Search results

Search for "hydrogen peroxide" in Full Text gives 119 result(s) in Beilstein Journal of Organic Chemistry.

An uracil-linked hydroxyflavone probe for the recognition of ATP

  • Márton Bojtár,
  • Péter Zoltán Janzsó-Berend,
  • Dávid Mester,
  • Dóra Hessz,
  • Mihály Kállay,
  • Miklós Kubinyi and
  • István Bitter

Beilstein J. Org. Chem. 2018, 14, 747–755, doi:10.3762/bjoc.14.63

Graphical Abstract
  • alkaline hydrogen peroxide to obtain the clickable fluorophore. All new compounds were characterized by NMR and high-resolution mass spectrometry. Optical spectroscopy The solubility of the UHF probe was very poor in water which resulted in the decrease of fluorescence over time upon dilution from the
  • -hydroxy-7-propargyloxy-4H-chromen-4-one (3): Chalcone 2 (500 mg, 1.56 mmol) was dissolved in ethanol (25 mL) and sodium hydroxide (700 mg, 17.6 mmol, 11 equiv), dissolved in water (12.5 mL), was added. To the deep red solution was added 0.75 mL 30% hydrogen peroxide and the mixture was stirred at room
  • analytes were added in 0.3 mM concentration. Ratio of the fluorescence intensities at 540 nm, the samples were excited at 470 and 400 nm. The red curve represents the result of a non-linear fitting. Synthesis of UHF. (i) 4-Dimethylaminobenzaldehyde, DMF, NaOMe, rt, 17 h, (ii) hydrogen peroxide, NaOH
PDF
Album
Supp Info
Full Research Paper
Published 03 Apr 2018

Nanoreactors for green catalysis

  • M. Teresa De Martino,
  • Loai K. E. A. Abdelmohsen,
  • Floris P. J. T. Rutjes and
  • Jan C. M. van Hest

Beilstein J. Org. Chem. 2018, 14, 716–733, doi:10.3762/bjoc.14.61

Graphical Abstract
  • of glucose oxidase (GOx) to convert glucose into D-glucono-δ-lactone and hydrogen peroxide was the first step of the reaction (Scheme 3A); subsequently, myoglobin (Myo) employed the hydrogen peroxide produced to oxidize guaiacol to quinone and water (Scheme 3B). When the pH was below 7, the
PDF
Album
Review
Published 29 Mar 2018

Biocatalytic synthesis of the Green Note trans-2-hexenal in a continuous-flow microreactor

  • Morten M. C. H. van Schie,
  • Tiago Pedroso de Almeida,
  • Gabriele Laudadio,
  • Florian Tieves,
  • Elena Fernández-Fueyo,
  • Timothy Noël,
  • Isabel W. C. E. Arends and
  • Frank Hollmann

Beilstein J. Org. Chem. 2018, 14, 697–703, doi:10.3762/bjoc.14.58

Graphical Abstract
  • spectrophotometer, following the oxidation of ABTS (ε405 = 36,800 M−1 cm−1) by horseradish peroxidase (POD) at the expense of hydrogen peroxide. In general, 0.044 µM PeAAOx was used to convert 3 mM of trans-2-hex-2-enol. The hydrogen peroxide formed in this reaction was subsequently used to convert 2 mM of ABTS to
PDF
Album
Supp Info
Letter
Published 26 Mar 2018

One-pot preparation of 4-aryl-3-bromocoumarins from 4-aryl-2-propynoic acids with diaryliodonium salts, TBAB, and Na2S2O8

  • Teppei Sasaki,
  • Katsuhiko Moriyama and
  • Hideo Togo

Beilstein J. Org. Chem. 2018, 14, 345–353, doi:10.3762/bjoc.14.22

Graphical Abstract
  • [27], with R-CH=O/(n-Bu)4NBr (TBAB, cat.)/K2S2O8 at 90 °C [28], with ArSO2H/Eosin Y(cat.)/tert-butyl hydrogen peroxide (TBHP) at rt [29], and with ArSO2NHNH2/n-Bu4NI(cat.)/TBHP at 80 °C [30]. In addition, the formation of coumarins via the bromine-radical-mediated reaction of aryl 2-alkynoates with
PDF
Album
Supp Info
Full Research Paper
Published 05 Feb 2018

5-Aminopyrazole as precursor in design and synthesis of fused pyrazoloazines

  • Ranjana Aggarwal and
  • Suresh Kumar

Beilstein J. Org. Chem. 2018, 14, 203–242, doi:10.3762/bjoc.14.15

Graphical Abstract
  • pyrazolo[3,4-d]pyrimidine derivatives starting from 5-amino-4-cyanopyrazoles 208 (Scheme 57). 5-Amino-4-cyanopyrazole 208 was benzoylated with p-nitrobenzoyl chloride (209) and subsequently cyclized to pyrazolo[3,4-d]pyrimidine derivative 211 by refluxing in sodium hydroxide and hydrogen peroxide
PDF
Album
Review
Published 25 Jan 2018

Photocatalytic formation of carbon–sulfur bonds

  • Alexander Wimmer and
  • Burkhard König

Beilstein J. Org. Chem. 2018, 14, 54–83, doi:10.3762/bjoc.14.4

Graphical Abstract
  • radical anion then deprotonates the thiyl radical cation. Subsequent addition to the alkene yields the anti-Markovnikov radical intermediate. Radical addition to dioxygen leads finally to the β-ketosulfide, which subsequently is oxidized by the in situ generated hydrogen peroxide radical to the respective
  • β-ketosulfoxide. No additional sacrificial substrates are needed in order to regenerate the photocatalyst or for the oxidation of the sulfenyl intermediate to the respective sulfoxide moiety. Hydrogen peroxide, which is generated as a byproduct, directly is consumed by oxidizing the sulfide to the
PDF
Album
Review
Published 05 Jan 2018

Synthesis and photophysical properties of novel benzophospholo[3,2-b]indole derivatives

  • Mio Matsumura,
  • Mizuki Yamada,
  • Atsuya Muranaka,
  • Misae Kanai,
  • Naoki Kakusawa,
  • Daisuke Hashizume,
  • Masanobu Uchiyama and
  • Shuji Yasuike

Beilstein J. Org. Chem. 2017, 13, 2304–2309, doi:10.3762/bjoc.13.226

Graphical Abstract
  • ]indole 3 in 66% yield. Then, the chemical modification of the phosphorus atom of 3 was carried out and the results are shown in Scheme 2. The treatment of 3 with hydrogen peroxide, elemental sulfur, and elemental selenium afforded the corresponding phosphine oxide 4, sulfide 5, and selenide 6
PDF
Album
Supp Info
Letter
Published 30 Oct 2017

New bio-nanocomposites based on iron oxides and polysaccharides applied to oxidation and alkylation reactions

  • Daily Rodríguez-Padrón,
  • Alina M. Balu,
  • Antonio A. Romero and
  • Rafael Luque

Beilstein J. Org. Chem. 2017, 13, 1982–1993, doi:10.3762/bjoc.13.194

Graphical Abstract
  • supported iron oxide based catalytic systems [46] have been extensity reported to be active, stable and selective catalysts for the oxidation of alcohols with hydrogen peroxide. Specifically, the oxidation of benzyl alcohol to benzaldehyde has generated great interest in order to study the oxidation of
  • was measured at room temperature at low frequency (470 Hz) using a Bartington MS-2 instrument. Catalytic experiments The oxidation of benzyl alcohol to benzaldehyde was performed using 25 mg of catalyst, 0.2 mL of benzyl alcohol, 0.3 mL of hydrogen peroxide, and 2 mL of acetonitrile as the solvent
PDF
Album
Supp Info
Full Research Paper
Published 21 Sep 2017

Chiral phase-transfer catalysis in the asymmetric α-heterofunctionalization of prochiral nucleophiles

  • Johannes Schörgenhumer,
  • Maximilian Tiffner and
  • Mario Waser

Beilstein J. Org. Chem. 2017, 13, 1753–1769, doi:10.3762/bjoc.13.170

Graphical Abstract
  • -transfer reactions is hydrogen peroxide (H2O2). Unfortunately, the direct use of this base-chemical under asymmetric organocatalysis turned out to be rather tricky for α-hydroxylation reactions. One recent report by the Ooi group overcame some of the limitations by using H2O2 in combination with
PDF
Album
Review
Published 22 Aug 2017

The chemistry and biology of mycolactones

  • Matthias Gehringer and
  • Karl-Heinz Altmann

Beilstein J. Org. Chem. 2017, 13, 1596–1660, doi:10.3762/bjoc.13.159

Graphical Abstract
PDF
Album
Review
Published 11 Aug 2017

New electroactive asymmetrical chalcones and therefrom derived 2-amino- / 2-(1H-pyrrol-1-yl)pyrimidines, containing an N-[ω-(4-methoxyphenoxy)alkyl]carbazole fragment: synthesis, optical and electrochemical properties

  • Daria G. Selivanova,
  • Alexei A. Gorbunov,
  • Olga A. Mayorova,
  • Alexander N. Vasyanin,
  • Igor V. Lunegov,
  • Elena V. Shklyaeva and
  • Georgii G. Abashev

Beilstein J. Org. Chem. 2017, 13, 1583–1595, doi:10.3762/bjoc.13.158

Graphical Abstract
  • ethanolic media resulted in the formation of 1,3-diarylsubstituted prop-2-en-1-ones 6a,b [23]. Cyclization of chalcones 6a,b with guanidine sulfate followed by oxidation with hydrogen peroxide gave rise to 2-amino-4,6-disubstituted pyrimidines 7a,b [24]. 2-(1H-Pyrrol-1-yl)pyrimidines 8a,b were synthesized
PDF
Album
Supp Info
Full Research Paper
Published 10 Aug 2017

Urea–hydrogen peroxide prompted the selective and controlled oxidation of thioglycosides into sulfoxides and sulfones

  • Adesh Kumar Singh,
  • Varsha Tiwari,
  • Kunj Bihari Mishra,
  • Surabhi Gupta and
  • Jeyakumar Kandasamy

Beilstein J. Org. Chem. 2017, 13, 1139–1144, doi:10.3762/bjoc.13.113

Graphical Abstract
  • thioglycosides to corresponding glycosyl sulfoxides and sulfones is reported using urea–hydrogen peroxide (UHP). A wide range of glycosyl sulfoxides are selectively achieved using 1.5 equiv of UHP at 60 °C while corresponding sulfones are achieved using 2.5 equiv of UHP at 80 °C in acetic acid. Remarkably
  • , oxidation susceptible olefin functional groups were found to be stable during the oxidation of sulfide. Keywords: monosaccharides; oxidation; sulfones; sulfoxides; thioglycosides; urea–hydrogen peroxide; Introduction Organosulfur compounds such as sulfides, sulfoxides and sulfones are useful intermediates
  • , intolerance of other oxidation susceptible functional groups, etc. Thus, developing a mild and efficient method for the controlled oxidation of sulfides to corresponding glycosyl sulfoxides and sulfones, is of great interest. The utility of hydrogen peroxide–solid adducts in organic synthesis is well explored
PDF
Album
Supp Info
Full Research Paper
Published 13 Jun 2017

Adsorption of RNA on mineral surfaces and mineral precipitates

  • Elisa Biondi,
  • Yoshihiro Furukawa,
  • Jun Kawai and
  • Steven A. Benner

Beilstein J. Org. Chem. 2017, 13, 393–404, doi:10.3762/bjoc.13.42

Graphical Abstract
  • thousand other variables that might influence these results [32]. Mitigating this concern is the fact that the patterns of adsorbance were unchanged in these experiments whether or not the mineral was cleaned by treating with hydrogen peroxide or diluted acid. However, as a cautionary note, we point to the
  • , strontianite, and witherite, respectively). The magnesite specimen was from Minas Gerias, Brazil; the calcite was a specimen of "Iceland spar". The strontianite was obtained from the Minerva Mine in Illinois , and the witherite was obtained from Cave in Rock, Illinois. The specimens were washed with hydrogen
  • peroxide (30%) followed by water and then ethanol to remove potential organic surface contaminants. The samples were then dried in air while covered. To flat surfaces of the cleaned mineral were added droplets of an aqueous (unbuffered) solution of 5’-32P labeled 83-mer RNA (2 µL, 50 nM). This length was
PDF
Album
Full Research Paper
Published 01 Mar 2017

Total synthesis of a Streptococcus pneumoniae serotype 12F CPS repeating unit hexasaccharide

  • Peter H. Seeberger,
  • Claney L. Pereira and
  • Subramanian Govindan

Beilstein J. Org. Chem. 2017, 13, 164–173, doi:10.3762/bjoc.13.19

Graphical Abstract
  • employing a more nucleophilic and less basic reagent such as a lithium hydroxide/hydrogen peroxide mixture did not provide relief from the problem, but instead also produced a mixture of undesired products. Adjustments in the sequence of deprotection steps by first carrying out hydrogenolysis using Pd/C in
PDF
Album
Supp Info
Full Research Paper
Published 25 Jan 2017

Stereo- and regioselectivity of the hetero-Diels–Alder reaction of nitroso derivatives with conjugated dienes

  • Lucie Brulíková,
  • Aidan Harrison,
  • Marvin J. Miller and
  • Jan Hlaváč

Beilstein J. Org. Chem. 2016, 12, 1949–1980, doi:10.3762/bjoc.12.184

Graphical Abstract
  • transformation, hydrogen peroxide and m-CPBA are the most popular (see examples in Scheme 4). In the literature, the oxidation of hydroxylamines is described most frequently using Fe(III) salts, m-CPBA or TBAPI and the reaction is performed exclusively using a solid-phase synthetic approach (see examples in
  • chiral alkyl N-dienylpyroglutamates 190 with acylnitroso intermediates 191 generated through a Ru(II) or Ir(I)-catalyzed hydrogen peroxide oxidation of hydroxamic acids (Scheme 38) [143]. The Ru(II) complexes A–D have previously been reported [144] as efficient catalysts for the oxidation of hydroxamic
PDF
Album
Review
Published 01 Sep 2016

Rearrangements of organic peroxides and related processes

  • Ivan A. Yaremenko,
  • Vera A. Vil’,
  • Dmitry V. Demchuk and
  • Alexander O. Terent’ev

Beilstein J. Org. Chem. 2016, 12, 1647–1748, doi:10.3762/bjoc.12.162

Graphical Abstract
  • search for new synthetic methods for peroxides starting from carbonyl compounds, hydrogen peroxide, and hydroperoxides [121][122][123][124][125][126][127][128][129][130][131][132][133][134][135][136][137][138][139][140][141][142][143][144][145][146][147][148][149][150][151][152][153][154][155][156][157
  • Smith rearrangements are of interest in allyl hydroperoxide transformations. 1.1 Baeyer–Villiger oxidation The BV reaction is the oxidation of ketones or aldehydes A under the action of hydrogen peroxide, hydroperoxides, Caro’s acid (H2SO5), or organic peracids to yield esters, lactones, or carboxylic
  • . The BV oxidation is one of the most important reactions in organic chemistry because it produces lactones, which are useful synthetic products in polymer, agrochemical, and pharmaceutical industry. m-Chloroperbenzoic, peracetic, and perfluoroacetic acids, as well as hydrogen peroxide/protic acid
PDF
Album
Review
Published 03 Aug 2016

Biosynthesis of oxygen and nitrogen-containing heterocycles in polyketides

  • Franziska Hemmerling and
  • Frank Hahn

Beilstein J. Org. Chem. 2016, 12, 1512–1550, doi:10.3762/bjoc.12.148

Graphical Abstract
  • consumption of hydrogen peroxide. It has been shown that the AS is substrate tolerant and accepts different hydroxylation patterns as well as glycosylations on the chalcone A and B rings [154]. However, the oxidative half-reaction only occurs with chalcones and not with other aryl substrates like L-tyrosine
PDF
Album
Review
Published 20 Jul 2016

Automated glycan assembly of a S. pneumoniae serotype 3 CPS antigen

  • Markus W. Weishaupt,
  • Stefan Matthies,
  • Mattan Hurevich,
  • Claney L. Pereira,
  • Heung Sik Hahm and
  • Peter H. Seeberger

Beilstein J. Org. Chem. 2016, 12, 1440–1446, doi:10.3762/bjoc.12.139

Graphical Abstract
  • using a mixture of lithium hydroxide and hydrogen peroxide to avoid elimination reactions which are common for uronic acid methyl esters under strongly basic conditions [30][32]. In the next step, the remaining esters were removed employing sodium hydroxide in methanol. Finally, catalytic hydrogenation
PDF
Album
Supp Info
Full Research Paper
Published 12 Jul 2016

Interactions between 4-thiothymidine and water-soluble cyclodextrins: Evidence for supramolecular structures in aqueous solutions

  • Vito Rizzi,
  • Sergio Matera,
  • Paola Semeraro,
  • Paola Fini and
  • Pinalysa Cosma

Beilstein J. Org. Chem. 2016, 12, 549–563, doi:10.3762/bjoc.12.54

Graphical Abstract
  • , ROS (namely singlet oxygen, superoxide ions and hydrogen peroxide), generated via the excited state of the PS, destroy the PS itself. Because of this, the effort to preserve the PS is one of main issues. Regarding S4TdR, as a result of its photodynamic activity, the thiobase can be destroyed by a
PDF
Album
Supp Info
Full Research Paper
Published 21 Mar 2016

Aluminacyclopentanes in the synthesis of 3-substituted phospholanes and α,ω-bisphospholanes

  • Vladimir A. D’yakonov,
  • Alevtina L. Makhamatkhanova,
  • Rina A. Agliullina,
  • Leisan K. Dilmukhametova,
  • Tat’yana V. Tyumkina and
  • Usein M. Dzhemilev

Beilstein J. Org. Chem. 2016, 12, 406–412, doi:10.3762/bjoc.12.43

Graphical Abstract
  • dichlorophosphines (R′PCl2). Hydrogen peroxide oxidation and treatment with S8 of the synthesized phospholanes and α,ω-bisphospholanes afforded the corresponding 3-alkyl(aryl)-1-alkyl(phenyl)phospholane 1-oxides, 3-alkyl(aryl)-1-alkyl(phenyl)phospholane 1-sulfides, bisphospholane 1,1'-dioxides, and bisphospholane
  • regioisomers react in situ with phosphorus dihalides and hydrogen peroxide to afford 1-phenyl(alkyl)-2-arylphospholane oxides 7a–f and 1-phenyl(alkyl)-3-arylphospholane oxides 8a–f in 2:1 ratio in a 69–87% total yield (Table 2). The regioisomers were isolated by column chromatography (hexane/ethyl acetate
  • ]+): 277.4046; found: 277.4. Preparation of 3-alkyl(aryl)phospholane-1-oxides (general procedure) A 30% solution of hydrogen peroxide (0.7 mL, 6 mmol) was slowly added dropwise with vigorous stirring to a solution of 3-alkyl(benzyl)-1-alkyl(phenyl)phospholane (5 mmol), synthesized as described above, in
PDF
Album
Supp Info
Full Research Paper
Published 02 Mar 2016

Synthesis and reactivity of aliphatic sulfur pentafluorides from substituted (pentafluorosulfanyl)benzenes

  • Norbert Vida,
  • Jiří Václavík and
  • Petr Beier

Beilstein J. Org. Chem. 2016, 12, 110–116, doi:10.3762/bjoc.12.12

Graphical Abstract
  • the Czech Republic, Vídeňská 1083, 142 20 Prague, Czech Republic 10.3762/bjoc.12.12 Abstract Oxidation of 3- and 4-pentafluorosulfanyl-substituted anisoles and phenols with hydrogen peroxide and sulfuric acid provided a mixture of SF5-substituted muconolactone, maleic, and succinic acids. A plausible
  • -(pentafluorosulfanyl)anisole (1) or 4-(pentafluorosulfanyl)phenol (2) by a mixture of aqueous hydrogen peroxide and concentrated sulfuric acid (Scheme 1). The major product was muconolactone 3 while maleic acid 4 and succinic acid 5 were formed in small amounts. Herein we report a full account of this oxidation
  • )anisole and 4-(pentafluorosulfanyl)phenol the meta-derivatives 10 and 11 underwent oxidation with aqueous hydrogen peroxide in sulfuric acid to provide SF5-muconolactone and SF5-maleic acid as main products. Improved conversion of SF5-maleic acid was rationalized by preferential formation of SF5
PDF
Album
Supp Info
Full Research Paper
Published 20 Jan 2016

Supramolecular polymer assembly in aqueous solution arising from cyclodextrin host–guest complexation

  • Jie Wang,
  • Zhiqiang Qiu,
  • Yiming Wang,
  • Li Li,
  • Xuhong Guo,
  • Duc-Truc Pham,
  • Stephen F. Lincoln and
  • Robert K. Prud’homme

Beilstein J. Org. Chem. 2016, 12, 50–72, doi:10.3762/bjoc.12.7

Graphical Abstract
  • greatly deceased upon the addition of β-CD because host–guest complexation of ferrocene masks its hydrophobicity and the hydrophilic exterior of the complexing β-CD much decreases association between the polymer chains. The same effect occurs when hydrogen peroxide is added to aqueous BPEI-FC and the
PDF
Album
Review
Published 12 Jan 2016

Iron complexes of tetramine ligands catalyse allylic hydroxyamination via a nitroso–ene mechanism

  • David Porter,
  • Belinda M.-L. Poon and
  • Peter J. Rutledge

Beilstein J. Org. Chem. 2015, 11, 2549–2556, doi:10.3762/bjoc.11.275

Graphical Abstract
  • 5. Nicholas and Kalita have reported that the addition of hydrogen peroxide can improve yields in their copper-catalysed allylic amination reactions using BocNHOH [41]. Thus the addition of hydrogen peroxide (1:1 relative to BocNHOH) to reactions with 4 or 5 was investigated. Using a 1:1:1 ratio of
  • cyclohexene:BocNHOH:H2O2 with FeTPA (4) at 1 mol %, allylic hydroxylamine 9 was formed in only 4% yield, with the allylic oxidation products 9 and 10 predominant. This is not unexpected given the propensity of hydrogen peroxide to react directly with iron complexes to produce 10 and 11 via Fenton-type pathways [47][53
PDF
Album
Supp Info
Full Research Paper
Published 11 Dec 2015

Preparative semiconductor photoredox catalysis: An emerging theme in organic synthesis

  • David W. Manley and
  • John C. Walton

Beilstein J. Org. Chem. 2015, 11, 1570–1582, doi:10.3762/bjoc.11.173

Graphical Abstract
  • donor and ‘picks up’ holes thereby releasing a cascade of extremely reactive hydroxyl radicals (see Figure 2). Oxygen acts as the acceptor, picks up electrons from the semiconductor surface, so yielding superoxide anions that are converted to hydroperoxyl radicals and to hydrogen peroxide on successive
PDF
Album
Review
Published 09 Sep 2015

Selected synthetic strategies to cyclophanes

  • Sambasivarao Kotha,
  • Mukesh E. Shirbhate and
  • Gopalkrushna T. Waghule

Beilstein J. Org. Chem. 2015, 11, 1274–1331, doi:10.3762/bjoc.11.142

Graphical Abstract
PDF
Album
Review
Published 29 Jul 2015
Other Beilstein-Institut Open Science Activities