Search results

Search for "ALD" in Full Text gives 72 result(s) in Beilstein Journal of Nanotechnology.

Growth of lithium hydride thin films from solutions: Towards solution atomic layer deposition of lithiated films

  • Ivan Kundrata,
  • Karol Fröhlich,
  • Lubomír Vančo,
  • Matej Mičušík and
  • Julien Bachmann

Beilstein J. Nanotechnol. 2019, 10, 1443–1451, doi:10.3762/bjnano.10.142

Graphical Abstract
  • deposition (ALD) avoids these issues and is able to deposit conformal films on 3D substrates. However, ALD is limited in the range of chemical reactions, due to the required volatility of the precursors. Moreover, relatively high temperatures are necessary (above 100 °C), which can be detrimental to
  • spectroscopy and Auger spectroscopy analysis show the chemical identity of the decomposing air-sensitive films. Despite the air sensitivity of BuLi and LiH, making many standard measurements difficult, this work establishes the use of sALD to deposit LiH, a material inaccessible to conventional ALD, from
  • precursors and at temperatures not suitable for conventional ALD. Keywords: lithiated thin films; lithium hydride; solution atomic layer deposition (sALD); Introduction While the development of electric motors and semiconductor devices is progressing, the pressure on battery development is increasing
PDF
Album
Full Research Paper
Published 18 Jul 2019

On the transformation of “zincone”-like into porous ZnO thin films from sub-saturated plasma enhanced atomic layer deposition

  • Alberto Perrotta,
  • Julian Pilz,
  • Stefan Pachmajer,
  • Antonella Milella and
  • Anna Maria Coclite

Beilstein J. Nanotechnol. 2019, 10, 746–759, doi:10.3762/bjnano.10.74

Graphical Abstract
  • /bjnano.10.74 Abstract The synthesis of nanoporous ZnO thin films is achieved through annealing of zinc-alkoxide (“zincone”-like) layers obtained by plasma-enhanced atomic layer deposition (PE-ALD). The zincone-like layers are deposited through sub-saturated PE-ALD adopting diethylzinc and O2 plasma with
  • crystal growth occurred, giving insights in the manufacturing of nanoporous ZnO from Zn-based hybrid materials. Keywords: calcination; PE-ALD; porosity; thin films; ZnO; Introduction Atomic layer deposition (ALD) and molecular layer deposition (MLD) are sequential self-limiting vapor-phase deposition
  • substrates and devices. By combining the metalorganic precursors adopted in ALD with the organic ligands used in MLD, hybrid organic–inorganic materials can be synthesized [2][3][4]. These materials possess properties in between their pure organic and inorganic counterparts, yet differing from the pristine
PDF
Album
Supp Info
Full Research Paper
Published 21 Mar 2019

Biocompatible organic–inorganic hybrid materials based on nucleobases and titanium developed by molecular layer deposition

  • Leva Momtazi,
  • Henrik H. Sønsteby and
  • Ola Nilsen

Beilstein J. Nanotechnol. 2019, 10, 399–411, doi:10.3762/bjnano.10.39

Graphical Abstract
  • .; Eidet, J. R. J. Biomed. Mater. Res., Part A 2018, 106, 3090–3098. doi:10.1002/jbm.a.36499]. The growth was followed by in situ quartz crystal microbalance (QCM) measurements and all systems exhibited atomic layer deposition (ALD) type of growth. The adenine system has an ALD temperature window between
  • refraction. Keywords: ALD; bioactive materials; hybrid materials; MLD; nucleobases; Introduction There is an ever-increasing interest in organometallic compounds in the field of medicinal chemistry. Organometallic complexes are now being developed as anticancer agents, radiopharmaceuticals for diagnosis
  • response [9]. Thus, the tailoring of the surface of materials used in tissue engineering is important for designing bioactive and biocompatible materials. Our choice is the atomic layer deposition/molecular layer deposition (ALD/MLD) technique by which organic–inorganic materials are developed through the
PDF
Album
Supp Info
Full Research Paper
Published 08 Feb 2019

Uniform Sb2S3 optical coatings by chemical spray method

  • Jako S. Eensalu,
  • Atanas Katerski,
  • Erki Kärber,
  • Ilona Oja Acik,
  • Arvo Mere and
  • Malle Krunks

Beilstein J. Nanotechnol. 2019, 10, 198–210, doi:10.3762/bjnano.10.18

Graphical Abstract
  • chemical bath deposition (CBD) [3][4], spin coating [5], atomic layer deposition (ALD) [6] or chemical spray pyrolysis (CSP) [7] method, has been applied in extremely thin absorber (ETA) solar cells due to its excellent absorption coefficient in the visible light spectrum (1.8 × 105 cm−1 at 450 nm) [1][2
PDF
Album
Supp Info
Full Research Paper
Published 15 Jan 2019

Electrostatic force microscopy for the accurate characterization of interphases in nanocomposites

  • Diana El Khoury,
  • Richard Arinero,
  • Jean-Charles Laurentie,
  • Mikhaël Bechelany,
  • Michel Ramonda and
  • Jérôme Castellon

Beilstein J. Nanotechnol. 2018, 9, 2999–3012, doi:10.3762/bjnano.9.279

Graphical Abstract
  • nm) were deposited or grown over the whole sample surface. Aluminum oxide (Al2O3) shells were prepared using the atomic layer deposition (ALD) method, polyvinyl acetate (PVAc) shells by spin coating, and silicon dioxide (SiO2) shells by plasma sputtering deposition (PSD). The signature of each
  • thickness. For this reason, SiO2 was used instead of PVAc because it can be deposited by PSD. This method can precisely and homogeneously spread SiO2 molecules over the whole sample surface, quite similar to ALD, as explained in the Experimental section [40]. In approach 2 (Figure 3), the signal between the
  • by ALD (Al2O3) and PSD (SiO2) and the calibration of the SiO2 and Al2O3 layers, stacking layers of SiO2 or Al2O3 over PS for detecting the intermediate material becomes relevant. The second main step aimed for addressing the interphase detection by comparing the EFM response of PS + 50 nm Al2O3 + 50
PDF
Album
Full Research Paper
Published 07 Dec 2018

Controlling surface morphology and sensitivity of granular and porous silver films for surface-enhanced Raman scattering, SERS

  • Sherif Okeil and
  • Jörg J. Schneider

Beilstein J. Nanotechnol. 2018, 9, 2813–2831, doi:10.3762/bjnano.9.263

Graphical Abstract
  • Scientific UV–vis spectrophotometer (Evolution 600). The water contact angle was measured using a Krüss DSA 30 model drop-shape analysis system. The water contact angle was measured by placing 5 µL water droplets on the silver surface. Atomic layer deposition (ALD) of Al2O3 Silver films on glass substrates
  • were inserted into the ALD chamber (Savannah G2, Ultratech/CNT, Cambridge Nanotech) for deposition of a 1 nm thick layer of Al2O3 using trimethylaluminium (98+%, Strem Chemicals, Inc.) and water (HPLC grade, Sigma Aldrich) as precursors at 200 °C. The precursors were vaporized at room temperature and
  • film by ALD before adding the probe molecule RhB. The influence in SERS activity was compared immediately after deposition and after two weeks. Not unexpectedly, the Al2O3 layer reduces the SERS signal significantly as the analyte molecules are not in direct contact with the silver surface anymore
PDF
Album
Supp Info
Full Research Paper
Published 07 Nov 2018

Electrospun one-dimensional nanostructures: a new horizon for gas sensing materials

  • Muhammad Imran,
  • Nunzio Motta and
  • Mahnaz Shafiei

Beilstein J. Nanotechnol. 2018, 9, 2128–2170, doi:10.3762/bjnano.9.202

Graphical Abstract
PDF
Album
Supp Info
Review
Published 13 Aug 2018

Spin-coated planar Sb2S3 hybrid solar cells approaching 5% efficiency

  • Pascal Kaienburg,
  • Benjamin Klingebiel and
  • Thomas Kirchartz

Beilstein J. Nanotechnol. 2018, 9, 2114–2124, doi:10.3762/bjnano.9.200

Graphical Abstract
  • , spin-coating of different antimony- and sulfur-containing precursors was proposed [29][36][37]. A metal-organic complex is formed in solution which is then spin-coated and afterwards thermally decomposed. Just like for CBD [2][41] or ALD [22][32] the resulting amorphous film needs to be annealed at
  • ][5][6][29] reach the highest efficiencies. Planar devices have been produced via various methods such as atomic layer deposition (ALD) [32], chemical bath deposition (CBD) [27] and (rapid) thermal evaporation (R)TE [33][34][35]. As the latest development, spin-coated planar solar cells [31][36][37
PDF
Album
Supp Info
Full Research Paper
Published 08 Aug 2018

Localized photodeposition of catalysts using nanophotonic resonances in silicon photocathodes

  • Evgenia Kontoleta,
  • Sven H. C. Askes,
  • Lai-Hung Lai and
  • Erik C. Garnett

Beilstein J. Nanotechnol. 2018, 9, 2097–2105, doi:10.3762/bjnano.9.198

Graphical Abstract
  • carriers (Figure 2). An 18 nm amorphous TiO2 layer was conformally deposited on the silicon nanostructures by using atomic layer deposition (ALD). This layer assists with charge separation, stabilizes the silicon surface and helps to passivate trap states, leading to well-known improvements in photo
PDF
Album
Supp Info
Full Research Paper
Published 03 Aug 2018

Magnetic properties of Fe3O4 antidot arrays synthesized by AFIR: atomic layer deposition, focused ion beam and thermal reduction

  • Juan L. Palma,
  • Alejandro Pereira,
  • Raquel Álvaro,
  • José Miguel García-Martín and
  • Juan Escrig

Beilstein J. Nanotechnol. 2018, 9, 1728–1734, doi:10.3762/bjnano.9.164

Graphical Abstract
  • atomic layer deposition (ALD) [31][32][33]. Due to the self-limited growth of material, ALD allows to control the thickness of the films with high precision [34]. The holes arise because of a dewetting process of the sample [35], which depends on its geometric and magnetic parameters as well as on the
  • conditions of synthesis and thermal reduction. Hence, the holes are quite inhomogeneous and appear in disordered form on the sample. Thus, in this article we are interested in introducing a new procedure for obtaining antidot arrays with new properties. The technique is called AFIR (from ALD + FIB
  • + reduction), and it consists of the deposition of a thin film by ALD, the generation of holes by means of FIB, and the thermal reduction of the antidot arrays. AFIR opens a new route to manufacture ordered antidot arrays of oxides with variable lattice parameters, arrays that have not been synthesized by
PDF
Album
Full Research Paper
Published 11 Jun 2018

Semi-automatic spray pyrolysis deposition of thin, transparent, titania films as blocking layers for dye-sensitized and perovskite solar cells

  • Hana Krýsová,
  • Josef Krýsa and
  • Ladislav Kavan

Beilstein J. Nanotechnol. 2018, 9, 1135–1145, doi:10.3762/bjnano.9.105

Graphical Abstract
  • prevent recombination on this surface [3][4][5]. Blocking layers (BLs) can be fabricated by spray pyrolysis [3][6], magnetron sputtering [7], electrochemical deposition [8] spin coating [9][10], dip coating [11] and atomic layer deposition (ALD) [3]. From the viewpoint of low-cost processing and easy
  • prepared by electrodeposition or ALD for example [3][8]. Therefore the central motivation for this work was SPD fabrication of blocking TiO2 films using conventional [6] and novel [13] spray protocols using a semi-automatic spray device, enabling reproducible and uniform thin transparent titania films to
  • from this point of view. A tentative interpretation could consider the fact that certain TiO2 films (e.g., those grown by ALD) do show their φFB significantly upshifted (by ≈0.3 V), see e.g. [3]. Our conclusion concerning a significant difference in the properties of the BL resulting from the two
PDF
Album
Supp Info
Full Research Paper
Published 10 Apr 2018

Effect of annealing treatments on CeO2 grown on TiN and Si substrates by atomic layer deposition

  • Silvia Vangelista,
  • Rossella Piagge,
  • Satu Ek and
  • Alessio Lamperti

Beilstein J. Nanotechnol. 2018, 9, 890–899, doi:10.3762/bjnano.9.83

Graphical Abstract
  • this work, we investigate the effect of thermal treatment on CeO2 films fabricated by using atomic layer deposition (ALD) on titanium nitride (TiN) or on silicon (Si) substrates. In particular, we report on the structural, chemical and morphological properties of 25 nm thick ceria oxide with particular
  • structure with texturing. Further, after annealing at 900 °C an increase of grain dimensions and an enhanced preferential (200) orientation are evidenced. These findings are a strong indication that the texturing is an intrinsic property of the system more than a metastable condition due to the ALD
  • sputtering [7], e-beam [16], physical vapor deposition [17], chemical vapor deposition (CVD) [18], and atomic layer deposition (ALD). The latter has been explored by using different precursors, e.g., Ce(thd)4, Ce(iPrCp)3 and Ce(mmp)4) [19][20][21][22][23], obtaining as-deposited film with polycrystalline
PDF
Album
Full Research Paper
Published 15 Mar 2018

Dynamics and fragmentation mechanism of (C5H4CH3)Pt(CH3)3 on SiO2 surfaces

  • Kaliappan Muthukumar,
  • Harald O. Jeschke and
  • Roser Valentí

Beilstein J. Nanotechnol. 2018, 9, 711–720, doi:10.3762/bjnano.9.66

Graphical Abstract
  • layer deposition (ALD) conditions are available [12]. The studies in this review fairly agree that (1) the presence of surface hydroxyl groups are the source for protons that help in the evolution of H2, CH4 and H2O during the deposition process, and (2) the molecules dissociate or associate through a
  • fragmentation pathways qualitatively. In a recent investigation, thickness-controlled site-selective Pt deposits were obtained by direct atomic layer deposition (ALD) in which ALD was performed on EBID patterned substrates. In this ALD process, an O2 pulse is used to obtain better nucleation, even though the
  • , it can be speculated that a design of suitable precursors for electron beam induced deposition might be more efficient than the use of traditional ALD precursors. With our reaction modeling studies, possible pathways by which the precursor molecule can fragment on SiO2 surfaces were also explored
PDF
Album
Full Research Paper
Published 23 Feb 2018

Al2O3/TiO2 inverse opals from electrosprayed self-assembled templates

  • Arnau Coll,
  • Sandra Bermejo,
  • David Hernández and
  • Luís Castañer

Beilstein J. Nanotechnol. 2018, 9, 216–223, doi:10.3762/bjnano.9.23

Graphical Abstract
  • errors and Al2O3/TiO2 as a structural layer infiltrated through the voids. This is a two-step atomic layer deposition (ALD) process in which the polymeric template is eliminated after the deposition of the alumina layer and before the ALD deposition of the titania layer. Results and Discussion The
  • clarity. The electrospray process of a nanofluid containing polystyrene nanospheres is described in the Experimental section below. The second step, shown in Figure 1b, consists of the deposition of a thin, conformal layer of Al2O3 in an ALD reactor at 80 °C. Such a low deposition temperature preserves
  • process is the deposition of a conformal ALD layer of TiO2. Titania conformally covers the alumina layer as shown in Figure 1d. At this point, the structure is an inverse opal of a composite Al2O3/TiO2 layer with air voids. The result of the first fabrication step is shown in Figure 2 where up to 50
PDF
Album
Full Research Paper
Published 19 Jan 2018

Atomic layer deposition and properties of ZrO2/Fe2O3 thin films

  • Kristjan Kalam,
  • Helina Seemen,
  • Peeter Ritslaid,
  • Mihkel Rähn,
  • Aile Tamm,
  • Kaupo Kukli,
  • Aarne Kasikov,
  • Joosep Link,
  • Raivo Stern,
  • Salvador Dueñas,
  • Helena Castán and
  • Héctor García

Beilstein J. Nanotechnol. 2018, 9, 119–128, doi:10.3762/bjnano.9.14

Graphical Abstract
  • grown by atomic layer deposition (ALD) at 400 °C. Metastable phases of ZrO2 were stabilized by Fe2O3 doping. The number of alternating ZrO2 and Fe2O3 deposition cycles were varied in order to achieve films with different cation ratios. The influence of annealing on the composition and structure of the
  • [11]. Phase diagrams for the ZrO2–FeO system were described [12] and the influence of thermal treatment on the phase development in ZrO2–Fe2O3 and HfO2–Fe2O3 systems was assessed [13]. ALD of ZrO2 from ZrCl4 and O3 has been studied [14]. Reactions between Fe(acac)3 adsorbing on zirconia surfaces [15
  • ][16] has been studied as well. Phase stabilization of ZrO2 by Fe doping was investigated by using ALD [17]. Ferromagnetism in ALD-grown Fe3O4/ZrO2/Fe3O4 multilayer nanotubes has been demonstrated [18], while the precursors for distinct solid oxide layers constituting these samples were ferrocene/ozone
PDF
Album
Full Research Paper
Published 10 Jan 2018

Comparative study of post-growth annealing of Cu(hfac)2, Co2(CO)8 and Me2Au(acac) metal precursors deposited by FEBID

  • Marcos V. Puydinger dos Santos,
  • Aleksandra Szkudlarek,
  • Artur Rydosz,
  • Carlos Guerra-Nuñez,
  • Fanny Béron,
  • Kleber R. Pirota,
  • Stanislav Moshkalev,
  • José Alexandre Diniz and
  • Ivo Utke

Beilstein J. Nanotechnol. 2018, 9, 91–101, doi:10.3762/bjnano.9.11

Graphical Abstract
  • μm2 were similar for Cu–C and Au–C (ca. 1.7 nm·min−1), while they were slightly lower for Co–C (ca. 1.4 nm·min−1), being comparable to typical atomic layer deposition (ALD) processes. Measurements performed on deposits after annealing at 300 °C indicate shrinkage with respect to the as-deposited
PDF
Album
Supp Info
Full Research Paper
Published 09 Jan 2018

Electron-driven and thermal chemistry during water-assisted purification of platinum nanomaterials generated by electron beam induced deposition

  • Ziyan Warneke,
  • Markus Rohdenburg,
  • Jonas Warneke,
  • Janina Kopyra and
  • Petra Swiderek

Beilstein J. Nanotechnol. 2018, 9, 77–90, doi:10.3762/bjnano.9.10

Graphical Abstract
  • carbonaceous matrix of nanogranular FEBID materials under humid conditions as relevant, for instance, in applications such as humidity sensing [13]. Results and Discussion Thermal reactions between intact MeCpPtMe3 and H2O In ALD processes for deposition of Pt performed at 100 °C and consisting of alternating
PDF
Album
Supp Info
Full Research Paper
Published 08 Jan 2018

Increasing the stability of DNA nanostructure templates by atomic layer deposition of Al2O3 and its application in imprinting lithography

  • Hyojeong Kim,
  • Kristin Arbutina,
  • Anqin Xu and
  • Haitao Liu

Beilstein J. Nanotechnol. 2017, 8, 2363–2375, doi:10.3762/bjnano.8.236

Graphical Abstract
  • conformal coating with a nanometer-thin protective inorganic oxide layer created using atomic layer deposition (ALD). DNA nanotubes and origami triangles were coated with ca. 2 nm to ca. 20 nm of Al2O3. Nanoscale features of the DNA nanostructures were preserved after the ALD coating and the patterns are
  • resistive to UV/O3 oxidation. The ALD-coated DNA templates were used for a direct pattern transfer to poly(L-lactic acid) films. Keywords: aluminium oxide (Al2O3); atomic layer deposition; DNA nanostructure; nanofabrication; nanoimprint lithography; pattern transfer; polymer stamp; replica molding
  • inorganic oxide film grown by atomic layer deposition (ALD). We test the stability of DNA nanotube master templates with an Al2O3 layer against repeated pattern transfer, long-term storage and exposure to UV/O3. The effect of the thickness of the Al2O3 layer on the qualities of pattern transfer and shape
PDF
Album
Supp Info
Full Research Paper
Published 09 Nov 2017

The integration of graphene into microelectronic devices

  • Guenther Ruhl,
  • Sebastian Wittmann,
  • Matthias Koenig and
  • Daniel Neumaier

Beilstein J. Nanotechnol. 2017, 8, 1056–1064, doi:10.3762/bjnano.8.107

Graphical Abstract
  • yields excellent results [4], but this is not a production-relevant approach. A material that is available in mass-production quantities and fulfills both mentioned requirements is aluminum oxide deposited by atomic-layer deposition (ALD). It was demonstrated that graphene encapsulated in Al2O3 could be
  • passivated (Figure 4) and was stable for a longer period of time under ambient conditions [50]. The main problem of growing Al2O3 by ALD is to obtain a continuous nucleation layer on graphene to start the deposition. To solve this problem several approaches are proposed. One solution is the deposition of a
  • few nanometers thin Al layer on graphene and subsequently oxidizing it in air to generate a thin start layer for a subsequent ALD process depositing several tens of nanometers of Al2O3 [50]. Further there is an adapted nucleation process using water and trimethylaluminium (TMA) as precursors at
PDF
Album
Review
Published 15 May 2017

High photocatalytic activity of Fe2O3/TiO2 nanocomposites prepared by photodeposition for degradation of 2,4-dichlorophenoxyacetic acid

  • Shu Chin Lee,
  • Hendrik O. Lintang and
  • Leny Yuliati

Beilstein J. Nanotechnol. 2017, 8, 915–926, doi:10.3762/bjnano.8.93

Graphical Abstract
  • ], plasma enhanced-chemical vapor deposition (PE-CVD) and radio frequency (RF) sputtering approach [12], and plasma enhanced-chemical vapor deposition and atomic layer deposition (ALD) followed by thermal treatment [13]. Among these preparation methods, impregnation is a commonly used approach for the
PDF
Album
Supp Info
Full Research Paper
Published 24 Apr 2017

Vapor deposition routes to conformal polymer thin films

  • Priya Moni,
  • Ahmed Al-Obeidi and
  • Karen K. Gleason

Beilstein J. Nanotechnol. 2017, 8, 723–735, doi:10.3762/bjnano.8.76

Graphical Abstract
  • ]. However, no systematic studies of conformality have been devoted solely to these techniques thus far. Practitioners of MLD can look at existing models for its inorganic analogue, atomic layer deposition (ALD), as a starting point for studying conformal MLD films [12]. This review will focus on two, well
PDF
Album
Review
Published 28 Mar 2017

Advances in the fabrication of graphene transistors on flexible substrates

  • Gabriele Fisichella,
  • Stella Lo Verso,
  • Silvestra Di Marco,
  • Vincenzo Vinciguerra,
  • Emanuela Schilirò,
  • Salvatore Di Franco,
  • Raffaella Lo Nigro,
  • Fabrizio Roccaforte,
  • Amaia Zurutuza,
  • Alba Centeno,
  • Sebastiano Ravesi and
  • Filippo Giannazzo

Beilstein J. Nanotechnol. 2017, 8, 467–474, doi:10.3762/bjnano.8.50

Graphical Abstract
  • buried gate contact under a thin Al2O3 insulating film. In order to be compatible with the use of the PEN substrate, optimized deposition conditions of the Al2O3 film by plasma-enhanced atomic layer deposition (PE-ALD) at a low temperature (100 °C) have been developed without any relevant degradation of
  • layer deposition (ALD) represents an optimal method to fabricate a good quality Al2O3 dielectric film with a tight control on the deposited thickness and a high level of conformal coverage. While the thickness control allows easy fabrication of a tens of nanometer thick dielectric film (resulting in a
  • beneficially high dielectric capacitance), the conformal coverage is essential to contain the potential local degradation of the dielectric performance. Otherwise, this degradation can take over due to the device topography and the high starting roughness of the plastic substrate. ALD is essentially a low
PDF
Album
Full Research Paper
Published 20 Feb 2017

Diffusion of dilute gas in arrays of randomly distributed, vertically aligned, high-aspect-ratio cylinders

  • Wojciech Szmyt,
  • Carlos Guerra and
  • Ivo Utke

Beilstein J. Nanotechnol. 2017, 8, 64–73, doi:10.3762/bjnano.8.7

Graphical Abstract
  • the coating of nanotubes or nanowires with thin films employing techniques such as chemical vapour deposition (CVD) [11] or atomic layer deposition (ALD) [12][13]. Our recent study constitutes an example of the coating of vertically aligned carbon nanotubes (VACNTs) with monocrystalline anatase using
  • ALD [14]. Arrays of nanocylinders are also used in gas sensing systems [15][16]. The increasing interest in surface functionalisation via gas phase techniques as well as gas sensing applications with high-aspect-ratio nanocylinder arrays has raised the need for the fundamental understanding and
  • ][19]. The understanding of the gas-transport kinetics within nanocylinder arrays will be also crucial in the design and optimisation of the industrially up-scalable spatial ALD processes [20] carried out on such substrates. Although processes based on gas transport in various types of nanocylinder
PDF
Album
Full Research Paper
Published 09 Jan 2017

Active and fast charge-state switching of single NV centres in diamond by in-plane Al-Schottky junctions

  • Christoph Schreyvogel,
  • Vladimir Polyakov,
  • Sina Burk,
  • Helmut Fedder,
  • Andrej Denisenko,
  • Felipe Fávaro de Oliveira,
  • Ralf Wunderlich,
  • Jan Meijer,
  • Verena Zuerbig,
  • Jörg Wrachtrup and
  • Christoph E. Nebel

Beilstein J. Nanotechnol. 2016, 7, 1727–1735, doi:10.3762/bjnano.7.165

Graphical Abstract
  • stable device operation and NV manipulation. One passivation method was suggested by Hiraiwa et al. by covering the surface with an Al2O3 film using an atomic-layer-deposition (ALD) method with an H2O oxidant at 450 °C [29]. They could show that this film does not destroy the C–H bonds as well as the
PDF
Album
Letter
Published 16 Nov 2016

Sb2S3 grown by ultrasonic spray pyrolysis and its application in a hybrid solar cell

  • Erki Kärber,
  • Atanas Katerski,
  • Ilona Oja Acik,
  • Arvo Mere,
  • Valdek Mikli and
  • Malle Krunks

Beilstein J. Nanotechnol. 2016, 7, 1662–1673, doi:10.3762/bjnano.7.158

Graphical Abstract
  • -porous TiO2 as the electron conductor have reached a conversion efficiency of 7.5% when post-deposition sulfurization and thermal treatment of Sb2S3 were used [17]. The introduction of atomic layer deposition (ALD) for growing Sb2S3 onto a meso-porous TiO2 substrate was successful with respective solar
  • cell efficiencies reaching from 2.6% in the first study in 2013 [19] up to 5.8% in 2014 [5]. The success was attributed to the conformity of the coating by the oxide-free Sb2S3 layer. Nevertheless, the initial product in ALD is also amorphous and requires an annealing stage to obtain crystalline Sb2S3
  • ] and by ALD [5][19]. The peak at 145 cm−1 attributed to TiO2 is also more pronounced in spectrum C2, presumably due to the higher transparency of the amorphous layer to the green laser beam when compared to regions with higher crystallinity (spectrum C1). Secondly, the 145 cm−1 peak appears to be more
PDF
Album
Supp Info
Full Research Paper
Published 10 Nov 2016
Other Beilstein-Institut Open Science Activities