Search results

Search for "membrane" in Full Text gives 383 result(s) in Beilstein Journal of Organic Chemistry. Showing first 200.

Intermediates and shunt products of massiliachelin biosynthesis in Massilia sp. NR 4-1

  • Till Steinmetz,
  • Blaise Kimbadi Lombe and
  • Markus Nett

Beilstein J. Org. Chem. 2023, 19, 909–917, doi:10.3762/bjoc.19.69

Graphical Abstract
  • into the cell through membrane receptors and transporters. Eventually, the bound metal is released through reductive or hydrolytic mechanisms [2]. In the past years, β-proteobacteria have received increasing attention as producers of siderophores with interesting chemical features. For instance
PDF
Album
Supp Info
Full Research Paper
Published 23 Jun 2023

Phenanthridine–pyrene conjugates as fluorescent probes for DNA/RNA and an inactive mutant of dipeptidyl peptidase enzyme

  • Josipa Matić,
  • Tana Tandarić,
  • Marijana Radić Stojković,
  • Filip Šupljika,
  • Zrinka Karačić,
  • Ana Tomašić Paić,
  • Lucija Horvat,
  • Robert Vianello and
  • Lidija-Marija Tumir

Beilstein J. Org. Chem. 2023, 19, 550–565, doi:10.3762/bjoc.19.40

Graphical Abstract
  • in the cell membrane. Keywords: dipeptidyl peptidase enzyme; excimer; molecular dynamics simulations; phenanthridine; polynucleotide; pyrene; Introduction The design of small molecules that can selectively bind and discriminate different biomolecular structures (polynucleotides vs proteins, DNA or
  • membrane (Figure S26, Supporting Information File 1). The compound showed not to be toxic to the HeLa cells as no visible damage was detected. Interactions of Phen-Py-1 and Phen-Py-2 with ds-polynucleotides and enzyme dipeptidyl peptidase III in an aqueous medium Interactions of Phen-Py-1 and Phen-Py-2
PDF
Album
Supp Info
Full Research Paper
Published 26 Apr 2023

Recommendations for performing measurements of apparent equilibrium constants of enzyme-catalyzed reactions and for reporting the results of these measurements

  • Robert N. Goldberg,
  • Robert T. Giessmann,
  • Peter J. Halling,
  • Carsten Kettner and
  • Hans V. Westerhoff

Beilstein J. Org. Chem. 2023, 19, 303–316, doi:10.3762/bjoc.19.26

Graphical Abstract
  • units used. All important aspects of the reactants, the reaction, and the catalyst should be included in the discussion, e.g., if reactants are bound to a membrane or surface or in equilibrium with a solid. 3.5. Definition of equilibrium constants and specification of standard states Attention to
PDF
Album
Perspective
Published 15 Mar 2023

Insight into oral amphiphilic cyclodextrin nanoparticles for colorectal cancer: comprehensive mathematical model of drug release kinetic studies and antitumoral efficacy in 3D spheroid colon tumors

  • Sedat Ünal,
  • Gamze Varan,
  • Juan M. Benito,
  • Yeşim Aktaş and
  • Erem Bilensoy

Beilstein J. Org. Chem. 2023, 19, 139–157, doi:10.3762/bjoc.19.14

Graphical Abstract
  • charge upon chitosan coating enhances this membrane binding ability. However, there was no significant difference in IC50 values against HT29 cells between 6-O-capro-β-CD and CS-(6-O-capro-β-CD) groups. Due to the increased biological membrane interaction, the amount of drug transported into the cell may
  • aliphatic groups on the surfaces of CD derivatives play a direct role in the interaction time with the cell and cell membrane components [50]. It is well established that positively charged nanoparticles interact with the cell membrane more favorably than negatively charged ones. However, their passing
  • through the cell membrane is challenging because of the agglomeration of positive charge on the cell membrane [51]. This knowledge might explain why the 6-O-capro-β-CD nanoparticle IC50 values are lower at 48 hours than those of the poly-β-CD-C6 nanoparticles. Besides, chitosan coating on nanoparticles
PDF
Album
Full Research Paper
Published 13 Feb 2023

Revisiting the bromination of 3β-hydroxycholest-5-ene with CBr4/PPh3 and the subsequent azidolysis of the resulting bromide, disparity in stereochemical behavior

  • Christian Schumacher,
  • Jas S. Ward,
  • Kari Rissanen,
  • Carsten Bolm and
  • Mohamed Ramadan El Sayed Aly

Beilstein J. Org. Chem. 2023, 19, 91–99, doi:10.3762/bjoc.19.9

Graphical Abstract
  • –517. Keywords: Appel reaction; azidolysis; cholesterol; crystal structure; Walden inversion; Introduction 3β-Hydroxycholest-5-ene (cholesterol) is a structural and physiologic amphipathic steroid in human and animals as well. Cholesterol is an essential component of the plasma membrane, where it
  • butter provide the body with its daily needs of cholesterol. In addition, hepatocyctes synthesize cholesterol through the mevalonate pathway. Dietary cholesterol is absorbed into the blood stream through a specific membrane bound protein named Niemann-Pick C1-Like 1 (NPC1L1) on the gastrointestinal tract
PDF
Album
Supp Info
Full Research Paper
Published 27 Jan 2023

Digyalipopeptide A, an antiparasitic cyclic peptide from the Ghanaian Bacillus sp. strain DE2B

  • Adwoa P. Nartey,
  • Aboagye K. Dofuor,
  • Kofi B. A. Owusu,
  • Anil S. Camas,
  • Hai Deng,
  • Marcel Jaspars and
  • Kwaku Kyeremeh

Beilstein J. Org. Chem. 2022, 18, 1763–1771, doi:10.3762/bjoc.18.185

Graphical Abstract
  • hydrophilic biological environments. Repeated studies on the bioactivity of lipopeptides have shown that the primary mechanism of action of these peptides involves interactions with the double layer of lipids and proteins that constitute the cell membrane [24][25][26]. This mechanism of action is important
PDF
Album
Supp Info
Full Research Paper
Published 28 Dec 2022

Inline purification in continuous flow synthesis – opportunities and challenges

  • Jorge García-Lacuna and
  • Marcus Baumann

Beilstein J. Org. Chem. 2022, 18, 1720–1740, doi:10.3762/bjoc.18.182

Graphical Abstract
  • factors to consider [50]. In addition, these membranes are available in different sizes, and they can operate in series to improve separation. Some examples using them in a counter-current way and their application as solvent swap technology are also discussed below. Though examples of using membrane
  • to another step. At this stage it appears that almost all reports use membrane separators at lab scale, which is a limitation of these membranes. Industrial applications often seek to intensify the workup process whereby an aqueous quench might be combined with an extraction, which necessitates
  • membrane-based liquid–liquid separators the ability to gradually adjust the pH of the crude material stands out as an option to enable continuous purification. Though this approach does not apply to all substrates, it allows for tuning of parameters and sequential removal of impurities. Thorough
PDF
Album
Perspective
Published 16 Dec 2022

Using UHPLC–MS profiling for the discovery of new sponge-derived metabolites and anthelmintic screening of the NatureBank bromotyrosine library

  • Sasha Hayes,
  • Aya C. Taki,
  • Kah Yean Lum,
  • Joseph J. Byrne,
  • Merrick G. Ekins,
  • Robin B. Gasser and
  • Rohan A. Davis

Beilstein J. Org. Chem. 2022, 18, 1544–1552, doi:10.3762/bjoc.18.164

Graphical Abstract
  • ][36]. The psammaplysin structure class has also had antimalarial [28], cytotoxicity [37] and antimicrobial data reported, albeit with low to moderate potencies [7]. More recently psammaplysin F and several semi-synthetic analogues have been shown to cause loss of mitochondrial membrane potential
PDF
Album
Supp Info
Full Research Paper
Published 15 Nov 2022

Molecular and macromolecular electrochemistry: synthesis, mechanism, and redox properties

  • Shinsuke Inagi and
  • Mahito Atobe

Beilstein J. Org. Chem. 2022, 18, 1505–1506, doi:10.3762/bjoc.18.158

Graphical Abstract
  • , polymer electrolyte membrane electrolysis technology, and new methods coupled with photoredox catalysts or transition metal catalysis, resulting in remarkable progress in organic electrosynthetic processes. Theoretical calculations have also led to a better understanding of the electron transfer behavior
PDF
Editorial
Published 26 Oct 2022

Make or break: the thermodynamic equilibrium of polyphosphate kinase-catalysed reactions

  • Michael Keppler,
  • Sandra Moser,
  • Henning J. Jessen,
  • Christoph Held and
  • Jennifer N. Andexer

Beilstein J. Org. Chem. 2022, 18, 1278–1288, doi:10.3762/bjoc.18.134

Graphical Abstract
  • model enzymes for PPK1 and PPK2 [9][10]. From a structure perspective, PPK1 enzymes form tetramers in solution with a mass of approximately 80 kDa for the monomer (Figure 2b). Although not being an integral membrane protein, the enzyme is described to be membrane-associated [11][12][13]. The phosphate
  • , clearly demonstrating the necessity of the residues for catalysis [14]. PPK2-I enzymes are of lower molecular weight than their PPK1 counterparts, with an approximate molecular mass of 40 kDa for a monomer (Figure 2c) [5]. They form dimers or tetramers in solution and are not purified from membrane
PDF
Album
Supp Info
Full Research Paper
Published 20 Sep 2022

Synthesis of tryptophan-dehydrobutyrine diketopiperazine and biological activity of hangtaimycin and its co-metabolites

  • Houchao Xu,
  • Anne Wochele,
  • Minghe Luo,
  • Gregor Schnakenburg,
  • Yuhui Sun,
  • Heike Brötz-Oesterhelt and
  • Jeroen S. Dickschat

Beilstein J. Org. Chem. 2022, 18, 1159–1165, doi:10.3762/bjoc.18.120

Graphical Abstract
  • growth occurred up to the highest concentration tested (256 µg/mL). In the Gram-negative Escherichia coli, the outer membrane protects the cells from the impact of 1. When the integrity of the outer membrane was compromised by adding the outer-membrane permeabilizing polymyxin B nonapeptide (PMBN, 10 μg
  • lowest concentration of an antibacterial agent inhibiting visible bacterial growth (no turbidity detected by the naked eye) after overnight incubation. Only when the outer membrane was permeabilised by polymyxin B nonapeptide (PMBN), 1 inhibited growth of E. coli sufficiently to yield a clear MIC. GC
PDF
Album
Supp Info
Letter
Published 07 Sep 2022

Electrochemical hydrogenation of enones using a proton-exchange membrane reactor: selectivity and utility

  • Koichi Mitsudo,
  • Haruka Inoue,
  • Yuta Niki,
  • Eisuke Sato and
  • Seiji Suga

Beilstein J. Org. Chem. 2022, 18, 1055–1061, doi:10.3762/bjoc.18.107

Graphical Abstract
  • proton-exchange membrane reactor is described. The reduction of enones proceeded smoothly under mild conditions to afford ketones or alcohols. The reaction occurred chemoselectively with the use of different cathode catalysts (Pd/C or Ir/C). Keywords: enone; hydrogenation; iridium; palladium; PEM
  • hydrogenation of enones using homogeneous and heterogeneous catalysts. Meanwhile, electrochemical systems using a proton-exchange membrane (PEM) reactor have been shown to be powerful tools for electrochemical hydrogenation [2][3][4][5][6][7][8][9][10][11][12][13][14][15][16][17][18][19][20][21]. A PEM reactor
  • consists of a membrane called a membrane electrode assembly (MEA), which can act as supporting electrolyte, electrode, and heterogeneous catalyst. Therefore, the further addition of a supporting electrolyte is not necessary for the electrochemical reactions using a PEM reactor, which offers clean and
PDF
Album
Supp Info
Full Research Paper
Published 19 Aug 2022

New azodyrecins identified by a genome mining-directed reactivity-based screening

  • Atina Rizkiya Choirunnisa,
  • Kuga Arima,
  • Yo Abe,
  • Noritaka Kagaya,
  • Kei Kudo,
  • Hikaru Suenaga,
  • Junko Hashimoto,
  • Manabu Fujie,
  • Noriyuki Satoh,
  • Kazuo Shin-ya,
  • Kenichi Matsuda and
  • Toshiyuki Wakimoto

Beilstein J. Org. Chem. 2022, 18, 1017–1025, doi:10.3762/bjoc.18.102

Graphical Abstract
  • suggest their participation in this step. Ady6 shows weak homology to DUF4260 (PF14079.9), a family of integral membrane proteins with unknown functions, while Ady8 is similar to the ferritin-like superfamily protein (IPR009078). Ady6/Ady8 are homologous to VlmO/VlmB and SRO_1835/SRO_1837 in the
PDF
Album
Supp Info
Full Research Paper
Published 10 Aug 2022

Isolation and biosynthesis of daturamycins from Streptomyces sp. KIB-H1544

  • Yin Chen,
  • Jinqiu Ren,
  • Ruimin Yang,
  • Jie Li,
  • Sheng-Xiong Huang and
  • Yijun Yan

Beilstein J. Org. Chem. 2022, 18, 1009–1016, doi:10.3762/bjoc.18.101

Graphical Abstract
  • , 20 mM imidazole, pH 8.0). After ultrasonic cell crushing, the cells were centrifuged at 24,000 rpm for 60 min to remove cell fragments. The supernatant was filtered through 0.22 μm of the filter membrane and then loaded into the nickel column of the rebalanced lysate (HisTraqTM FF, GE Healthcare
PDF
Album
Supp Info
Full Research Paper
Published 09 Aug 2022

First example of organocatalysis by cathodic N-heterocyclic carbene generation and accumulation using a divided electrochemical flow cell

  • Daniele Rocco,
  • Ana A. Folgueiras-Amador,
  • Richard C. D. Brown and
  • Marta Feroci

Beilstein J. Org. Chem. 2022, 18, 979–990, doi:10.3762/bjoc.18.98

Graphical Abstract
  • from the anodic electroactivity of the electrogenerated carbene. In order to have NHC accumulation in the catholyte, the Nafion membrane (cell separator) was pretreated with an alkaline solution. The formation of NHC was quantified as its reaction product with elemental sulfur. The NHC was successfully
  • -permeable membrane (Nafion® 438) was inserted to separate the cathode and anode chambers, and a spacer was used on each compartment [36]. The initial goal of this work was to demonstrate the possibility to achieve NHC formation starting from 1-butyl-3-methylimidazolium tetrafluoroborate (BMImBF4), by
  • membrane, under N2 atmosphere, at room temperature, under galvanostatic conditions (I = 134 mA) with continuous flow rate of 36 mL/min, studying the effect of cathode material, anode solution and number of Faradays per mole of IL supplied (Table 1). At the end of the electrolysis, excess elemental sulfur
PDF
Album
Full Research Paper
Published 05 Aug 2022

Synthesis of odorants in flow and their applications in perfumery

  • Merlin Kleoff,
  • Paul Kiler and
  • Philipp Heretsch

Beilstein J. Org. Chem. 2022, 18, 754–768, doi:10.3762/bjoc.18.76

Graphical Abstract
  • and, thus, a large interface between the phases. Subsequently, the biphasic system is directly separated, employing a PTFE membrane separator, to afford a solution of isoamyl acetate in n-heptane, while the aqueous layer containing the lipase could be recycled. At 60 °C with a residence time of 8.6
  • formation of hydrazone 28. As one equivalent of water is formed in this condensation process, which is detrimental for the subsequent Shapiro reaction, water is continuously removed by in-line separation of the reaction mixture using a PTFE-membrane separator. The organic layer is then mixed with a solution
  • %. Thus, Brenna and co-workers developed a cis-selective synthesis of 54 via a biocatalytic process in flow (Scheme 12) [45]. In the first step, a mixture of cyclohexanone 51, NADH, and isopropanol in an aqueous phosphate buffer (pH ≈ 7) is pumped through a continuously stirred membrane reactor at 30 °C
PDF
Album
Review
Published 27 Jun 2022

Identification of the new prenyltransferase Ubi-297 from marine bacteria and elucidation of its substrate specificity

  • Jamshid Amiri Moghaddam,
  • Huijuan Guo,
  • Karsten Willing,
  • Thomas Wichard and
  • Christine Beemelmanns

Beilstein J. Org. Chem. 2022, 18, 722–731, doi:10.3762/bjoc.18.72

Graphical Abstract
  • binding abilities to target proteins [3]. The prenylation reaction, most often a C–C-bond-forming step between an aromatic acceptor moiety and a prenyl chain, is catalyzed by dedicated dominantly membrane-bound prenyltransferases (Ptases) [4][5][6][7]. Ptases belonging to the UbiA-superfamily are
  • % pairwise identity) displayed similarities to geranylgeranylglyceryl phosphate synthases (EC 2.5.1.42), which are involved in the formation of polar membrane lipids of archaea and other bacteria [20], while group G4 contained close homologs of the protoheme IX farnesyltransferase (EC 2.5.1.141) (23–100
  • (33% identity) and a 4-hydroxybenzoate octaprenyltransferase (ubiquinone-8 (UQ-8), 23% identity) from Shewanella woodyi ATCC 51908. Additionally, UbiA-297 showed sequence identity to a membrane-bound Ptase from the plant Avena sativa (31%) [26]. We then compared the genetic environment of the coding
PDF
Album
Supp Info
Full Research Paper
Published 22 Jun 2022

Structural basis for endoperoxide-forming oxygenases

  • Takahiro Mori and
  • Ikuro Abe

Beilstein J. Org. Chem. 2022, 18, 707–721, doi:10.3762/bjoc.18.71

Graphical Abstract
  • , including the epidermal growth factor (EGF) domain, the membrane binding domain, and the catalytic domain (Figure 2A) [46][47][48][49][50][51]. The catalytic domain possesses two active sites, the cyclooxygenase- and heme-dependent peroxidase-sites, which are physically separated. The peroxidase-site
  • activates the catalytic tyrosine residue, while the cyclooxygenase-site catalyzes the formation of di-peroxides. The active site of the peroxidase-site contains a heme cofactor in the solvent-exposed cleft on the opposite side of the membrane binding domain. Although the heme cofactor is located in the
PDF
Album
Review
Published 21 Jun 2022

Inductive heating and flow chemistry – a perfect synergy of emerging enabling technologies

  • Conrad Kuhwald,
  • Sibel Türkhan and
  • Andreas Kirschning

Beilstein J. Org. Chem. 2022, 18, 688–706, doi:10.3762/bjoc.18.70

Graphical Abstract
  • continuous process could be established by oxidation with molecular oxygen introduced into the reaction stream via a tube-in-tube membrane reactor, a process which should be very attractive for industrial applications, as oxygen or air act as cheap and environmentally friendly oxidants [82]. An interesting
  • diperoxide. The reaction mixture was then transferred to a continuous phase separator equipped with a semipermeable membrane, from where the organic phase was transferred to a stainless steel loop reactor. Here, the macrocyclic triperoxide 91 was subjected to pyrolysis at 270 °C. This was done by inductive
PDF
Album
Review
Published 20 Jun 2022

Shift of the reaction equilibrium at high pressure in the continuous synthesis of neuraminic acid

  • Jannis A. Reich,
  • Miriam Aßmann,
  • Kristin Hölting,
  • Paul Bubenheim,
  • Jürgen Kuballa and
  • Andreas Liese

Beilstein J. Org. Chem. 2022, 18, 567–579, doi:10.3762/bjoc.18.59

Graphical Abstract
  • (ECR8309F). For all immobilizations, a 20 mM sodium phosphate buffer with a pH of 7.4 was used as immobilization buffer. All filtration steps were executed using a membrane pump (Membrane pump ME 2C NT, Vacuubrandt GMBH & Co. KG, Wertheim, Germany) with bottle topper filter (Nalgene™, Thermo Fisher
  • Scientific GmbH, Schwerte, Germany), and membrane filters (3 µm) (Sartorius AG, Göttingen, Germany). The carriers were equilibrated with immobilization buffer at a carrier to buffer ratio of 1:1 (w/v). For the amino methacrylate carrier (ECR8309F), a further step of activation was performed with 2
PDF
Album
Full Research Paper
Published 20 May 2022

Tetraphenylethylene-embedded pillar[5]arene-based orthogonal self-assembly for efficient photocatalysis in water

  • Zhihang Bai,
  • Krishnasamy Velmurugan,
  • Xueqi Tian,
  • Minzan Zuo,
  • Kaiya Wang and
  • Xiao-Yu Hu

Beilstein J. Org. Chem. 2022, 18, 429–437, doi:10.3762/bjoc.18.45

Graphical Abstract
  • chemical energy [4][5][6]. Mainly, both antenna molecules and proteins on the thylakoid membrane are combined to form a light-harvesting system through noncovalent interactions. Inspired by photosynthesis, extensive research has been devoted to construct energy transfer systems for the better utilization
PDF
Album
Supp Info
Full Research Paper
Published 13 Apr 2022

Menadione: a platform and a target to valuable compounds synthesis

  • Acácio S. de Souza,
  • Ruan Carlos B. Ribeiro,
  • Dora C. S. Costa,
  • Fernanda P. Pauli,
  • David R. Pinho,
  • Matheus G. de Moraes,
  • Fernando de C. da Silva,
  • Luana da S. M. Forezi and
  • Vitor F. Ferreira

Beilstein J. Org. Chem. 2022, 18, 381–419, doi:10.3762/bjoc.18.43

Graphical Abstract
  • (DNA and RNA), enzymes, structural proteins, and cell membrane lipids. These effects can lead to dysfunctions that activate the apoptosis process resulting in cell death [42][43][44][45][46]. In addition to participating in redox cycles as biomolecules in various biochemical processes, the 1,4
PDF
Album
Review
Published 11 Apr 2022

Flow synthesis of oxadiazoles coupled with sequential in-line extraction and chromatography

  • Kian Donnelly and
  • Marcus Baumann

Beilstein J. Org. Chem. 2022, 18, 232–239, doi:10.3762/bjoc.18.27

Graphical Abstract
  • ], however, many of them involve the use of expensive and complex membrane filters. To reduce cost and increase simplicity we opted to use a ‘home-made’ setup to achieve continuous separation which consisted of a laboratory separating funnel, into which we collect the biphasic reaction output following
PDF
Album
Supp Info
Full Research Paper
Published 25 Feb 2022

1,2-Naphthoquinone-4-sulfonic acid salts in organic synthesis

  • Ruan Carlos B. Ribeiro,
  • Patricia G. Ferreira,
  • Amanda de A. Borges,
  • Luana da S. M. Forezi,
  • Fernando de Carvalho da Silva and
  • Vitor F. Ferreira

Beilstein J. Org. Chem. 2022, 18, 53–69, doi:10.3762/bjoc.18.5

Graphical Abstract
  • cause several damages to its components, such as carbohydrates, lipids, membrane components, and enzymes that are critical for DNA replication [9][10][11][12]. Most synthetic strategies toward naphthoquinones with potential biological activity start from natural and synthetic naphthoquinones, inserting
PDF
Album
Review
Published 05 Jan 2022

Peptide stapling by late-stage Suzuki–Miyaura cross-coupling

  • Hendrik Gruß,
  • Rebecca C. Feiner,
  • Ridhiwan Mseya,
  • David C. Schröder,
  • Michał Jewgiński,
  • Kristian M. Müller,
  • Rafał Latajka,
  • Antoine Marion and
  • Norbert Sewald

Beilstein J. Org. Chem. 2022, 18, 1–12, doi:10.3762/bjoc.18.1

Graphical Abstract
  • –Miyaura cross-coupling; Introduction Peptide cyclisation emerged as a popular approach to limit conformational mobility in order to enhance the binding affinity towards a biological target. Moreover, cyclic peptides are more stable against proteolytic digestion and can provide an improved membrane
PDF
Album
Supp Info
Full Research Paper
Published 03 Jan 2022
Other Beilstein-Institut Open Science Activities