Search results

Search for "pollutants" in Full Text gives 126 result(s) in Beilstein Journal of Nanotechnology.

Impact of the anodization time on the photocatalytic activity of TiO2 nanotubes

  • Jesús A. Díaz-Real,
  • Geyla C. Dubed-Bandomo,
  • Juan Galindo-de-la-Rosa,
  • Luis G. Arriaga,
  • Janet Ledesma-García and
  • Nicolas Alonso-Vante

Beilstein J. Nanotechnol. 2018, 9, 2628–2643, doi:10.3762/bjnano.9.244

Graphical Abstract
  • such as excellent chemical stability, photo-corrosion resistance, low cost, and low toxicity make TiO2 a material suitable for energy production and environmental applications, such as advanced oxidation processes for the decomposition of organic pollutants in water [2][3]. However, the material
PDF
Album
Supp Info
Full Research Paper
Published 04 Oct 2018

Improved catalytic combustion of methane using CuO nanobelts with predominantly (001) surfaces

  • Qingquan Kong,
  • Yichun Yin,
  • Bing Xue,
  • Yonggang Jin,
  • Wei Feng,
  • Zhi-Gang Chen,
  • Shi Su and
  • Chenghua Sun

Beilstein J. Nanotechnol. 2018, 9, 2526–2532, doi:10.3762/bjnano.9.235

Graphical Abstract
  • at a flame temperature up to ≈2,000 K [4], which favours the formation of nitrogen oxide (NOx) pollutants. To suppress such reactions, a lower flame temperature is targeted, but this potentially results in incomplete combustion with large CO and unburned hydrocarbon (UHC) emissions [5], which
PDF
Album
Supp Info
Full Research Paper
Published 24 Sep 2018

Nanocellulose: Recent advances and its prospects in environmental remediation

  • Katrina Pui Yee Shak,
  • Yean Ling Pang and
  • Shee Keat Mah

Beilstein J. Nanotechnol. 2018, 9, 2479–2498, doi:10.3762/bjnano.9.232

Graphical Abstract
  • concerns warrant the application of bio-renewable polymers in the production of nanomaterials. In recent years, nanomaterials have displayed potential in effective detection and removal of greenhouse gases, chemical contaminants, organic pollutants, and biological agents. These materials come in various
  • nanocellulose, which could be particularly useful for particle aggregation of negatively charged pollutants to coagulate and flocculate kaolin colloids as reported by Liimatainen et al. [79]. On the other hand, the utilization of green solvents (ionic liquids) as both solvent and catalyst for cellulose
  • adsorbent for wastewater treatment due to its adsorption affinity towards organic pollutants. Unlike micrometre-sized cellulose, the nanometre-sized counterparts are relatively smaller in dimensional size but also possess a larger surface area with improved porosity, which limits internal diffusion and
PDF
Album
Review
Published 19 Sep 2018

ZnO-nanostructure-based electrochemical sensor: Effect of nanostructure morphology on the sensing of heavy metal ions

  • Marina Krasovska,
  • Vjaceslavs Gerbreders,
  • Irena Mihailova,
  • Andrejs Ogurcovs,
  • Eriks Sledevskis,
  • Andrejs Gerbreders and
  • Pavels Sarajevs

Beilstein J. Nanotechnol. 2018, 9, 2421–2431, doi:10.3762/bjnano.9.227

Graphical Abstract
  • the presence of lead and other heavy ions, even in small quantities, is an important and topical task. ZnO nanostructures are promising candidates for use in such sensors. They are sensitive to various types of contamination, including almost all heavy metal ions and organic pollutants, and show very
PDF
Album
Full Research Paper
Published 11 Sep 2018

SERS active Ag–SiO2 nanoparticles obtained by laser ablation of silver in colloidal silica

  • Cristina Gellini,
  • Francesco Muniz-Miranda,
  • Alfonso Pedone and
  • Maurizio Muniz-Miranda

Beilstein J. Nanotechnol. 2018, 9, 2396–2404, doi:10.3762/bjnano.9.224

Graphical Abstract
  • chemical reactants. These nanocomposites, which combine the adsorption properties of silica with the plasmonic properties of nanometer-sized silver, can be used for several purposes, for example, for the SERS detection of environmental contaminants such as POPs (persistent organic pollutants), as
PDF
Album
Supp Info
Full Research Paper
Published 06 Sep 2018

Hierarchical heterostructures of Bi2MoO6 microflowers decorated with Ag2CO3 nanoparticles for efficient visible-light-driven photocatalytic removal of toxic pollutants

  • Shijie Li,
  • Wei Jiang,
  • Shiwei Hu,
  • Yu Liu,
  • Yanping Liu,
  • Kaibing Xu and
  • Jianshe Liu

Beilstein J. Nanotechnol. 2018, 9, 2297–2305, doi:10.3762/bjnano.9.214

Graphical Abstract
  • Treatment and Control in Textile Industry, College of Environmental Science and Engineering, Donghua University, Shanghai 201620, China 10.3762/bjnano.9.214 Abstract Developing highly active and durable visible-light-driven photocatalysts for the degradation of toxic pollutants is of vital significance
  • candidate for wastewater treatment. Keywords: antibiotic removal; Bi2MoO6; heterojunction; silver carbonate (Ag2CO3); Introduction Industrial pollutants, such as industrial dyes and antibiotics, in wastewaters pose a huge threat to the environment [1][2]. Thus, many methods for pollutant removal have been
  • established. However, the conventional wastewater treatments are usually accompanied by high cost, low efficiency and other insufficiencies [2]. The decomposition and mineralization of pollutants under sunlight through photocatalysis has been demonstrated to be an effective and green technology for
PDF
Album
Supp Info
Full Research Paper
Published 27 Aug 2018

Electrospun one-dimensional nanostructures: a new horizon for gas sensing materials

  • Muhammad Imran,
  • Nunzio Motta and
  • Mahnaz Shafiei

Beilstein J. Nanotechnol. 2018, 9, 2128–2170, doi:10.3762/bjnano.9.202

Graphical Abstract
  • important active materials for gas sensing applications. Such highly sensitive and selective elements can be embedded in sensor nodes for internet-of-things applications or in mobile systems for continuous monitoring of air pollutants and greenhouse gases as well as for monitoring the well-being and health
  • benefits and limitations for every approach. Keywords: 1D nanostructures; conductometric devices; electrospinning; gas sensors; optical sensors; resonators; Review 1 Introduction The monitoring and control of air pollutants, toxic gases and explosives has become increasingly important for human wellness
  • followed by death. Gas sensors are the primary devices used for the detection and monitoring of these pollutants. Employing nanotechnology in sensor applications has significantly improved the performance of such devices, providing enhanced sensitivity, selectivity, low power consumption and high
PDF
Album
Supp Info
Review
Published 13 Aug 2018

Synthesis of a MnO2/Fe3O4/diatomite nanocomposite as an efficient heterogeneous Fenton-like catalyst for methylene blue degradation

  • Zishun Li,
  • Xuekun Tang,
  • Kun Liu,
  • Jing Huang,
  • Yueyang Xu,
  • Qian Peng and
  • Minlin Ao

Beilstein J. Nanotechnol. 2018, 9, 1940–1950, doi:10.3762/bjnano.9.185

Graphical Abstract
  • ) oxide (Fe3O4); manganese(IV) oxide (MnO2); Introduction Organic contaminants are widely distributed in water and soil due to the excessive emissions of industrial processes, which causes a great threat to the ecosystem as well as to human health [1][2][3]. Most of the organic pollutants are toxic and
  • -based catalysts, MnO2 shows good catalytic performance because of the Mn(III)/Mn(IV) redox loop and much less sludge formation due to the neutral functional pH value [11][12]. Although, the MnO2-PMS system shows good prospect in the treatment of organic pollutants, modifications focusing on the
  • organic pollutants. XRD patterns of the purified diatomite and the prepared diatomite-supported composites. FTIR spectra of the purified diatomite and prepared diatomite-supported composites. The SEM images of diatomite (a), Fe3O4/diatomite (b, d), MnO2/Fe3O4/diatomite (c and e), EDX spectrum (f) and
PDF
Album
Supp Info
Full Research Paper
Published 06 Jul 2018

Free-radical gases on two-dimensional transition-metal disulfides (XS2, X = Mo/W): robust half-metallicity for efficient nitrogen oxide sensors

  • Chunmei Zhang,
  • Yalong Jiao,
  • Fengxian Ma,
  • Sri Kasi Matta,
  • Steven Bottle and
  • Aijun Du

Beilstein J. Nanotechnol. 2018, 9, 1641–1646, doi:10.3762/bjnano.9.156

Graphical Abstract
  • results also suggest XS2 (X = Mo, W) nanosheets can act as promising nanoscale NO sensors. Keywords: free radical; half-metallicity; nitric oxide (NO); sensors; spin-polarized; Introduction Nitrogen oxide (NOx) gases, one of the most common groups of air pollutants, are known as one culprit of acid rain
PDF
Album
Supp Info
Full Research Paper
Published 05 Jun 2018

Sulfur-, nitrogen- and platinum-doped titania thin films with high catalytic efficiency under visible-light illumination

  • Boštjan Žener,
  • Lev Matoh,
  • Giorgio Carraro,
  • Bojan Miljević and
  • Romana Cerc Korošec

Beilstein J. Nanotechnol. 2018, 9, 1629–1640, doi:10.3762/bjnano.9.155

Graphical Abstract
  • of Novi Sad, Faculty of Technology, Bulevar cara Lazara 1, 21000 Novi Sad, Serbia 10.3762/bjnano.9.155 Abstract Titanium dioxide photocatalysts have received a lot of attention during the past decades due to their ability to degrade various organic pollutants to CO2 and H2O, which makes them
  • oxidizing species, which then oxidize adsorbed pollutants, forming CO2 and H2O as final products [7]. Because of this particularly beneficial characteristic, together with its low-cost and lack of secondary emissions [8], significant research has been focused on the use of TiO2 photocatalysis in various
PDF
Album
Full Research Paper
Published 04 Jun 2018

Cr(VI) remediation from aqueous environment through modified-TiO2-mediated photocatalytic reduction

  • Rashmi Acharya,
  • Brundabana Naik and
  • Kulamani Parida

Beilstein J. Nanotechnol. 2018, 9, 1448–1470, doi:10.3762/bjnano.9.137

Graphical Abstract
  • pollutants and has mandated a maximum acceptable concentration of 50 μg L−1 in potable water [13][14][15]. Therefore, it is now of great importance to explore the efficient and economical ways for the treatment of Cr(VI)-rich wastewater. Various techniques, such as chemical reduction, ion exchange, bacterial
  • transformation for the fine chemical synthesis [39][40][41][42] and (v) photodegradation of pollutants [43][44][45][46][47][48][49]. Semiconductor-based photocatalysis proceeds through following three steps: (1) absorption of light; (2) separation and transport of charge carriers; and (3) redox reactions on the
  • visible-light irradiation. The authors have also reported that •CO2− radicals (produced by the reaction of hVB+ with HCO2NH4) and eCB− are responsible for the reduction of 4-nitroaniline to p-phenylenediamine over CdS/TiO2 photocatalysts [56]. Photodegradation of pollutants The principle of photocatalysis
PDF
Album
Review
Published 16 May 2018

Ag2WO4 nanorods decorated with AgI nanoparticles: Novel and efficient visible-light-driven photocatalysts for the degradation of water pollutants

  • Shijie Li,
  • Shiwei Hu,
  • Wei Jiang,
  • Yanping Liu,
  • Yu Liu,
  • Yingtang Zhou,
  • Liuye Mo and
  • Jianshe Liu

Beilstein J. Nanotechnol. 2018, 9, 1308–1316, doi:10.3762/bjnano.9.123

Graphical Abstract
  • , and UV–vis DRS were used to investigate the morphology and optical properties of the as-prepared AgI/Ag2WO4 catalyst. With AgI acting as the cocatalyst, the resulting AgI/Ag2WO4 heterostructure shows excellent performance in degrading toxic, stable pollutants such as rhodamine B (RhB), methyl orange
  • photocatalytic performance. Keywords: AgI/Ag2WO4; nanocomposites; photocatalysis; visible light; Introduction The development of high-performance novel photocatalysts for the degradation of pollutants has received great interest due to the worsening of environmental pollution [1][2][3][4][5][6][7][8][9][10][11
  • Ag2S/Ag2WO4 [40], C3N4/Ag2WO4 [39], Bi2MoO6/Ag2WO4/Ag [42] etc., have been reported to show improved VLD performance in the degradation of pollutants. To the best of our knowledge, application of AgI/Ag2WO4 as a VLD photocatalyst for the degradation of toxic pollutants remains unreported. In this study
PDF
Album
Supp Info
Full Research Paper
Published 27 Apr 2018

Electrodeposition of reduced graphene oxide with chitosan based on the coordination deposition method

  • Mingyang Liu,
  • Yanjun Chen,
  • Chaoran Qin,
  • Zheng Zhang,
  • Shuai Ma,
  • Xiuru Cai,
  • Xueqian Li and
  • Yifeng Wang

Beilstein J. Nanotechnol. 2018, 9, 1200–1210, doi:10.3762/bjnano.9.111

Graphical Abstract
  • electrochemical detection of glucose, NH3 gas, NO2 gas, ethanol and acetone [40][41][42][43]. Besides, graphene-based sensors have been used to detect phenolic compounds which are aromatic pollutants to the environment and human health [44][45]. These graphene-based sensors exhibit the high detection performance
PDF
Album
Full Research Paper
Published 17 Apr 2018

Review on nanoparticles and nanostructured materials: history, sources, toxicity and regulations

  • Jaison Jeevanandam,
  • Ahmed Barhoum,
  • Yen S. Chan,
  • Alain Dufresne and
  • Michael K. Danquah

Beilstein J. Nanotechnol. 2018, 9, 1050–1074, doi:10.3762/bjnano.9.98

Graphical Abstract
  • satellite images revealed that dust storms in one region can migrate the nano and micro-sized minerals and anthropogenic pollutants to thousands of kilometers away from their origin. About 50% of the atmospheric aerosol particles that originate from dust storms in deserts are in the range of 100–200 nm [46
  • -mediated natural precipitation. It has been reported that formation of CaCO3 NPs in Lake Michigan is due to weather and temperature changes [81]. These small sea salt aerosols act to transfer microorganisms and pollutants that may increase casualties in plants, animals, and humans via adverse health
  • their weightless wing material [220][221][222]. Insect wing surfaces demonstrate a rough and highly ordered structure comprised of micro- and nanoscale properties to minimize their mass and protect them against wetting and pollutants. A methodical terminology to explain the structural properties of
PDF
Album
Review
Published 03 Apr 2018

Facile synthesis of a ZnO–BiOI p–n nano-heterojunction with excellent visible-light photocatalytic activity

  • Mengyuan Zhang,
  • Jiaqian Qin,
  • Pengfei Yu,
  • Bing Zhang,
  • Mingzhen Ma,
  • Xinyu Zhang and
  • Riping Liu

Beilstein J. Nanotechnol. 2018, 9, 789–800, doi:10.3762/bjnano.9.72

Graphical Abstract
  • , probably a result of the quantum confinement effect in the nanometer-sized ZnO particles. Photocatalytic degradation To test the as-synthesized samples’ ability to remove organic pollutants from waste water, the photodegradation of RhB was carried out under illumination by visible light from a 300 W Xe
PDF
Album
Supp Info
Full Research Paper
Published 05 Mar 2018

Perovskite-structured CaTiO3 coupled with g-C3N4 as a heterojunction photocatalyst for organic pollutant degradation

  • Ashish Kumar,
  • Christian Schuerings,
  • Suneel Kumar,
  • Ajay Kumar and
  • Venkata Krishnan

Beilstein J. Nanotechnol. 2018, 9, 671–685, doi:10.3762/bjnano.9.62

Graphical Abstract
  • overall photocatalytic activity. Furthermore, the active species trapping experiments validate the major role played by superoxide radicals (O2−•) in the degradation of pollutants. Based on scavenger studies and theoretically calculated band positions, a plausible mechanism for the photocatalytic
  • degradation of pollutants has been proposed and discussed. Keywords: CaTiO3; graphitic carbon nitride (g-C3N4); heterojunction photocatalyst; pollutant degradation; Introduction Photocatalysis is recognized as an attractive approach for environmental remediation and energy generation applications due to its
  • pollutants from water very effectively. Experimental Materials Both titanium diisopropoxide bis(acetylacetonate) and dicyandiamide were purchased from Sigma-Aldrich, India. Calcium nitrate (Ca(NO3)2·4H2O), acrylamide and D-glucose were supplied by MP Biomedicals, India. Ammonia solution (NH3 about 25
PDF
Album
Supp Info
Full Research Paper
Published 21 Feb 2018

Mechanistic insights into plasmonic photocatalysts in utilizing visible light

  • Kah Hon Leong,
  • Azrina Abd Aziz,
  • Lan Ching Sim,
  • Pichiah Saravanan,
  • Min Jang and
  • Detlef Bahnemann

Beilstein J. Nanotechnol. 2018, 9, 628–648, doi:10.3762/bjnano.9.59

Graphical Abstract
  • strengths and weaknesses, and the interaction of the plasmonic photocatalyst with pollutants as well as the role of active radical generation and identification. The review ends with a pinnacle insight into future perspectives regarding realistic applications of plasmonic photocatalysts. Keywords
  • the formation and identification of ROSs and their interaction with pollutants was clearly presented. The future prospects of these sustainable photocatalysts with real-time applications for energy storage and environmental remediation were thoroughly reviewed. The present review also revealed the
PDF
Album
Review
Published 19 Feb 2018

Fabrication and photoactivity of ionic liquid–TiO2 structures for efficient visible-light-induced photocatalytic decomposition of organic pollutants in aqueous phase

  • Anna Gołąbiewska,
  • Marta Paszkiewicz-Gawron,
  • Aleksandra Sadzińska,
  • Wojciech Lisowski,
  • Ewelina Grabowska,
  • Adriana Zaleska-Medynska and
  • Justyna Łuczak

Beilstein J. Nanotechnol. 2018, 9, 580–590, doi:10.3762/bjnano.9.54

Graphical Abstract
  • pollutants in aqueous and gas phases requires visible-light responsive, stable materials and a basic understanding of these materials [1][2][3][4]. Although various semiconductors are considered for environmental pollution abatement, titanium dioxide (TiO2) is still the most promising due to its stability
PDF
Album
Full Research Paper
Published 14 Feb 2018

Influence of the preparation method on the photocatalytic activity of Nd-modified TiO2

  • Patrycja Parnicka,
  • Paweł Mazierski,
  • Tomasz Grzyb,
  • Wojciech Lisowski,
  • Ewa Kowalska,
  • Bunsho Ohtani,
  • Adriana Zaleska-Medynska and
  • Joanna Nadolna

Beilstein J. Nanotechnol. 2018, 9, 447–459, doi:10.3762/bjnano.9.43

Graphical Abstract
  • pristine and Nd-modified TiO2 were investigated using the photocatalytic degradations of phenol in aqueous solution and of gaseous toluene. Kinetics and degradation rate of model pollutants are presented in Figure 7 and Table 4. The photodegradation of phenol was performed in aqueous solution under UV–vis
  • . Based on XPS analysis, it can be seen that photocatalysts prepared via the HT method had a higher amount of hydroxy groups on the surface than those obtained by the SHT method. The hydroxy groups can act as adsorption centres on which the degradation of pollutants takes place [45]. Moreover, a high
  • main active species responsible for the degradation of the model pollutants. In the presence of HT photocatalyst with scavengers similar phenomena were observed. The photocatalytic system with added ammonium oxalate and tert-butanol showed congruous degradation rates (0.58 and 0.57 μmol·dm−1·min−1
PDF
Album
Full Research Paper
Published 06 Feb 2018

Facile synthesis of ZnFe2O4 photocatalysts for decolourization of organic dyes under solar irradiation

  • Arjun Behera,
  • Debasmita Kandi,
  • Sanjit Manohar Majhi,
  • Satyabadi Martha and
  • Kulamani Parida

Beilstein J. Nanotechnol. 2018, 9, 436–446, doi:10.3762/bjnano.9.42

Graphical Abstract
  • correlates well with the lowest PL intensity, highest photocurrent and lowest particle size. Keywords: Congo red; electrochemical study; phenol; photocatalyst; rhodamine B (Rh B); ZnFe2O4; Introduction Photocatalysis is a “green” technology for the treatment of environmental pollutants with solar energy [1
  • can be described by the following equations: Hence the net reaction is Rh B/CR + •OH + •O2− → decolourization. Degradation of phenol In order to show its versatility, the ZFO-500 photocatalyst was also tested in degradation of colourless organic pollutants. We have used phenol as a model pollutant
PDF
Album
Full Research Paper
Published 05 Feb 2018

Photocatalytic and adsorption properties of TiO2-pillared montmorillonite obtained by hydrothermally activated intercalation of titanium polyhydroxo complexes

  • Mikhail F. Butman,
  • Nikolay L. Ovchinnikov,
  • Nikita S. Karasev,
  • Nataliya E. Kochkina,
  • Alexander V. Agafonov and
  • Alexandr V. Vinogradov

Beilstein J. Nanotechnol. 2018, 9, 364–378, doi:10.3762/bjnano.9.36

Graphical Abstract
  • limitations such as low adsorption capacity and possibility of particle agglomeration, which reduce its photocatalytic efficiency for the processes of purifying sewage and natural water bodies from pollutants of organic origin. To overcome these limitations, titanium dioxide nanoparticles are distributed on
PDF
Album
Full Research Paper
Published 31 Jan 2018

Sugarcane juice derived carbon dot–graphitic carbon nitride composites for bisphenol A degradation under sunlight irradiation

  • Lan Ching Sim,
  • Jing Lin Wong,
  • Chen Hong Hak,
  • Jun Yan Tai,
  • Kah Hon Leong and
  • Pichiah Saravanan

Beilstein J. Nanotechnol. 2018, 9, 353–363, doi:10.3762/bjnano.9.35

Graphical Abstract
  • [26][27], and degradation of pollutants [28][29][30]. However, the photocatalytic performance of bulk g-C3N4 remains unsatisfactory because of the fast recombination rate of electron pairs and narrower light absorption range over the entire solar spectrum. Turning g-C3N4 into a mesoporous nanorod
  • easily excited in each of the CDs and g-C3N4 to produce more electron–hole pairs for the reaction of pollutants. The recombination rate of electron–hole pairs was another factor affecting the degradation rate. As shown in the PL analysis (Figure 3d), the separation efficiency of electron–hole pairs will
PDF
Album
Supp Info
Full Research Paper
Published 30 Jan 2018

Facile synthesis of silver/silver thiocyanate (Ag@AgSCN) plasmonic nanostructures with enhanced photocatalytic performance

  • Xinfu Zhao,
  • Dairong Chen,
  • Abdul Qayum,
  • Bo Chen and
  • Xiuling Jiao

Beilstein J. Nanotechnol. 2017, 8, 2781–2789, doi:10.3762/bjnano.8.277

Graphical Abstract
  • . Keywords: Ag@AgSCN; degradation of oxytetracycline; plasmonic photocatalyst; stability; Introduction In the past decade, water decontamination technology has attracted great attention due to the increasing health risk that water contamination poses to humankind. The removal of pollutants has been
  • and environmental friendlessness. For example, as a typical semiconductor, TiO2 exhibits high photocatalytic degradation performance against a large number of organic pollutants [5][6][7]. However, it is difficult to obtain a high photocatalytic activity under visible-light irradiation with TiO2 as a
PDF
Album
Supp Info
Full Research Paper
Published 22 Dec 2017

L-Lysine-grafted graphene oxide as an effective adsorbent for the removal of methylene blue and metal ions

  • Yan Yan,
  • Jie Li,
  • Fangbei Kong,
  • Kuankuan Jia,
  • Shiyu He and
  • Baorong Wang

Beilstein J. Nanotechnol. 2017, 8, 2680–2688, doi:10.3762/bjnano.8.268

Graphical Abstract
  • promising adsorption material for the removal of environmental pollutants. Keywords: adsorption; copper (Cu) ions; graphene; isotherms; methylene blue; Introduction Graphene is a two-dimensional carbon material with honeycomb network and sp2 hybridization. Recently, graphene-based materials have drawn
  • organic molecules and metal nanoparticles via covalent or non-covalent binding [13][14][15][16]. Recently, functionalized graphene materials have shown great potential as highly efficient absorbers for the treatment of environmental pollutants and wastewater purification [17][18][19]. However, most of the
  • functionalized graphene materials cannot meet practical needs in treating environmental pollutants because of high cost and low performance. Hence, the adsorption performance of graphene-based materials still needs to be improved and the cost lowered. Some reports showed that oxygen functional groups, vacancy
PDF
Album
Full Research Paper
Published 13 Dec 2017

Fabrication of CeO2–MOx (M = Cu, Co, Ni) composite yolk–shell nanospheres with enhanced catalytic properties for CO oxidation

  • Ling Liu,
  • Jingjing Shi,
  • Hongxia Cao,
  • Ruiyu Wang and
  • Ziwu Liu

Beilstein J. Nanotechnol. 2017, 8, 2425–2437, doi:10.3762/bjnano.8.241

Graphical Abstract
  • (CeO2) has attracted a great deal of research attention due to its high oxygen storage capacity (OSC) and good redox properties [1][2][3]. Because of these unique characteristics, CeO2 has been widely used as environmental catalysts for the removal of harmful pollutants from exhaust gases, such as
PDF
Album
Full Research Paper
Published 16 Nov 2017
Other Beilstein-Institut Open Science Activities