Search results

Search for "lipase" in Full Text gives 55 result(s) in Beilstein Journal of Organic Chemistry.

Green and sustainable approaches for the Friedel–Crafts reaction between aldehydes and indoles

  • Periklis X. Kolagkis,
  • Eirini M. Galathri and
  • Christoforos G. Kokotos

Beilstein J. Org. Chem. 2024, 20, 379–426, doi:10.3762/bjoc.20.36

Graphical Abstract
PDF
Album
Review
Published 22 Feb 2024

Inline purification in continuous flow synthesis – opportunities and challenges

  • Jorge García-Lacuna and
  • Marcus Baumann

Beilstein J. Org. Chem. 2022, 18, 1720–1740, doi:10.3762/bjoc.18.182

Graphical Abstract
  • group where an immobilized lipase (e.g., CALB) facilitated the derivatization of high-boiling benzyl alcohol in scaled Curtius rearrangement reactions. Ultimately, this approach negated the use of column chromatography in favor of a simple trituration process to isolate pure carbamate products [106
PDF
Album
Perspective
Published 16 Dec 2022

Enantioselective total synthesis of putative dihydrorosefuran, a monoterpene with an unique 2,5-dihydrofuran structure

  • Irene Torres-García,
  • Josefa L. López-Martínez,
  • Rocío López-Domene,
  • Manuel Muñoz-Dorado,
  • Ignacio Rodríguez-García and
  • Miriam Álvarez-Corral

Beilstein J. Org. Chem. 2022, 18, 1264–1269, doi:10.3762/bjoc.18.132

Graphical Abstract
  • stereoselective kinetic resolution of allenol 3 via lipase AK-catalyzed acetylation [15]. In this way, unaltered, (−)-hydroxyallene 3 could be separated from (+)-acetyl derivative 9 through standard column chromatography (Scheme 3). Enantiomeric excesses of (−)-3 and (+)-9 were determined by chiral HPLC analyses
  • ) AgNO3, Me2CO, 75%. Racemic resolution of allenol 3 and synthesis of derivatives. a) Lipase AK, vinyl acetate, t-BuOMe, 30 °C, ((−)-(S)-3: 46%, 90% ee, (+)-(R)-9: 39%, 95% ee); b) N,N’-dicyclohexylcarbodiimide (DCC), dimethylaminopyridine (DMAP), (S) or (R)-(−)-α-methoxy-α-(trifluoromethyl)phenylacetic
PDF
Album
Supp Info
Full Research Paper
Published 19 Sep 2022

Synthesis of odorants in flow and their applications in perfumery

  • Merlin Kleoff,
  • Paul Kiler and
  • Philipp Heretsch

Beilstein J. Org. Chem. 2022, 18, 754–768, doi:10.3762/bjoc.18.76

Graphical Abstract
  • a method for the acetylation of isoamyl alcohol (9) catalyzed by Candida antarctica lipase B (Scheme 3) [26]. A biphasic system consisting of n-heptane and an aqueous buffer solution is used and efficiently mixed in a Corning AFRTM Low Flow reactor providing a fine dispersion of the reaction mixture
  • and, thus, a large interface between the phases. Subsequently, the biphasic system is directly separated, employing a PTFE membrane separator, to afford a solution of isoamyl acetate in n-heptane, while the aqueous layer containing the lipase could be recycled. At 60 °C with a residence time of 8.6
  • layer is mixed with vinyl acetate (53) and pumped through a column reactor containing Candida antarctica lipase A. At 30 °C and with a residence time of 11 min, acetylation of cis-alcohol 52 is mediated. After distillation, cis-woody acetate 54 is obtained in 89% isolated yield (de > 99%) on a gram
PDF
Album
Review
Published 27 Jun 2022

Chemical and chemoenzymatic routes to bridged homoarabinofuranosylpyrimidines: Bicyclic AZT analogues

  • Sandeep Kumar,
  • Jyotirmoy Maity,
  • Banty Kumar,
  • Sumit Kumar and
  • Ashok K. Prasad

Beilstein J. Org. Chem. 2022, 18, 95–101, doi:10.3762/bjoc.18.10

Graphical Abstract
  • % overall yield starting from compound 11, respectively (Scheme 2). The use of lipase as biocatalyst was employed for the selective acetylation of the primary hydroxy group present in trihydroxy nucleosides 14a,b. This led to the screening of two different lipases, viz Candida antarctica lipase-B (CAL-B
  • ) immobilized on polyacrylate (Lewatit), commonly known as Novozyme® 435 and Thermomyces lanuginosus lipase immobilized on silica, commonly known as Lipozyme® TL IM in different organic solvents, such as THF, acetonitrile, toluene, acetone, DIPE and 2-Me-THF. Vinyl acetate was used as acetyl donor at
  • reusability of the recovered Lipozyme® TL IM was also checked and it was found that the lipase could be used up to seven cycles of selective acetylation of 3′-azido-3′-deoxy-β-ᴅ-allofuranosyl nucleosides 14a,b without noticeable loss of regioselectivity and efficiency. Thus, trihydroxy nucleosides 14a,b were
PDF
Album
Supp Info
Full Research Paper
Published 11 Jan 2022

Synthetic strategies toward 1,3-oxathiolane nucleoside analogues

  • Umesh P. Aher,
  • Dhananjai Srivastava,
  • Girij P. Singh and
  • Jayashree B. S

Beilstein J. Org. Chem. 2021, 17, 2680–2715, doi:10.3762/bjoc.17.182

Graphical Abstract
  • intermediate 37 was resolved using a lipase in t-BuOMe, resulting in a high enantiomeric excess. They used an enzymatic resolution of an acetoxy sulfide with a Pseudomonas fluorescens lipase to obtain compound 38. Reaction of chiral acetoxy sulfide 38 with HCl in dry ethanol induced acetate removal by
  • oxathiolane propionate derivative 43 by using Mucor miehei lipase, which affords (−)-enantiomer 44 as residual substrate. This enantioenriched precursor was useful to obtain the pure corresponding nucleoside analogue. Faury and co-workers [50] synthesized the tetrazole analogues of 1,3-oxathiolane nucleosides
  • -friendliness. Ren and colleagues [59] recently reported the preparation of an enantiopure 1,3-oxathiolane 65 utilizing a multienzymatic cascade protocol (Scheme 21). The combined use of surfactant-treated Subtilisin Carlsberg (STS) and Candida antarctica lipase B (CAL-B) resulted in the 1,3-oxathiolane ring in
PDF
Album
Review
Published 04 Nov 2021

A comprehensive review of flow chemistry techniques tailored to the flavours and fragrances industries

  • Guido Gambacorta,
  • James S. Sharley and
  • Ian R. Baxendale

Beilstein J. Org. Chem. 2021, 17, 1181–1312, doi:10.3762/bjoc.17.90

Graphical Abstract
PDF
Album
Review
Published 18 May 2021

Kinetics of enzyme-catalysed desymmetrisation of prochiral substrates: product enantiomeric excess is not always constant

  • Peter J. Halling

Beilstein J. Org. Chem. 2021, 17, 873–884, doi:10.3762/bjoc.17.73

Graphical Abstract
  • -reductases. The reductant (usually NADH or NADPH) has to bind first to the enzyme, followed by the prochiral ketone in the second step. The chiral products are then released before the oxidised co-product. “Ping-pong, second”. Followed by most transaminases and lipase or esterase-catalysed acylation of
  • prochiral diols. The enzyme reacts with an amino or acyl donor, releasing a first co-product, to give an aminated or acylated enzyme intermediate. This then reacts with the prochiral ketone or diol to generate the chiral products. “Ping-pong, first”. Followed in most lipase or esterase hydrolyses of
  • , both”. Followed in most lipase or esterase reactions of prochiral diacids: either hydrolysis of their esters, or esterification of the free acids. The enzyme reacts enantiospecifically with the ester or acid. But now the acyl enzyme can be in either stereoisomeric form, so the kinetics are different
PDF
Album
Supp Info
Full Research Paper
Published 21 Apr 2021

Biochemistry of fluoroprolines: the prospect of making fluorine a bioelement

  • Vladimir Kubyshkin,
  • Rebecca Davis and
  • Nediljko Budisa

Beilstein J. Org. Chem. 2021, 17, 439–460, doi:10.3762/bjoc.17.40

Graphical Abstract
  • subdomain [129], T. thermohydrosulfuricus lipase [130][131][132], human ubiquitin [133], single-chain Fv format protein [134], KlenTag DNA polymerase [135], thioredoxin A [120], β2-microglobulin [136], red fluorescent protein [137][138], Pin1 WW domain [139], bacteriophage T4 fibritin C-terminal domain [106
  • Geobacillus thermoleovorans lipase (GTL) yielded a properly folded sample with R-Flp and an insoluble protein with S-Flp (Figure 14A). The lack of solubility in the latter case indicates critical folding issues induced by the presence of S-Flp in the sequence. With α-amylase from Pyrococcus woesei (PWA), the
PDF
Album
Review
Published 15 Feb 2021

Coupling biocatalysis with high-energy flow reactions for the synthesis of carbamates and β-amino acid derivatives

  • Alexander Leslie,
  • Thomas S. Moody,
  • Megan Smyth,
  • Scott Wharry and
  • Marcus Baumann

Beilstein J. Org. Chem. 2021, 17, 379–384, doi:10.3762/bjoc.17.33

Graphical Abstract
  • within continuous flow processes [17][18][19][20] to provide a greener and more chemoselective means for the synthesis of drug-like targets. Recently, we reported on an innovative telescoped process using immobilized CALB (Candida antarctica lipase B) to enable the conversion of residual benzyl alcohol
PDF
Album
Supp Info
Full Research Paper
Published 04 Feb 2021

Regioselective chemoenzymatic syntheses of ferulate conjugates as chromogenic substrates for feruloyl esterases

  • Olga Gherbovet,
  • Fernando Ferreira,
  • Apolline Clément,
  • Mélanie Ragon,
  • Julien Durand,
  • Sophie Bozonnet,
  • Michael J. O'Donohue and
  • Régis Fauré

Beilstein J. Org. Chem. 2021, 17, 325–333, doi:10.3762/bjoc.17.30

Graphical Abstract
  • ; hydrolysis; lipase; transesterification; Introduction The development of “white biotechnology” is underpinned by advances in enzyme discovery and engineering, areas that are being driven by metagenomics and in vitro-directed enzyme evolution. These techniques procure massive discovery or the creation of new
  • in 56% in-house yield and in up to 77% previously reported yield [24][25] in one step on a gram scale) using Lipozyme® TL IM (a commercially available immobilized lipase from T. lanuginosus that efficiently catalyzes the transesterification of cinnamates) [26][27][28] and readily available and
  • groups of the glycoside and the O-acetyl group of the ferulate moiety. The fact that lipase-catalyzed transesterification obviates the need for protection and deprotection is a considerable advantage because the final deprotection in the chemical pathway is complicated by the presence of another ester
PDF
Album
Full Research Paper
Published 01 Feb 2021

The preparation and properties of 1,1-difluorocyclopropane derivatives

  • Kymbat S. Adekenova,
  • Peter B. Wyatt and
  • Sergazy M. Adekenov

Beilstein J. Org. Chem. 2021, 17, 245–272, doi:10.3762/bjoc.17.25

Graphical Abstract
  • corresponding monoacetate through Alcaligenes sp. lipase-catalyzed hydrolysis with >99% enantiomeric excess. Kirihara et al. have reported the synthesis of the separate enantiomers of 2,2-difluoro-1-aminocyclopropanecarboxylic acid, which are analogs of the naturally occurring 1-aminocyclopropanecarboxylic acid
  • [81]. The authors obtained the chiral monoacetate intermediates (R)-78 and (S)-80 by lipase-catalyzed methods. The lipase-catalyzed asymmetric transesterification of prochiral diol 77 and the deacetylation of the prochiral diacetate 79 resulted in the formation of the (R)-monoacetate (R)-78 and (S
  • )-monoacetate (S)-80, respectively (Scheme 32). As for the transesterification, a high yield (96.5%) and enantioselectivity (91.3% ee) were obtained using lipase PS in benzene. In the case of the deacetylation, the use of Amano PS lipase in acetone gave a high yield (86.2%), enantioselectivity (91.7% ee), and
PDF
Album
Review
Published 26 Jan 2021

Recent developments in enantioselective photocatalysis

  • Callum Prentice,
  • James Morrisson,
  • Andrew D. Smith and
  • Eli Zysman-Colman

Beilstein J. Org. Chem. 2020, 16, 2363–2441, doi:10.3762/bjoc.16.197

Graphical Abstract
PDF
Album
Review
Published 29 Sep 2020

Syntheses of spliceostatins and thailanstatins: a review

  • William A. Donaldson

Beilstein J. Org. Chem. 2020, 16, 1991–2006, doi:10.3762/bjoc.16.166

Graphical Abstract
  • amination of the tetrahydropyranone 50 to generate the (all-cis)-tetrahydropyran fragment. This group reported multiple different routes to 50. In an abortive route, the addition of allyl-Grignard to 5-methylfurfural, followed by the resolution of the racemic homoallylic alcohol with Amano lipase gave
PDF
Album
Review
Published 13 Aug 2020

Synthesis of new dihydroberberine and tetrahydroberberine analogues and evaluation of their antiproliferative activity on NCI-H1975 cells

  • Giacomo Mari,
  • Lucia De Crescentini,
  • Serena Benedetti,
  • Francesco Palma,
  • Stefania Santeusanio and
  • Fabio Mantellini

Beilstein J. Org. Chem. 2020, 16, 1606–1616, doi:10.3762/bjoc.16.133

Graphical Abstract
  • effects [32], inhibits both hERG current and the expression of hERG protein [33], inhibits the pancreatic lipase [34], shows antiradical, revitalizing and antifibrotic properties for dermatological applications [35], manifests a synergic effect with antibiotics [36], and displays antitumoral activities
PDF
Album
Supp Info
Full Research Paper
Published 06 Jul 2020

A chemoenzymatic synthesis of ceramide trafficking inhibitor HPA-12

  • Seema V. Kanojia,
  • Sucheta Chatterjee,
  • Subrata Chattopadhyay and
  • Dibakar Goswami

Beilstein J. Org. Chem. 2019, 15, 490–496, doi:10.3762/bjoc.15.42

Graphical Abstract
  • synthesis of the title compound has been developed using an efficient and highly enantioselective lipase-catalyzed acylation in a hydrophobic ionic liquid, [bmim][PF6], followed by a diastereoselective asymmetric dihydroxylation as the key steps for incorporating the stereogenic centers. The further
  • conversion to the appropriate intermediates and subsequent acylation with lauric acid furnished the target compound. Keywords: AD mix-β; [bmim][PF6]; DDQ; HPA-12; lipase; Introduction Ceramides belong to the family of sphingolipids (SLs) and are synthesized de-novo in the endoplasmic reticulum (ER) [1
  • ]. Our group has been using lipases for the chemoenzymatic syntheses of several bioactive molecules [34][35][36][37][38][39]. The prevalence of PhCH(OH) in 2, and in many other biochemicals, attracted our attention to formulate an enantioselective lipase-catalyzed transacetylation strategy to obtain a
PDF
Album
Supp Info
Full Research Paper
Published 18 Feb 2019

Thiol-free chemoenzymatic synthesis of β-ketosulfides

  • Adrián A. Heredia,
  • Martín G. López-Vidal,
  • Marcela Kurina-Sanz,
  • Fabricio R. Bisogno and
  • Alicia B. Peñéñory

Beilstein J. Org. Chem. 2019, 15, 378–387, doi:10.3762/bjoc.15.34

Graphical Abstract
  • Orgánica, Facultad de Química, Bioquímica y Farmacia, UNSL. Chacabuco y Pedernera, San Luis, 5700, Argentina 10.3762/bjoc.15.34 Abstract A preparation of β-ketosulfides avoiding the use of thiols is described. The combination of a multicomponent reaction and a lipase-catalysed hydrolysis has been
  • developed in order to obtain high chemical diversity employing a single sulfur donor. This methodology for the selective synthesis of a set of β-ketosulfides is performed under mild conditions and can be set up in one-pot two-step and on a gram-scale. Keywords: ketosulfides; lipase; multicomponent
  • , isopropenyl acetate), are outstanding acyl donors in lipase-catalysed reactions [45], it is expected that the desired lipase-catalysed hydrolysis shall be controlled by the steric demand of substituents at the enoyl moiety. On the other hand, cosolvent and buffer composition are two factors that may influence
PDF
Album
Supp Info
Full Research Paper
Published 11 Feb 2019

β-Hydroxy sulfides and their syntheses

  • Mokgethwa B. Marakalala,
  • Edwin M. Mmutlane and
  • Henok H. Kinfe

Beilstein J. Org. Chem. 2018, 14, 1668–1692, doi:10.3762/bjoc.14.143

Graphical Abstract
  • lipase, after which the methyl ester was transformed into a primary amide to provide 136, which was subsequently subjected to regio- and stereoselective thiolysis with 2-aminobenzenethiol to afford β-hydroxy sulfide 137. Cyclization of this intermediate led to the formation of 135. A review of syntheses
PDF
Album
Review
Published 05 Jul 2018

Nanoreactors for green catalysis

  • M. Teresa De Martino,
  • Loai K. E. A. Abdelmohsen,
  • Floris P. J. T. Rutjes and
  • Jan C. M. van Hest

Beilstein J. Org. Chem. 2018, 14, 716–733, doi:10.3762/bjoc.14.61

Graphical Abstract
  • stabilized by colloidal particles that adsorb at the water–oil interface. They are more stable than classical emulsions and do not require the usage of small molecule surfactants. This is a big advantage in downstream processing and product and catalyst recovery. The enzyme Candida antarctica lipase B (CalB
PDF
Album
Review
Published 29 Mar 2018

Recent applications of click chemistry for the functionalization of gold nanoparticles and their conversion to glyco-gold nanoparticles

  • Vivek Poonthiyil,
  • Thisbe K. Lindhorst,
  • Vladimir B. Golovko and
  • Antony J. Fairbanks

Beilstein J. Org. Chem. 2018, 14, 11–24, doi:10.3762/bjoc.14.2

Graphical Abstract
  • acetylene-functionalized Thermomyces lanuginosus lipase was then attached to these azide-functionalized water-soluble AuNPs by CuAAC (Scheme 7). It was found that the enzyme retained its activity after the click reaction. However, the vast excesses of both Cu (a one million-fold excess relative to the azide
  • ) and lipase needed, the long reaction time (3 days), the extensive purification procedure required, and the poor overall conversion of azide to triazole (less than 1%) limited any further use of this procedure. In 2007, Sommer and Weck developed a simpler and more efficient method to perform CuAAC on
  • polymersomes and strained alkyne-functionalized AuNPs (DBCO-AuNPs) in water [57]. Functionalization of AuNPs with an azide containing thiol ligand, and subsequent attachment to an acetylene-functionalized lipase by CuAAC. Reagents and conditions: (a) H2O, rt, 18 h; (b) H2O, CuSO4, ascorbic acid, rt, 3 d. [47
PDF
Album
Supp Info
Review
Published 03 Jan 2018

Position-dependent impact of hexafluoroleucine and trifluoroisoleucine on protease digestion

  • Susanne Huhmann,
  • Anne-Katrin Stegemann,
  • Kristin Folmert,
  • Damian Klemczak,
  • Johann Moschner,
  • Michelle Kube and
  • Beate Koksch

Beilstein J. Org. Chem. 2017, 13, 2869–2882, doi:10.3762/bjoc.13.279

Graphical Abstract
  • assay [30]. Substitution of tryptophan, tyrosine, and phenylalanine residues in a glycosylation-deficient mutant of Candida antarctica lipase B, CalB N74D, by their monofluorinated analogues, left the resistance to proteolytic degradation by proteinase K unchanged [31]. Incorporation of α-fluoroalkyl
PDF
Album
Supp Info
Full Research Paper
Published 22 Dec 2017

Correction: Mechanochemical enzymatic resolution of N-benzylated-β3-amino esters

  • Mario Pérez-Venegas,
  • Gloria Reyes-Rangel,
  • Adrián Neri,
  • Jaime Escalante and
  • Eusebio Juaristi

Beilstein J. Org. Chem. 2017, 13, 2128–2130, doi:10.3762/bjoc.13.210

Graphical Abstract
  • . Universidad 1001, Cuernavaca, Morelos, 62210, Mexico El Colegio Nacional, Luis Gonzáles Obregón 23, Centro Histórico, Ciudad de México, 06020, Mexico 10.3762/bjoc.13.210 Keywords: ball-milling; β3-amino acid; Candida antarctica lipase B; enzymatic resolution; mechanochemistry; The original published Tables
PDF
Original
Article
Supp Info
Correction
Published 12 Oct 2017

Enzymatic separation of epimeric 4-C-hydroxymethylated furanosugars: Synthesis of bicyclic nucleosides

  • Neha Rana,
  • Manish Kumar,
  • Vinod Khatri,
  • Jyotirmoy Maity and
  • Ashok K. Prasad

Beilstein J. Org. Chem. 2017, 13, 2078–2086, doi:10.3762/bjoc.13.205

Graphical Abstract
  • : bicyclonucleosides; biocatalysis; lipase; Novozyme®-435; separation of epimers; Introduction Sugar-modified bicyclic nucleosides have drawn the attention of synthetic chemists because of their effect on the conformational restriction of the furanose moiety of the nucleoside [1][2][3][4][5][6][7][8][9]. The
  • hydroxy groups present in different sugars and sugar moieties of synthetic or naturally occurring glycosides, nucleosides, etc. Gotor et al. [11] have reported a lipase-mediated acylation of an equimolecular mixture of D/L-thymidine with acetonoxime levulinate as acylating agent and Pseudomonas cepacia
  • lipase as biocatalyst. Similar applications of lipases have been reported for the separation of mixtures of arabinofuranosyl and -pyranosyl nucleosides [12], O-aryl α,β-D-ribofuranosides, etc. [13][14][15]. We herein report for the first time the use of Novozyme®-435 for the separation of an epimeric
PDF
Album
Supp Info
Full Research Paper
Published 05 Oct 2017

Selective enzymatic esterification of lignin model compounds in the ball mill

  • Ulla Weißbach,
  • Saumya Dabral,
  • Laure Konnert,
  • Carsten Bolm and
  • José G. Hernández

Beilstein J. Org. Chem. 2017, 13, 1788–1795, doi:10.3762/bjoc.13.173

Graphical Abstract
  • Ulla Weissbach Saumya Dabral Laure Konnert Carsten Bolm Jose G. Hernandez Institute of Organic Chemistry, RWTH Aachen University, Landoltweg 1, D-52074 Aachen, Germany 10.3762/bjoc.13.173 Abstract A lipase-catalyzed esterification of lignin model compounds in the ball mill was developed combining
  • (Scheme 1a) [8]. Similarly, immobilized lipases (triglycerol acylhydrolases EC 3.1.1.3) such as Amano lipase PS-IM from Burkholderia cepacia immobilized on diatomaceous earth and lipase B from Candida antarctica (expressed in Aspergillus niger) adsorbed on polymethacrylate beads (ca. 400 μm–600 μm in
  • diameter) [9], demonstrated to efficiently mediate the enzymatic kinetic resolution of secondary alcohols under solvent-free conditions in both mixer and planetary ball mills (Scheme 1b) [10]. Interestingly, this latter lipase (a commercial preparation known as Novozyme 345, hereinafter referred as CALB
PDF
Album
Supp Info
Full Research Paper
Published 25 Aug 2017

Mechanochemical enzymatic resolution of N-benzylated-β3-amino esters

  • Mario Pérez-Venegas,
  • Gloria Reyes-Rangel,
  • Adrián Neri,
  • Jaime Escalante and
  • Eusebio Juaristi

Beilstein J. Org. Chem. 2017, 13, 1728–1734, doi:10.3762/bjoc.13.167

Graphical Abstract
  • resolution of racemic β3-amino esters employing Candida antarctica lipase B (CALB) to afford highly valuable enantioenriched N-benzylated-β3-amino acids in good yields. Furthermore the present protocol is readily scalable. Keywords: ball-milling; β3-amino acid; Candida antarctica lipase B; enzymatic
  • ][18][19][20][21][22] including strategies based on organocatalysis [23][24][25][26] and kinetic resolution using enzymes such as Candida antarctica lipase B, which was shown to be efficient in the resolution of racemic β-amino acids under various conditions [27][28][29][30]. Among recent developments
  • applications on a large scale [45][46]. Very recently, Hernández, Frings, and Bolm developed a method to carry out the kinetic resolution of secondary alcohols through selective acylation using Candida antarctica lipase B, under solvent-free ball-milling conditions [47][48]. Inspired by this ground-breaking
PDF
Album
Supp Info
Correction
Full Research Paper
Published 18 Aug 2017
Other Beilstein-Institut Open Science Activities