Xue,
  • Yonggang Jin,
  • Wei Feng,
  • Zhi-Gang Chen,
  • Shi Su and
  • Chenghua Sun

Beilstein J. Nanotechnol. 2018, 9, 2526–2532, doi:10.3762/bjnano.9.235

Graphical Abstract
  • Chemistry and Biotechnology, Faculty of Science, Engineering & Technology, Swinburne University of Technology, Hawthorn, VIC 3122, Australia 10.3762/bjnano.9.235 Abstract Through computational calculations, CuO(001) has been identified as an active surface for methane oxidation. Experimental validation
  • with CuO nanobelts comprised of predominantly (001) surfaces has been performed and it is confirmed that the performance of such nanobelts is much higher than normal nanoparticles and nanowires. First principle calculations further clarified that two-coordinated oxygen plays a key role for methane
  • adsorption and oxidation. Keywords: catalytic oxidation; copper oxide; density functional theory; methane; Introduction Methane (CH4), as the main component of natural gas, offers significant environmental advantages over conventional gasoline and diesel [1][2][3]. However, its thermal combustion is often
PDF
Album
Supp Info
Full Research Paper
Published 24 Sep 2018

The inhibition effect of water on the purification of natural gas with nanoporous graphene membranes

  • Krzysztof Nieszporek,
  • Tomasz Pańczyk and
  • Jolanta Nieszporek

Beilstein J. Nanotechnol. 2018, 9, 1906–1916, doi:10.3762/bjnano.9.182

Graphical Abstract
  • interesting review on carbon- and nitrogen-based materials [10]. Hauser and Schwerdtfeger [11] studied theoretically the ability of functionalized graphene nanopores to separate methane from air. Recently, Guerrero-Avilés and Orellana performed ab initio MD simulations to study the interactions between
  • nitrogen atom located in the nanopore rim). Results and Discussion Molecules can migrate through the nanopores from the retentate to the permeate area. The observed number of molecules passing across the pores is different for methane and nitrogen because of different kinetic properties of the gases as
  • . It can be seen that the presence of water in the retentate area does not visibly affect the number of methane and nitrogen molecules passing through the HH nanopore. This is because the nanopore includes only hydrogen atoms, which are weak hydrogen bond (HB) donors in this system. Thus, the water
PDF
Album
Full Research Paper
Published 02 Jul 2018

Synthesis of carbon nanowalls from a single-source metal-organic precursor

  • André Giese,
  • Sebastian Schipporeit,
  • Volker Buck and
  • Nicolas Wöhrl

Beilstein J. Nanotechnol. 2018, 9, 1895–1905, doi:10.3762/bjnano.9.181

Graphical Abstract
  • CNW deposition in literature gaseous precursors have been used as carbon source. Gases used are typically methane (CH4), acetylene (C2H2) and hexafluoroethane (C2F6) mixed with argon or hydrogen as carrier gas. The synthesis from the solid metal-organic precursor Al(acac)3 was up to now only reported
PDF
Album
Full Research Paper
Published 29 Jun 2018

Understanding the performance and mechanism of Mg-containing oxides as support catalysts in the thermal dry reforming of methane

  • Nor Fazila Khairudin,
  • Mohd Farid Fahmi Sukri,
  • Mehrnoush Khavarian and
  • Abdul Rahman Mohamed

Beilstein J. Nanotechnol. 2018, 9, 1162–1183, doi:10.3762/bjnano.9.108

Graphical Abstract
  • Nor Fazila Khairudin Mohd Farid Fahmi Sukri Mehrnoush Khavarian Abdul Rahman Mohamed School of Chemical Engineering, Universiti Sains Malaysia, 14300 Nibong Tebal, Pulau Pinang, Malaysia 10.3762/bjnano.9.108 Abstract Dry reforming of methane (DRM) is one of the more promising methods for syngas
  • (synthetic gas) production and co-utilization of methane and carbon dioxide, which are the main greenhouse gases. Magnesium is commonly applied in a Ni-based catalyst in DRM to improve catalyst performance and inhibit carbon deposition. The aim of this review is to gain better insight into recent
  • conditions, influence the dry reforming reactions and product yields. In this review, different strategies for enhancing catalytic activity and the effect of metal dispersion on Mg-containing oxide catalysts are highlighted. Keywords: carbon formation; catalyst development; dry reforming of methane
PDF
Album
Review
Published 13 Apr 2018

Electron-driven and thermal chemistry during water-assisted purification of platinum nanomaterials generated by electron beam induced deposition

  • Ziyan Warneke,
  • Markus Rohdenburg,
  • Jonas Warneke,
  • Janina Kopyra and
  • Petra Swiderek

Beilstein J. Nanotechnol. 2018, 9, 77–90, doi:10.3762/bjnano.9.10

Graphical Abstract
  • at 150 K and 210 K, respectively. We note that at temperatures between 250 K and 350 K slightly increased intensities of the methane signals were detected. These amounts are, however, negligible in comparison to reaction products formed under electron irradiation, as shown in the following. Electron
PDF
Album
Supp Info
Full Research Paper
Published 08 Jan 2018

Review on optofluidic microreactors for artificial photosynthesis

  • Xiaowen Huang,
  • Jianchun Wang,
  • Tenghao Li,
  • Jianmei Wang,
  • Min Xu,
  • Weixing Yu,
  • Abdel El Abed and
  • Xuming Zhang

Beilstein J. Nanotechnol. 2018, 9, 30–41, doi:10.3762/bjnano.9.5

Graphical Abstract
  • or methane [45][46]. Additionally, with the consumption of CO2, APS possibly provides a solution to the greenhouse effect and global warming. Unlike human beings, plants have no need to use CO2 as a clean fuel or for to reduce the greenhouse effect. They simply “consume” CO2 to produce carbohydrates
PDF
Album
Review
Published 04 Jan 2018

One-step chemical vapor deposition synthesis and supercapacitor performance of nitrogen-doped porous carbon–carbon nanotube hybrids

  • Egor V. Lobiak,
  • Lyubov G. Bulusheva,
  • Ekaterina O. Fedorovskaya,
  • Yury V. Shubin,
  • Pavel E. Plyusnin,
  • Pierre Lonchambon,
  • Boris V. Senkovskiy,
  • Zinfer R. Ismagilov,
  • Emmanuel Flahaut and
  • Alexander V. Okotrub

Beilstein J. Nanotechnol. 2017, 8, 2669–2679, doi:10.3762/bjnano.8.267

Graphical Abstract
  • and porous carbon on the surface of MgO impregnated with bimetallic (transition metal/molybdenum) catalyst precursors. Acetonitrile was added to the methane feedstock to incorporate nitrogen into the graphitic network, which is beneficial for the electrochemical performance of the carbon materials [21
PDF
Album
Supp Info
Full Research Paper
Published 12 Dec 2017

Hydrothermal synthesis of ZnO quantum dot/KNb3O8 nanosheet photocatalysts for reducing carbon dioxide to methanol

  • Xiao Shao,
  • Weiyue Xin and
  • Xiaohong Yin

Beilstein J. Nanotechnol. 2017, 8, 2264–2270, doi:10.3762/bjnano.8.226

Graphical Abstract
  • , similar to what occurs in natural photosynthesis. Until now, the organics produced by such artificial photosynthesis include methane [2], formaldehyde [3], methanol [4], methyl formate [5], among others. Alkaline niobates, which are great potential photocatalysts, have been developed in virtue of their
PDF
Album
Full Research Paper
Published 30 Oct 2017
Other Beilstein-Institut Open Science Activities