Search results

Search for "transformations" in Full Text gives 1163 result(s) in Beilstein Journal of Organic Chemistry. Showing first 200.

Computation-guided scaffold exploration of 2E,6E-1,10-trans/cis-eunicellanes

  • Zining Li,
  • Sana Jindani,
  • Volga Kojasoy,
  • Teresa Ortega,
  • Erin M. Marshall,
  • Khalil A. Abboud,
  • Sandra Loesgen,
  • Dean J. Tantillo and
  • Jeffrey D. Rudolf

Beilstein J. Org. Chem. 2024, 20, 1320–1326, doi:10.3762/bjoc.20.115

Graphical Abstract
  • -eunicellane skeletons, respectively. Although the structures of these diterpenes only differed in their configuration at a single position, C1, they displayed distinct chemical and thermal reactivities. Here, we used a combination of quantum chemical calculations and chemical transformations to probe their
  • when the C6–C7 alkene of 2 was oxidized by mCPBA oxidation, resulting in formation of the gersemianol derivative 8 [7]. Inspired by the reactivity of the trans-eunicellane skeleton, we conducted a series of chemical transformations to convert 2 into trans/trans-6/6/6 bicyclic skeletons with various
  • appears to be the dominant form in nature (≈98%). Perhaps the inherent reactivity seen for 2E-trans-eunicellanes contributes to their presumed rarity in nature, as certain conditions or transformations, either enzymatic or spontaneous, may alter the hydrocarbon skeleton. This idea is supported by the
PDF
Album
Supp Info
Full Research Paper
Published 07 Jun 2024
Graphical Abstract
  • second step of this reaction, regio- and stereochemically controlled intramolecular cyclization leads to the formation of versatile nitrogen-containing tricyclic systems. However, these useful organic transformations are usually carried out in highly toxic organic solvents such as benzene, toluene
  • prediction that their resources will run out in the near future has led 'green chemists' to explore solvents that can be derived from renewable resources and used effectively in various organic transformations. In this context, we have shown for the first time that the 100% atom-economical tandem Diels–Alder
  • applications [15][16]. These oils are of increasing interest for the production of a wide range of polymeric materials [17][18][19][20][21][22][23], drug delivery systems [24][25][26][27][28][29], less toxic anticancer drugs [30][31][32][33] and intermediates suitable for various organic transformations [14
PDF
Album
Supp Info
Full Research Paper
Published 06 Jun 2024

Oxidative hydrolysis of aliphatic bromoalkenes: scope study and reactivity insights

  • Amol P. Jadhav and
  • Claude Y. Legault

Beilstein J. Org. Chem. 2024, 20, 1286–1291, doi:10.3762/bjoc.20.111

Graphical Abstract
  • alternative reaction pathway. Keywords: bromoalkenes; bromoketones; hypervalent iodine; oxidative hydrolysis; Ritter-type; Introduction Organic synthesis heavily relies on oxidative transformations to facilitate chemical reactions. One popular method for achieving these transformations is using redox-active
  • transformations, cementing their position as a go-to option for organic chemists. Based on our continued interest in iodine(III)-mediated chemistry, we have explored numerous strategies in oxidative transformations such as direct α-tosyloxylation of ketones [12][13][14], and the oxidation of enol esters [15][16
PDF
Album
Supp Info
Letter
Published 03 Jun 2024

The Ugi4CR as effective tool to access promising anticancer isatin-based α-acetamide carboxamide oxindole hybrids

  • Carolina S. Marques,
  • Aday González-Bakker and
  • José M. Padrón

Beilstein J. Org. Chem. 2024, 20, 1213–1220, doi:10.3762/bjoc.20.104

Graphical Abstract
  • aspects. Multicomponent reactions (MCRs) are remarkable tools which demonstrated great potential for more sustainable production of active pharmaceutical ingredients (API’s). These flexible and versatile one-pot transformations in which three or more reagents are combined to access a new complex scaffold
PDF
Album
Supp Info
Full Research Paper
Published 27 May 2024

Bismuth(III) triflate: an economical and environmentally friendly catalyst for the Nazarov reaction

  • Manoel T. Rodrigues Jr.,
  • Aline S. B. de Oliveira,
  • Ralph C. Gomes,
  • Amanda Soares Hirata,
  • Lucas A. Zeoly,
  • Hugo Santos,
  • João Arantes,
  • Catarina Sofia Mateus Reis-Silva,
  • João Agostinho Machado-Neto,
  • Leticia Veras Costa-Lotufo and
  • Fernando Coelho

Beilstein J. Org. Chem. 2024, 20, 1167–1178, doi:10.3762/bjoc.20.99

Graphical Abstract
  • synthesis has been reported for several transformations, such as epoxide opening [56], ketal formation and deprotection [57][58], Mannich reaction [59], intramolecular Sakurai cyclization [60], alcohol oxidation [61], aromatic hydrocarbon nitration [62], imine allylation [63], Knoevenagel condensation [64
PDF
Album
Supp Info
Full Research Paper
Published 21 May 2024

Manganese-catalyzed C–C and C–N bond formation with alcohols via borrowing hydrogen or hydrogen auto-transfer

  • Mohd Farhan Ansari,
  • Atul Kumar Maurya,
  • Abhishek Kumar and
  • Saravanakumar Elangovan

Beilstein J. Org. Chem. 2024, 20, 1111–1166, doi:10.3762/bjoc.20.98

Graphical Abstract
  • Milstein [17] in hydrogenation and dehydrogenation reactions with pincer-decorated manganese complexes, significant progress has been made in manganese catalysis [18][19][20]. Notably, well-defined low-valent diamagnetic manganese(I) complexes have been studied in many catalytic transformations, and
PDF
Album
Review
Published 21 May 2024

Synthesis of 1,4-azaphosphinine nucleosides and evaluation as inhibitors of human cytidine deaminase and APOBEC3A

  • Maksim V. Kvach,
  • Stefan Harjes,
  • Harikrishnan M. Kurup,
  • Geoffrey B. Jameson,
  • Elena Harjes and
  • Vyacheslav V. Filichev

Beilstein J. Org. Chem. 2024, 20, 1088–1098, doi:10.3762/bjoc.20.96

Graphical Abstract
  • kinetic data using Lambert’s W function [71]. This method provides better estimates for the Michaelis–Menten constant (KM) and maximum velocity (Vmax) than nonlinear regression analysis of the initial rate (V0). It is also superior to any of the known linearised transformations of the Michaelis–Menten
  • equation, such as Lineweaver–Burk, Hanes–Woolf and Eadie–Hofstee transformations [71]. Then, KM for the substrate and Ki for each inhibitor were calculated, assuming competitive nature of the inhibitors (Table 1). Initially, we performed this assay in 50 mM sodium phosphate buffer at pH 7.4 (25 °C) and
PDF
Album
Supp Info
Full Research Paper
Published 15 May 2024

Mild and efficient synthesis and base-promoted rearrangement of novel isoxazolo[4,5-b]pyridines

  • Vladislav V. Nikol’skiy,
  • Mikhail E. Minyaev,
  • Maxim A. Bastrakov and
  • Alexey M. Starosotnikov

Beilstein J. Org. Chem. 2024, 20, 1069–1075, doi:10.3762/bjoc.20.94

Graphical Abstract
  • -b]pyridine took place, followed by a base-promoted decarbonylation/isoxazole ring opening. Such transformations have been previously reported for benzo[d]isoxazoles with a carbonyl or carboxyl group in position 3 or 3-unsubstituted benzo[d]isoxazoles [25][26][27][28][29]. This means that the formyl
PDF
Album
Supp Info
Full Research Paper
Published 14 May 2024

Carbonylative synthesis and functionalization of indoles

  • Alex De Salvo,
  • Raffaella Mancuso and
  • Xiao-Feng Wu

Beilstein J. Org. Chem. 2024, 20, 973–1000, doi:10.3762/bjoc.20.87

Graphical Abstract
  • synthesis of a set of 12 desired products. These included an ethyl ester and a carboxylic acid, and were all obtained in good yields of up to 99% (Scheme 45). Conclusion We have summarized the importance of carbon monoxide as C1 building block to promote different kinds of transformations to synthesize and
PDF
Album
Review
Published 30 Apr 2024

Enhancing structural diversity of terpenoids by multisubstrate terpene synthases

  • Min Li and
  • Hui Tao

Beilstein J. Org. Chem. 2024, 20, 959–972, doi:10.3762/bjoc.20.86

Graphical Abstract
  • combinatorial biosynthesis. An important review published previously comprehensively addressed the transformation of synthetic prenyl-substrate analogs by TSs as well as TS-mimicking chemical transformations [13]. In this review, we discuss representative MSTSs originating from different species that use
  • analogs have been synthesized to act as actual substrates of TSs to generate novel terpene skeletons, introduce reaction handles, and produce value-added compounds. A previous review has covered the advances of TS-catalyzed transformations of synthetic substrate analogs up to 2019 [13][42]. Here, we
PDF
Album
Review
Published 30 Apr 2024

Enantioselective synthesis of β-aryl-γ-lactam derivatives via Heck–Matsuda desymmetrization of N-protected 2,5-dihydro-1H-pyrroles

  • Arnaldo G. de Oliveira Jr.,
  • Martí F. Wang,
  • Rafaela C. Carmona,
  • Danilo M. Lustosa,
  • Sergei A. Gorbatov and
  • Carlos R. D. Correia

Beilstein J. Org. Chem. 2024, 20, 940–949, doi:10.3762/bjoc.20.84

Graphical Abstract
  • preclude chirality as in the transformation of a prochiral molecular entity into a chiral one [1]. It is a powerful and elegant strategy in asymmetric synthesis [2], which combined with the use of chiral ligands and transition-metal catalysts enabled many valuable transformations to increase molecular
PDF
Album
Supp Info
Full Research Paper
Published 29 Apr 2024

Three-component N-alkenylation of azoles with alkynes and iodine(III) electrophile: synthesis of multisubstituted N-vinylazoles

  • Jun Kikuchi,
  • Roi Nakajima and
  • Naohiko Yoshikai

Beilstein J. Org. Chem. 2024, 20, 891–897, doi:10.3762/bjoc.20.79

Graphical Abstract
  • performed in 68% and 74% yields, respectively (Scheme 4a). Furthermore, the iodanyl group on these products serves as a versatile handle for downstream transformations, thus allowing for the stereoselective preparation of various trisubstituted N-vinylazoles (Scheme 4b). Pd-catalyzed C–C couplings such as
  • other heteroatom nucleophiles is currently underway. Synthesis of N-vinylazoles. Scope of three-component N-alkenylation of azoles. Competition experiments and plausible reaction pathway. Preparative-scale reaction and product transformations. Reaction conditions: (a) Pd(PPh3)4, 4-MeOC6H4B(OH)2, Cs2CO3
PDF
Album
Supp Info
Full Research Paper
Published 22 Apr 2024

(Bio)isosteres of ortho- and meta-substituted benzenes

  • H. Erik Diepers and
  • Johannes C. L. Walker

Beilstein J. Org. Chem. 2024, 20, 859–890, doi:10.3762/bjoc.20.78

Graphical Abstract
  • , deiodination at the bridgehead position, and nucleophilic substitution at the alkyl chloride. From 1,2-BCP (±)-4, a variety of 1,2-BCPs were prepared through basic chemical transformations (Scheme 1B) [26]. Selective deprotection gave access to free alcohol-containing 1,2-BCPs (±)-5 and (±)-8. Oxidation and
  • alkenes including acrylates, vinyl sulfones, and acrylamides could all be incorporated and the number of accessible bifunctional 1,2-BCHs was increased further by chemical transformation (Scheme 3D) [35]. Among the reported transformations were reduction of the ketone (to (±)-34), hydrolysis of the
  • transformations. Additional bifunctional [2]-ladderanes were accessible by further synthetic manipulations (Scheme 16C) [63]. Acid 152 could be transformed into protected amine 153 by Curtius rearrangement and alcohol 155 through reduction. The [2]-ladderane scaffold was also shown to be tolerant of oxidising
PDF
Album
Review
Published 19 Apr 2024

Skeletal rearrangement of 6,8-dioxabicyclo[3.2.1]octan-4-ols promoted by thionyl chloride or Appel conditions

  • Martyn Jevric,
  • Julian Klepp,
  • Johannes Puschnig,
  • Oscar Lamb,
  • Christopher J. Sumby and
  • Ben W. Greatrex

Beilstein J. Org. Chem. 2024, 20, 823–829, doi:10.3762/bjoc.20.74

Graphical Abstract
  • described for the first time. The work builds upon the findings of the groups of Karban and Banwell, who described this type of ring transformation using DAST, with two new reagents for promoting the rearrangement reaction. This work adds to the growing set of transformations that are known for
  • 10a–c, preparation of 10d–f, and X-ray structure of 10e. Rearrangement reactions for 10a–f promoted by SOCl2. Reactions of allylic alcohols 15 and 18 with SOCl2. Appel reactions of dioxabicyclo[3.2.1]octan-4-ols 10a,e,f and 15. Some transformations for the skeletal rearrangement products 11a and 12a
PDF
Album
Supp Info
Full Research Paper
Published 16 Apr 2024

Synthesis of new representatives of A3B-type carboranylporphyrins based on meso-tetra(pentafluorophenyl)porphyrin transformations

  • Victoria M. Alpatova,
  • Evgeny G. Rys,
  • Elena G. Kononova and
  • Valentina A. Ol'shevskaya

Beilstein J. Org. Chem. 2024, 20, 767–776, doi:10.3762/bjoc.20.70

Graphical Abstract
  • synthesis and characterization of tris(carboranyl)porphyrins of A3B-type (where “B” corresponds to the substituent responsible for bioconjugate coupling) based on the transformations of 5,10,15,20-tetrakis(pentafluorophenyl)porphyrin which was used as a basic compound for the synthesis of new boronated
PDF
Album
Supp Info
Full Research Paper
Published 12 Apr 2024

Chemoenzymatic synthesis of macrocyclic peptides and polyketides via thioesterase-catalyzed macrocyclization

  • Senze Qiao,
  • Zhongyu Cheng and
  • Fuzhuo Li

Beilstein J. Org. Chem. 2024, 20, 721–733, doi:10.3762/bjoc.20.66

Graphical Abstract
  • .20.66 Abstract Chemoenzymatic strategies that combine synthetic and enzymatic transformations offer efficient approaches to yield target molecules, which have been increasingly employed in the synthesis of bioactive natural products. In the biosynthesis of macrocyclic nonribosomal peptides, polyketides
  • increase the ratio of intramolecular nucleophilic attack, resulting in macrocyclic products via preorganization of substrate and enzyme in an active conformation [17][18]. Chemoenzymatic strategies, which merge practical enzymatic transformations with modern organic synthetic methods to increase the
  • epoxidation with enzymatic macrocyclization in 2020 as shown in Scheme 8 [85]. According to their previous report [86], the production of fragments 61 was initiated by Evans’ asymmetric aldol and alcohol protection to generate 57. Six-step route transformations, including cross metathesis, afforded aldehyde
PDF
Album
Review
Published 04 Apr 2024

SOMOphilic alkyne vs radical-polar crossover approaches: The full story of the azido-alkynylation of alkenes

  • Julien Borrel and
  • Jerome Waser

Beilstein J. Org. Chem. 2024, 20, 701–713, doi:10.3762/bjoc.20.64

Graphical Abstract
  • can be found in bioactive molecules and have been tested in structure–activity relationship studies (Scheme 1A) [8][9][10]. Moreover, transformations have been developed to exploit the two functional groups simultaneously, for example through their intramolecular cyclization to form pyrroles in the
  • increase the yield of different transformations. Using fluoride scavenger such as TMSCl, TFAA or TMS2(O) led to similar or lower yields (Table 7, entries 3–5). We were pleased to see that in the presence of BF3·Et2O, 4a was obtained in 75% yield (Table 7, entry 6). Addition of a less acidic boron Lewis
PDF
Album
Supp Info
Commentary
Published 03 Apr 2024

Regioselective quinazoline C2 modifications through the azide–tetrazole tautomeric equilibrium

  • Dāgs Dāvis Līpiņš,
  • Andris Jeminejs,
  • Una Ušacka,
  • Anatoly Mishnev,
  • Māris Turks and
  • Irina Novosjolova

Beilstein J. Org. Chem. 2024, 20, 675–683, doi:10.3762/bjoc.20.61

Graphical Abstract
  • –tetrazole tautomeric equilibrium directs the nucleofugal sulfinate from the first step to replace chloride at the C2 position. This transformation is effective with quinazolines bearing electron-rich substituents. Therefore, the title transformations are demonstrated on the 6,7-dimethoxyquinazoline core
PDF
Album
Supp Info
Full Research Paper
Published 28 Mar 2024

Palladium-catalyzed three-component radical-polar crossover carboamination of 1,3-dienes or allenes with diazo esters and amines

  • Geng-Xin Liu,
  • Xiao-Ting Jie,
  • Ge-Jun Niu,
  • Li-Sheng Yang,
  • Xing-Lin Li,
  • Jian Luo and
  • Wen-Hao Hu

Beilstein J. Org. Chem. 2024, 20, 661–671, doi:10.3762/bjoc.20.59

Graphical Abstract
  • amines. Scale-up reactions and synthetic transformations. Reaction conditions: a) LiAlH4, THF, 0 °C; b) MeMgBr, THF, rt to reflux; c) NaOH, MeOH, 60 °C, d) EDCI, DMAP, BnNH2, DCM, rt; e) EDCI, DMAP, Et3N, HN(OMe)(Me)·HCl, DCM, rt; f) MeMgBr, THF, 0 °C to rt; g) Pd/C, HCO2NH4, 65 °C. For more details, see
PDF
Album
Supp Info
Full Research Paper
Published 27 Mar 2024

A laterally-fused N-heterocyclic carbene framework from polysubstituted aminoimidazo[5,1-b]oxazol-6-ium salts

  • Andrew D. Gillie,
  • Matthew G. Wakeling,
  • Bethan L. Greene,
  • Louise Male and
  • Paul W. Davies

Beilstein J. Org. Chem. 2024, 20, 621–627, doi:10.3762/bjoc.20.54

Graphical Abstract
  • seen with imidazolidines (cf. for IPr TEP[Ir] = 2050.2 cm−1) [34]. A benchmarking exercise was then performed looking at the reactivity of 13 compared against reaction of symmetrical IPrAuCl across a range of known gold-mediated transformations of alkynes featuring intermolecular attack [35
  • ) complex is catalytically competent across several transformations with excellent conversions at 1 mol % loading and with broadly comparable reactivity to IPrAuCl. Having validated the AImOx motif as a viable ligand platform for development, further elaboration and applications will be reported in due
PDF
Album
Supp Info
Letter
Published 18 Mar 2024

Entry to new spiroheterocycles via tandem Rh(II)-catalyzed O–H insertion/base-promoted cyclization involving diazoarylidene succinimides

  • Alexander Yanovich,
  • Anastasia Vepreva,
  • Ksenia Malkova,
  • Grigory Kantin and
  • Dmitry Dar’in

Beilstein J. Org. Chem. 2024, 20, 561–569, doi:10.3762/bjoc.20.48

Graphical Abstract
  • ) or a bromine atom. These transformations yield spiro-annulated O-heterocycles with succinimide ring, namely spiro-Δα,β-butenolides 2 and 3, tetrahydrofurans 4 and benzopyrans 5 (Scheme 1). Fragments of these oxygen-containing spiro-conjugated heterocycles are part of many important drugs and natural
  • -(bromomethyl)benzyl alcohol. Examples where a target spirocyclic product was not observed. Plausible mechanism of the transformations studied. Supporting Information Deposition numbers CCDC 2295111 (for 2a), 2308315 (for 3b), and 2305370 (for 4b) contain the supplementary crystallographic data for this paper
PDF
Album
Supp Info
Full Research Paper
Published 11 Mar 2024

Synthesis of photo- and ionochromic N-acylated 2-(aminomethylene)benzo[b]thiophene-3(2Н)-ones with a terminal phenanthroline group

  • Vladimir P. Rybalkin,
  • Sofiya Yu. Zmeeva,
  • Lidiya L. Popova,
  • Irina V. Dubonosova,
  • Olga Yu. Karlutova,
  • Oleg P. Demidov,
  • Alexander D. Dubonosov and
  • Vladimir A. Bren

Beilstein J. Org. Chem. 2024, 20, 552–560, doi:10.3762/bjoc.20.47

Graphical Abstract
  • the phenanthroline unit was also involved in a π–π-stacking interaction (blue plane–green plane in Figure 4), with the plane centroid–plane centroid distance being 3.6998(8) Å (plane shift 1.4919(17) Å, twist and fold angles 1.54° and 1.92°, respectively). Cation-induced transformations of the
PDF
Album
Supp Info
Full Research Paper
Published 11 Mar 2024

(E,Z)-1,1,1,4,4,4-Hexafluorobut-2-enes: hydrofluoroolefins halogenation/dehydrohalogenation cascade to reach new fluorinated allene

  • Nataliia V. Kirij,
  • Andrey A. Filatov,
  • Yurii L. Yagupolskii,
  • Sheng Peng and
  • Lee Sprague

Beilstein J. Org. Chem. 2024, 20, 452–459, doi:10.3762/bjoc.20.40

Graphical Abstract
  • -1,1,1,4,4,4-hexafluorobut-2-enes have been investigated. A simple, one-pot procedure for the preparation of a new allene (1,1,4,4,4-pentafluorobuta-1,2-diene) and some of its transformations is presented. Keywords: allenes; dehydrohalogenation; halogenation; 1,1,1,4,4,4-hexafluorobut-2-enes; isomerization
  • on an industrial scale [2]. These hydrofluoroolefins belong to the newest 4th generation of fluorocarbon refrigerants and are promising compounds and starting materials. Due to this, interest in the use of (E)- and (Z)-butenes 1a,b as synthons in various organic transformations has recently grown
  • -hexafluorobut-2-ene and an oxalamide hydrazone [17]. In the present study, we investigated the reactions of commercially available butenes 1a,b with halogens, as well as subsequent transformations of the resulting compounds. Results and Discussion In 1952 Haszeldine found that the reaction of bromine with (E
PDF
Album
Supp Info
Full Research Paper
Published 27 Feb 2024

Green and sustainable approaches for the Friedel–Crafts reaction between aldehydes and indoles

  • Periklis X. Kolagkis,
  • Eirini M. Galathri and
  • Christoforos G. Kokotos

Beilstein J. Org. Chem. 2024, 20, 379–426, doi:10.3762/bjoc.20.36

Graphical Abstract
  • and viability of these synthetic protocols, organic chemists have been opting towards the use of greener catalysts and solvents in drug development. Chemists dream to perform reactions under solvent-free conditions, which provide a greener approach towards organic transformations. Nowadays, the use of
  • solvent-free reaction conditions has been introduced as a popular alternative to common organic solvents for many different organic transformations. The lack of an organic solvent can result in improved yields and reaction rates, more facile work-up processes and reduced waste, which are among the goals
  • intriguing tool in the catalysis of various organic transformations that were previously considered unfeasible [89]. In 2003, the reaction of indoles with aldehydes and ketones under XB catalysis was reported by Bandgar and his research group utilizing I2 as the catalyst and acetonitrile as the optimum
PDF
Album
Review
Published 22 Feb 2024

Mechanisms for radical reactions initiating from N-hydroxyphthalimide esters

  • Carlos R. Azpilcueta-Nicolas and
  • Jean-Philip Lumb

Beilstein J. Org. Chem. 2024, 20, 346–378, doi:10.3762/bjoc.20.35

Graphical Abstract
  • many applications as radical precursors. Mechanistically, NHPI esters undergo a reductive decarboxylative fragmentation to provide a substrate radical capable of engaging in diverse transformations. Their reduction via single-electron transfer (SET) can occur under thermal, photochemical, or
  • reaction classes, we discuss the utility of the NHPI esters, with an eye towards their continued development in complexity-generating transformations. Keywords: decarboxylative couplings; mechanisms; NHPI-esters; radical reactions; Introduction The historical challenges of using radicals in synthetic
  • , leading to their strategic incorporation as "synthons" in modern organic chemistry, with complementary reactivity to more common polar reaction manifolds [12][13][14][15]. The utility of radicals has also been expanded through the recent development of transformations involving radical-polar crossover
PDF
Album
Perspective
Published 21 Feb 2024
Other Beilstein-Institut Open Science Activities