Search results

Search for "sulfonium" in Full Text gives 52 result(s) in Beilstein Journal of Organic Chemistry.

Three-component N-alkenylation of azoles with alkynes and iodine(III) electrophile: synthesis of multisubstituted N-vinylazoles

  • Jun Kikuchi,
  • Roi Nakajima and
  • Naohiko Yoshikai

Beilstein J. Org. Chem. 2024, 20, 891–897, doi:10.3762/bjoc.20.79

Graphical Abstract
  • motif in bioactive compounds and the synthetic utility of its olefinic C=C bond. The most extensively explored approach to this transformation is the transition metal-catalyzed C–N coupling between azoles and vinylating agents, including vinyl halides [4], boronates [5], sulfonium salts [6][7][8], and
PDF
Album
Supp Info
Full Research Paper
Published 22 Apr 2024

Nucleophilic functionalization of thianthrenium salts under basic conditions

  • Xinting Fan,
  • Duo Zhang,
  • Xiangchuan Xiu,
  • Bin Xu,
  • Yu Yuan,
  • Feng Chen and
  • Pan Gao

Beilstein J. Org. Chem. 2024, 20, 257–263, doi:10.3762/bjoc.20.26

Graphical Abstract
  • -free conditions. This strategy exhibits good functional-group tolerance, operational simplicity, and an extensive range of compatible substrates. Keywords: amination; functionalization of alcohol; metal-free; S-(alkyl)thianthrenium salts; thioetherification; Introduction Sulfonium salts [1][2][3][4
  • ][5][6][7][8][9][10] have been extensively utilized as readily accessible synthetic building blocks in organic synthesis, particularly in the ipso-functionalization of C–S bonds. Of the sulfonium salts, organothianthrenium salts exhibit distinct structural properties and reactivities, thereby offering
  • ][20]. On the other hand, sulfonium salts have emerged as appealing sources of aryl radicals for a wide range of transformations aimed at creating novel chemical bonds driven by their distinctive structural attributes and chemical tendencies (Scheme 1a) [9][21][22][23][24][25][26]. In addition to late
PDF
Album
Supp Info
Full Research Paper
Published 08 Feb 2024

N-Sulfenylsuccinimide/phthalimide: an alternative sulfenylating reagent in organic transformations

  • Fatemeh Doraghi,
  • Seyedeh Pegah Aledavoud,
  • Mehdi Ghanbarlou,
  • Bagher Larijani and
  • Mohammad Mahdavi

Beilstein J. Org. Chem. 2023, 19, 1471–1502, doi:10.3762/bjoc.19.106

Graphical Abstract
  • important factors, and the commonly utilized chemicals include thiols [16][17][18], disulfides [19][20][21][22], sulfenyl halides [23][24][25], sulfonamides [26], sulfenate esters [27][28], and methyl(bismethylthio)sulfonium salts [29][30]. Among various organic molecules, aryl sulfides are recognized as
  • (PIDA) and meta-chloroperbenzoic acid (m-CPBA) toward 3-sulfinylated and 3-sulfonylated product, respectively, were performed in this work. A plausible mechanism involves the treatment of 1 with BF3·Et2O toward cation I, which reacted with the C–C triple bond in 12 to give sulfonium intermediate II
  • formation of three-membered cyclic sulfonium ion II followed by ring-opening of sulfonium ion and intramolecular cyclization. The use of a Lewis base/Brønsted acid catalysis system for the sulfenylation of aromatic substrates 4 was reported by Gustafson et al. (Scheme 55) [87]. In the method, catalyst P
PDF
Album
Review
Published 27 Sep 2023

1,4-Dithianes: attractive C2-building blocks for the synthesis of complex molecular architectures

  • Bram Ryckaert,
  • Ellen Demeyere,
  • Frederick Degroote,
  • Hilde Janssens and
  • Johan M. Winne

Beilstein J. Org. Chem. 2023, 19, 115–132, doi:10.3762/bjoc.19.12

Graphical Abstract
  • -haloalkylsulfide via a cyclic sulfonium intermediate, which then ring opens and eliminates the halide to give the unsaturated 1,4-dithiane ring. We have found this Parham ring expansion to be the most practical preparatory procedure for 2 on large scale [30]. Thus, a simple condensation of ethane-1,2-dithiol (10
  • nucleophile to the putative sulfonium-type dithiin intermediates such as 134. It is noteworthy that these Pummerer rearrangement-generated sulfonium intermediates do not give the expected fully unsaturated dithiin rings, but can be captured by nucleophiles before elimination of a proton happens. Conclusion In
PDF
Album
Review
Published 02 Feb 2023

Strategies for the synthesis of brevipolides

  • Yudhi D. Kurniawan and
  • A'liyatur Rosyidah

Beilstein J. Org. Chem. 2021, 17, 2399–2416, doi:10.3762/bjoc.17.157

Graphical Abstract
  • epoxide using vinyl Grignard reagent followed by esterification with acrylic acid (35) proved to be inefficient due to low reproducibility and poor isolation of product 36. The strategy was altered by changing the terminal epoxide 34 to an allylic alcohol (95%) utilizing dimethyl sulfonium methylide
PDF
Album
Review
Published 14 Sep 2021

CF3-substituted carbocations: underexploited intermediates with great potential in modern synthetic chemistry

  • Anthony J. Fernandes,
  • Armen Panossian,
  • Bastien Michelet,
  • Agnès Martin-Mingot,
  • Frédéric R. Leroux and
  • Sébastien Thibaudeau

Beilstein J. Org. Chem. 2021, 17, 343–378, doi:10.3762/bjoc.17.32

Graphical Abstract
  • )-substituted sulfonium cation). Analogous to thioacetals 204a, chloroalkylthio derivatives 207a–c, bearing an adjacent CF3 group, were also investigated [140]. It appeared that a sulfur-stabilized α-(trifluoromethyl)carbenium ion 208 can be generated from 207a by chloride abstraction following Lewis acid
  • the electron-withdrawing CF3 group and the electron donor sulfur atom through a captodative effect. Further oxidative electron transfer produces α-(trifluoromethyl)-substituted sulfonium ion 206, leading to 204a,f after reacting with the solvent. α-(Trifluoromethyl)alkylcarbenium ions Hypothetical
PDF
Album
Review
Published 03 Feb 2021

Metal-free synthesis of biarenes via photoextrusion in di(tri)aryl phosphates

  • Hisham Qrareya,
  • Lorenzo Meazza,
  • Stefano Protti and
  • Maurizio Fagnoni

Beilstein J. Org. Chem. 2020, 16, 3008–3014, doi:10.3762/bjoc.16.250

Graphical Abstract
  • Truce–Smiles rearrangement in aryl sulfonamides and aryl phenylsulfonates [44][45][46] or the [3,3]-sigmatropic rearrangement of sulfonium salts arising from the reaction of aryl sulfoxides and phenols [47]. To overcome this problem, the use of a metal catalyst (mainly Ni) was mandatory as reported for
PDF
Album
Supp Info
Full Research Paper
Published 08 Dec 2020

Recent synthesis of thietanes

  • Jiaxi Xu

Beilstein J. Org. Chem. 2020, 16, 1357–1410, doi:10.3762/bjoc.16.116

Graphical Abstract
  • -thiopyrrolidin-2-one (338b, R = Me) initially generated a tricyclic fused thietane derivative (339b, R = Me), which gave rise to 2,5,6,7-tetrahydropyrrolizin-3-one 341 upon the treatment with dimethyl(methylthio)sulfonium tetrafluoroborate (DMTSF), or hexahydropyrrolizin-3-one 342 in the presence of Ra-Ni in
PDF
Album
Review
Published 22 Jun 2020

Photocatalysis with organic dyes: facile access to reactive intermediates for synthesis

  • Stephanie G. E. Amos,
  • Marion Garreau,
  • Luca Buzzetti and
  • Jerome Waser

Beilstein J. Org. Chem. 2020, 16, 1163–1187, doi:10.3762/bjoc.16.103

Graphical Abstract
  • generation of aryl radicals. Although inaccessible to date, a two-step strategy was recently developed by the Procter group. They reported a one-pot organophotocatalytic strategy for the heteroarylation of nonprefunctionalized arenes (Scheme 15) [87]. First, a triaryl sulfonium salt 15.3 is generated from
PDF
Album
Review
Published 29 May 2020

Asymmetric synthesis of CF2-functionalized aziridines by combined strong Brønsted acid catalysis

  • Xing-Fa Tan,
  • Fa-Guang Zhang and
  • Jun-An Ma

Beilstein J. Org. Chem. 2020, 16, 638–644, doi:10.3762/bjoc.16.60

Graphical Abstract
  • , and difluoromethyl vinyl sulfonium salts as the fluorinating partner en route to various CF2-substituted aziridines [27][28][29][30][31], and a general protocol to chiral CF2-aziridines remains an unsolved challenge. Thus, herein we report a diastereo- and enantioselective aza-Darzens reaction between
PDF
Album
Supp Info
Full Research Paper
Published 07 Apr 2020

An overview of the cycloaddition chemistry of fulvenes and emerging applications

  • Ellen Swan,
  • Kirsten Platts and
  • Anton Blencowe

Beilstein J. Org. Chem. 2019, 15, 2113–2132, doi:10.3762/bjoc.15.209

Graphical Abstract
  • be generated in situ from methyl(2-methylenecyclopropyl)(phenyl)sulfonium tetrafluoroborate (Scheme 13b). As pentafulvenes are the most commonly studied fulvenes, it follows that there is a great deal of literature surrounding their reactivity in cycloaddition reactions. Due to conjugation, they can
PDF
Album
Review
Published 06 Sep 2019

Unprecedented nucleophile-promoted 1,7-S or Se shift reactions under Pummerer reaction conditions of 4-alkenyl-3-sulfinylmethylpyrroles

  • Takashi Go,
  • Akane Morimatsu,
  • Hiroaki Wasada,
  • Genzoh Tanabe,
  • Osamu Muraoka,
  • Yoshiharu Sawada and
  • Mitsuhiro Yoshimatsu

Beilstein J. Org. Chem. 2018, 14, 2722–2729, doi:10.3762/bjoc.14.250

Graphical Abstract
  • TFAA to form sulfonium salt 14, which is characterised by an intramolecular double bond [34][35]. A less substituted double bond easily approaches the sulfonium ion and undergoes an addition reaction to produce intermediate 15. The trifluoroacetate anion attacks the posterior side of the α-carbon of
  • the sulfur atom. Bis(trifluoro)acetate 16 resulted from the opening of the ring is hydrolysed by TBAH to yield diol 17. Conversely, sterically hindered double bonds of 14 are not easily accessible to the sulfonium ion; therefore, the Pummerer intermediate α-thio carbenium ion 18 is generated through
  • involves the transannular sulfonium intermediate 22, which is attacked by a hydroxide anion from the anti-direction. Both products, diols and azepinopyrroles, are obtained in a stereoselective manner. In order to confirm the reaction mechanism, we performed crossover experiments with arylthiol (Scheme 5
PDF
Album
Supp Info
Full Research Paper
Published 29 Oct 2018

One-pot synthesis of epoxides from benzyl alcohols and aldehydes

  • Edwin Alfonzo,
  • Jesse W. L. Mendoza and
  • Aaron B. Beeler

Beilstein J. Org. Chem. 2018, 14, 2308–2312, doi:10.3762/bjoc.14.205

Graphical Abstract
  • through in situ generation of sulfonium salts from benzyl alcohols and their subsequent deprotonation for use in Corey–Chaykovsky epoxidation of aldehydes. The generality of the method is exemplified by the synthesis of 34 epoxides that were made from an array of electronically and sterically varied
  • for a general and operationally simple method to generate benzyl epoxides. One of the most powerful methods to access epoxides is through the Corey–Chaykovsky reaction [21] which uses sulfonium ylides and their subsequent reaction with carbonyl groups. This reaction has seen major advancement since
  • its original disclosure, particular in the area of asymmetric synthesis [22][23][24]. Other notable advancements include the expansion of its scope by using organic bases and a one-pot oxidation/epoxidation sequence of benzyl alcohols with manganese dioxide and an exogenous sulfonium salt [25][26
PDF
Album
Supp Info
Full Research Paper
Published 03 Sep 2018

β-Hydroxy sulfides and their syntheses

  • Mokgethwa B. Marakalala,
  • Edwin M. Mmutlane and
  • Henok H. Kinfe

Beilstein J. Org. Chem. 2018, 14, 1668–1692, doi:10.3762/bjoc.14.143

Graphical Abstract
  • then attacks the electrophilic site of the disulfide to provide the sulfonium ion 92, which then undergoes regioselective ring opening to afford the 1,2-acetoxysulfide 91. The R2SCu(I)Ln that was produced in the previous step is oxidized to regenerate the active catalyst and a disulfide that is re
  • liquid for up to four times without any loss of efficiency. The proposed mechanism of the reaction is depicted in Scheme 36 [70]. The reactive R2S+ that is generated from the reaction of the CuI catalyst and the disulfide reacts with the β-ketomethylene 94 to form sulfonium intermediate 96
  • . Regioselective ring opening of the sulfonium ion then provides the β-hydroxy sulfide 95. The R2SCu(I)Ln generated in the reaction is oxidized to form the disulfide and regenerates the Cu(I)Ln catalyst. 3.3.4 Acetoxysulfenylation of alkenes using DIB/KI. Muangkaew et al. reported a convenient method for 1,2
PDF
Album
Review
Published 05 Jul 2018

Glycosylation reactions mediated by hypervalent iodine: application to the synthesis of nucleosides and carbohydrates

  • Yuichi Yoshimura,
  • Hideaki Wakamatsu,
  • Yoshihiro Natori,
  • Yukako Saito and
  • Noriaki Minakawa

Beilstein J. Org. Chem. 2018, 14, 1595–1618, doi:10.3762/bjoc.14.137

Graphical Abstract
  • Minakawa and Matsuda’s synthesis described above. Nishizono considered that the difference between the stereoselectivities of the coupling reactions in methods A and B was caused by the existence of another reaction path of the sulfonium salt (38 or 39). In path b, the 4-thiosugar 41 was generated and
  • catalyzed the intramolecular SN2 reaction of sulfur to form the epi-sulfonium ion 55, which proceeded only from the cis-isomer due to the steric requirement. The subsequent nucleophilic attack leaving the benzoate anion resulted in the formation of a ring-expanded product 56, which became a substrate of the
PDF
Album
Review
Published 28 Jun 2018

Atom-economical group-transfer reactions with hypervalent iodine compounds

  • Andreas Boelke,
  • Peter Finkbeiner and
  • Boris J. Nachtsheim

Beilstein J. Org. Chem. 2018, 14, 1263–1280, doi:10.3762/bjoc.14.108

Graphical Abstract
  • substituted acrylamidines 35 (Scheme 19). The proposed reaction mechanism starts with the activation of DMSO (A) via the iodine(III) species 20b. Iodosoarene C is released under basic conditions, forming the sulfonium intermediate D. This intermediate reacts with the amidine 34 to give the sulfide E, which is
PDF
Album
Review
Published 30 May 2018

Rapid transformation of sulfinate salts into sulfonates promoted by a hypervalent iodine(III) reagent

  • Elsa Deruer,
  • Vincent Hamel,
  • Samuel Blais and
  • Sylvain Canesi

Beilstein J. Org. Chem. 2018, 14, 1203–1207, doi:10.3762/bjoc.14.101

Graphical Abstract
  • hypervalent iodine(III) reagent-mediated oxidation of sodium sulfinates has been developed. This transformation involves trapping reactive sulfonium species using alcohols. With additional optimization of the reaction conditions, the method appears extendable to other nucleophiles such as electron-rich
  • aromatic systems or cyclic ethers through a ring opening pathway. Keywords: hypervalent iodine; oxidation; sulfinates; sulfonation; sulfonium; Introduction Over the past few decades, hypervalent iodine reagents [1][2][3][4] have emerged as versatile and environmentally benign substitutes for heavy metal
  • sulfonyl chloride in the presence of a base to trap the hydrochloric acid byproduct. As an alternative method involving oxidation rather than chloride substitution, we envisaged generating an electrophilic sulfonium species through oxidation of a sulfinate salt [29] that would be subsequently trapped by
PDF
Album
Supp Info
Letter
Published 24 May 2018

Stimuli-responsive oligonucleotides in prodrug-based approaches for gene silencing

  • Françoise Debart,
  • Christelle Dupouy and
  • Jean-Jacques Vasseur

Beilstein J. Org. Chem. 2018, 14, 436–469, doi:10.3762/bjoc.14.32

Graphical Abstract
  • the 2’-O-tert-butyldithiomethyl-protecting group [18]. In the recent approach, the MDTM modification was obtained in excellent yield after conversion of the 2,4,6-trimethoxybenzylthiomethyl precursor group by treatment with dimethyl(methylthio)sulfonium tetrafluoroborate (DMTSF, Scheme 2). First, ONs
PDF
Album
Review
Published 19 Feb 2018

One-pot sequential synthesis of tetrasubstituted thiophenes via sulfur ylide-like intermediates

  • Jun Ki Kim,
  • Hwan Jung Lim,
  • Kyung Chae Jeong and
  • Seong Jun Park

Beilstein J. Org. Chem. 2018, 14, 243–252, doi:10.3762/bjoc.14.16

Graphical Abstract
  • those of others. Keywords: 5-(heterocyclic)thiophenes; one-pot sequential synthesis; sulfur ylide; tetrasubstituted thiophene; Introduction Since the discovery of stable sulfonium ylides 1 in 1930 [1] and the pioneering work of several research groups during the 1960s (2 and 3) [2][3][4][5][6][7][8][9
  • ], these carbene precursors have been played an important role in organic chemistry [10][11][12][13][14][15][16][17][18][19][20][21][22]. As shown in Figure 1, sulfur(IV) and sulfur(VI) ylides are stable. The stability of sulfonium ylides is determined by the electron delocalization of the carbanionic
  • reactions involving sulfonium and sulfoxonium ylides have been reported recently [26][27][28][29][30][31][32]. For example, Shen and co-workers reported the use of trifluoromethyl-substituted sulfonium ylide 5 in electrophilic trifluoromethylation reactions [33][34]. Moreover, Maulide and co-workers
PDF
Album
Supp Info
Full Research Paper
Published 26 Jan 2018

Progress in copper-catalyzed trifluoromethylation

  • Guan-bao Li,
  • Chao Zhang,
  • Chun Song and
  • Yu-dao Ma

Beilstein J. Org. Chem. 2018, 14, 155–181, doi:10.3762/bjoc.14.11

Graphical Abstract
  • halides with traditional trifluoromethylation reagents and a trifluoromethyl-substituted sulfonium ylide as a new reagent The CuI-mediated cross-coupling protocol using TESCF3 was firstly reported by Urata and Fuchikami [11]. The proposed mechanism of this reaction was demonstrated in Scheme 1. But it was
  • reagent, trifluoromethyl-substituted sulfonium ylide, which was prepared by a Rh-catalyzed carbenoid addition to trifluoromethyl thioether (Scheme 4). This process was conducted in dichloromethane at 40 °C for 4 h with a catalyst loading of 100 ppm. Moreover, this new reagent was easily scaled-up and
PDF
Album
Review
Published 17 Jan 2018

CF3SO2X (X = Na, Cl) as reagents for trifluoromethylation, trifluoromethylsulfenyl-, -sulfinyl- and -sulfonylation. Part 1: Use of CF3SO2Na

  • Hélène Guyon,
  • Hélène Chachignon and
  • Dominique Cahard

Beilstein J. Org. Chem. 2017, 13, 2764–2799, doi:10.3762/bjoc.13.272

Graphical Abstract
  • , CF3H, as an ideal source of trifluoromethide offered new horizons for atom-economical, low-cost trifluoromethylation reactions. With regard to electrophilic CF3 donors, S-(trifluoromethyl)sulfonium salts developed by Yagupolskii and Umemoto and hypervalent iodine(III)-CF3 reagents developed by Togni
PDF
Album
Full Research Paper
Published 19 Dec 2017

Conjugated nitrosoalkenes as Michael acceptors in carbon–carbon bond forming reactions: a review and perspective

  • Yaroslav D. Boyko,
  • Valentin S. Dorokhov,
  • Alexey Yu. Sukhorukov and
  • Sema L. Ioffe

Beilstein J. Org. Chem. 2017, 13, 2214–2234, doi:10.3762/bjoc.13.220

Graphical Abstract
  • heterocycles using nitrosoalkenes as intermediates. An early example is the reaction of sulfonium ylides 92 with α-halo ketoximes 1 leading to isoxazolines 93 reported by Bravo [11] and Gilchrist [83] (Scheme 35). The process is believed to proceed via the generation of a nitrosoalkene intermediate (NSA
  • ) followed by a formal [4 + 1]-annulation reaction with ylide (tandem Michael addition/intramolecular nucleophilic substitution of dimethylsulfide by oximate anion in intermediate 94). The addition of sulfonium ylides to nitrosoalkenes can end up not only with cyclic products, but also with α,β-unsaturated
  • observed. Triphenylarsonium ylides were also studied in the reaction with nitrosoalkenes, yet lower yields of isoxazolines 93 were obtained as compared to sulfonium ylides [11]. Following the same reaction pattern, Cheng and co-workers [84] applied diazo compounds 96 instead of sulfonium ylides 92 in the
PDF
Album
Review
Published 23 Oct 2017

Preactivation-based chemoselective glycosylations: A powerful strategy for oligosaccharide assembly

  • Weizhun Yang,
  • Bo Yang,
  • Sherif Ramadan and
  • Xuefei Huang

Beilstein J. Org. Chem. 2017, 13, 2094–2114, doi:10.3762/bjoc.13.207

Graphical Abstract
  • could attack the sulfonium center of diphenyl sulfide bis(triflate) (27) to give the glycosyl oxosulfonium intermediate 29, which subsequently glycosylated the acceptor to yield the product 30 (Scheme 7b). Alternatively, in pathway 2, hemiacetal 28 could attack the sulfonyl center of diphenyl sulfide
  • /AgOTf [18], N-iodosuccinimide (NIS)/TMSOTf [18], dimethyl(methylthio)sulfonium triflate (DMTST) [18], 1-(benzenesulfinyl)piperidine (BSP)/Tf2O [18][19][49], S-(4-methoxyphenyl)benzene-thiosulfinate (MBPT)/Tf2O [50], Ph2SO/Tf2O [36][51], O,O-dimethylthiophosphonosulfenyl bromide (DMTPSB)/AgOTf [52], and
PDF
Album
Review
Published 09 Oct 2017

Intramolecular glycosylation

  • Xiao G. Jia and
  • Alexei V. Demchenko

Beilstein J. Org. Chem. 2017, 13, 2028–2048, doi:10.3762/bjoc.13.201

Graphical Abstract
  • would form as the key intermediate. Upon dissociation of the anomeric C–S bond of the sulfonium intermediate 102, an oxygen nucleophile on the boronate ester would attack the C-1 center on the opposite side resulting in 103 with good stereoselection (Scheme 23). Initial trials with 3-methylbenzyl
PDF
Album
Review
Published 29 Sep 2017

Synthesis of benzothiophene and indole derivatives through metal-free propargyl–allene rearrangement and allyl migration

  • Jinzhong Yao,
  • Yajie Xie,
  • Lianpeng Zhang,
  • Yujin Li and
  • Hongwei Zhou

Beilstein J. Org. Chem. 2017, 13, 1866–1870, doi:10.3762/bjoc.13.181

Graphical Abstract
  • heterocycles are not well-documented [30][31]. Recently, our group explored the utilization of β-sulfonium carbanions for the preparation of thiophene derivatives [19]. Alkynes were treated with acyl chloride under Sonogashira reaction conditions and the expected β-sulfonium carbanions were obtained in a one
  • . Synthesis of 1-methylindole phosphine oxides. Reaction conditions: 3 (0.5 mmol), (EtO)2PCl (0.6 mmol), Et3N (1.5 mmol), and THF (2.0 mL) at −78 °C. Yields are isolated yield. Proposal of applicable β-sulfonium carbanion. Proposal of indole synthesis via allenylphosphonates. Optimization of the reaction
PDF
Album
Supp Info
Full Research Paper
Published 06 Sep 2017
Other Beilstein-Institut Open Science Activities