Search results

Search for "AFM" in Full Text gives 725 result(s) in Beilstein Journal of Nanotechnology. Showing first 200.

Application of contact-resonance AFM methods to polymer samples

  • Sebastian Friedrich and
  • Brunero Cappella

Beilstein J. Nanotechnol. 2020, 11, 1714–1727, doi:10.3762/bjnano.11.154

Graphical Abstract
  • Sebastian Friedrich Brunero Cappella Federal Institute for Material Research and Testing (BAM), Unter den Eichen 87, 12205 Berlin, Germany 10.3762/bjnano.11.154 Abstract Contact-resonance AFM (CR-AFM) has been used in recent years for the measurement of mechanical properties of rather stiff
  • materials, such as ceramics or metals, but also of some polymers. Compared with other techniques providing information on the mechanical properties of a sample, notably force–distance curves, CR-AFM has a much shorter acquisition time. This compensates in part the incomplete theoretical understanding of the
  • . Keywords: atomic force microscopy; contact resonance; mechanical properties; polymers; wear; Introduction The development of new materials for applications on the nanoscale, such as thin polymer films, demands a reliable determination of their mechanical properties. Atomic force microscopy (AFM) is a very
PDF
Album
Supp Info
Full Research Paper
Published 12 Nov 2020

Out-of-plane surface patterning by subsurface processing of polymer substrates with focused ion beams

  • Serguei Chiriaev,
  • Luciana Tavares,
  • Vadzim Adashkevich,
  • Arkadiusz J. Goszczak and
  • Horst-Günter Rubahn

Beilstein J. Nanotechnol. 2020, 11, 1693–1703, doi:10.3762/bjnano.11.151

Graphical Abstract
  • microscopy (AFM) image and the corresponding depth profile for a surface region of the Pt60Pd40/PMMA sample irradiated with He+ FIB at a fluence of 1.0 × 1016 cm−2. It is evident that the irradiation homogeneously lowers the entire irradiated surface to a depth of approx. 80 nm. For convenience, we define
  • cm−2, the values of the root-mean-square (RMS) roughness, measured with AFM in the irradiated areas, were approx. 0.7 and 4.4 nm for irradiation with He+ and Ga+ ions, respectively. The RMS roughness value of the pristine sample was approx. 0.6 nm. The irradiation with Ne+ ions also significantly
  • of the cells in rows 1 and 2 in Figure 4a and confirmed by AFM imaging in Figure 4b. These effects are attributed to the accumulation of gases from radiolysis at the Au film/PMMA interface and to the pressure that becomes, at a certain fluence and at certain places, sufficiently high to delaminate
PDF
Album
Supp Info
Full Research Paper
Published 06 Nov 2020

PTCDA adsorption on CaF2 thin films

  • Philipp Rahe

Beilstein J. Nanotechnol. 2020, 11, 1615–1622, doi:10.3762/bjnano.11.144

Graphical Abstract
  • [27][28][29]. PTCDA molecules were deposited from custom-built Knudsen cells heated to 290–300 °C. Samples were held at room temperature during deposition unless noted otherwise. STM data were acquired at 77 or 5 K using a ScientaOmicron qPlus LT AFM/STM operated by a MATRIX controller and an atom
PDF
Album
Full Research Paper
Published 26 Oct 2020

Detecting stable adsorbates of (1S)-camphor on Cu(111) with Bayesian optimization

  • Jari Järvi,
  • Patrick Rinke and
  • Milica Todorović

Beilstein J. Nanotechnol. 2020, 11, 1577–1589, doi:10.3762/bjnano.11.140

Graphical Abstract
  • electronic properties of the material. Assemblies of organic molecules on surfaces have been studied experimentally, for example with X-ray diffraction [4][5], scanning tunneling microscopy [6][7][8] and atomic force microscopy (AFM) [9][10][11]. These methods have a considerable resolution in imaging planar
  • shortened as camphor) on the Cu(111) surface. Camphor is an exemplary case of a bulky molecule, which is difficult to image with microscopy. AFM experiments [35] have revealed various different conformers of camphor on Cu(111), which makes it ideal for benchmarking the BOSS method. Our objective is to
  • observed in experiments. The adsorption of camphor on Cu(111) has been studied experimentally with AFM by Alldritt and co-workers [35]. In their images, they have observed various different adsorbate structures, which shows that camphor can adsorb on Cu(111) in multiple stable configurations. In the
PDF
Album
Supp Info
Full Research Paper
Published 19 Oct 2020

Fabrication of nano/microstructures for SERS substrates using an electrochemical method

  • Jingran Zhang,
  • Tianqi Jia,
  • Xiaoping Li,
  • Junjie Yang,
  • Zhengkai Li,
  • Guangfeng Shi,
  • Xinming Zhang and
  • Zuobin Wang

Beilstein J. Nanotechnol. 2020, 11, 1568–1576, doi:10.3762/bjnano.11.139

Graphical Abstract
  • over a 20 × 20 μm2 area. Before the tests, the Raman spectra were rectified using a standard Si substrate. A Raman intensity peak of 1362 cm−1 for R6G was chosen in the experiment. An atomic force microscopy (AFM) system (Dimension Icon, Bruker, Germany) was employed to detect the two-dimensional and
  • that process. As a result, the average diameter of the pores increases as the duration of PEO duration increases. Figure 3 shows AFM images of the arrayed nanopores after fabrication with different treatment times. After 1 min, the nanopore diameter and depth were 0.7 ± 0.25 µm and 0.5 ± 0.16 µm
  • 10 min, the nanopore diameter and depth were 7.2 ± 0.3 µm and 5 ± 0.5 µm, respectively, as shown in Figure 3d. Thus, a 10 min treatment time led to the formation of pores with microscale structure. A three-dimensional AFM image of arrayed nanopores after a treatment time of 5 min is shown in Figure
PDF
Album
Full Research Paper
Published 16 Oct 2020

Design of V-shaped cantilevers for enhanced multifrequency AFM measurements

  • Mehrnoosh Damircheli and
  • Babak Eslami

Beilstein J. Nanotechnol. 2020, 11, 1525–1541, doi:10.3762/bjnano.11.135

Graphical Abstract
  • microscopy (AFM) in soft matter characterization has expanded, the use of different types of cantilevers for these studies have also increased. One of the most common types of cantilevers used in soft matter imaging is V-shaped cantilevers due to their low normal spring constant. These types of cantilevers
  • no studies on the static and dynamic behavior of V-shaped cantilevers in multifrequency AFM due to their complex geometry. In this work, the static and dynamic properties of V-shaped cantilevers are studied while investigating their performance in multifrequency AFM (specifically bimodal AFM). By
  • dimensions, the optimum V-shaped cantilever that can provide the maximum phase contrast in bimodal AFM between gold (Au) and polystyrene (PS) is found. Based on this study, it is found that as the length of the cantilever increases the 2nd eigenmode phase contrast decreases. However, the base width exhibits
PDF
Album
Supp Info
Full Research Paper
Published 06 Oct 2020

Protruding hydrogen atoms as markers for the molecular orientation of a metallocene

  • Linda Laflör,
  • Michael Reichling and
  • Philipp Rahe

Beilstein J. Nanotechnol. 2020, 11, 1432–1438, doi:10.3762/bjnano.11.127

Graphical Abstract
  • acid (FDCA) molecules on bulk and thin film CaF2(111) surfaces with non-contact atomic force microscopy (NC-AFM). We use NC-AFM image calculations with the probe particle model to interpret this distinct shape by repulsive interactions between the NC-AFM tip and the top hydrogen atoms of the
  • cyclopentadienyl (Cp) rings. Simulated NC-AFM images show an excellent agreement with experimental constant-height NC-AFM data of FDCA molecules at several tip–sample distances. By measuring this distinct dumbbell shape together with the molecular orientation, a strategy is proposed to determine the conformation
  • employed for the investigation of both ordered and unordered molecular systems as well as of individual and isolated species [4][5][6]. For example, two different non-planar isomers of dibenzo[a,h]thianthrene molecules could be identified by high-resolution non-contact atomic force microscopy (NC-AFM) [7
PDF
Album
Full Research Paper
Published 22 Sep 2020

On the frequency dependence of viscoelastic material characterization with intermittent-contact dynamic atomic force microscopy: avoiding mischaracterization across large frequency ranges

  • Enrique A. López-Guerra and
  • Santiago D. Solares

Beilstein J. Nanotechnol. 2020, 11, 1409–1418, doi:10.3762/bjnano.11.125

Graphical Abstract
  • Enrique A. Lopez-Guerra Santiago D. Solares The George Washington University, Department of Mechanical and Aerospace Engineering, Washington, DC 20052, USA Park Systems Inc., Santa Clara, CA, 95054, USA 10.3762/bjnano.11.125 Abstract Atomic force microscopy (AFM) is a widely use technique to
  • response of which depends on the rate of application of the stresses imparted by the AFM tip. The mechanical response of these materials thus depends strongly on the frequency at which the characterization is performed, so much so that important aspects of behavior may be missed if one chooses an arbitrary
  • characterization frequency regardless of the materials properties. In this paper we present a linear viscoelastic analysis of intermittent-contact, nearly resonant dynamic AFM characterization of such materials, considering the possibility of multiple characteristic times. We describe some of the intricacies
PDF
Album
Full Research Paper
Published 15 Sep 2020

Atomic defect classification of the H–Si(100) surface through multi-mode scanning probe microscopy

  • Jeremiah Croshaw,
  • Thomas Dienel,
  • Taleana Huff and
  • Robert Wolkow

Beilstein J. Nanotechnol. 2020, 11, 1346–1360, doi:10.3762/bjnano.11.119

Graphical Abstract
  • Nanotechnology Research Centre, National Research Council Canada, Edmonton, Alberta, T6G 2M9, Canada 10.3762/bjnano.11.119 Abstract The combination of scanning tunnelling microscopy (STM) and non-contact atomic force microscopy (nc-AFM) allows enhanced extraction and correlation of properties not readily
  • same side of two neighbouring dimers. Subsequently, the latter had been reassigned as an H, OH pair originating from dissociative attachment of a residual water molecule in the vacuum system [15][16][17]. Further insights became available by non-contact atomic force microscopy (nc-AFM), separating the
  • of the H-terminated Si(100)-2 × 1 surface, its structural features, and defects. Six different scanning probe imaging modes are performed using both STM and nc-AFM. By combining the accessible information with probe particle simulations [23][24] (presented in Supporting Information File 1) of the
PDF
Album
Supp Info
Full Research Paper
Published 07 Sep 2020

Controlling the proximity effect in a Co/Nb multilayer: the properties of electronic transport

  • Sergey Bakurskiy,
  • Mikhail Kupriyanov,
  • Nikolay V. Klenov,
  • Igor Soloviev,
  • Andrey Schegolev,
  • Roman Morari,
  • Yury Khaydukov and
  • Anatoli S. Sidorenko

Beilstein J. Nanotechnol. 2020, 11, 1336–1345, doi:10.3762/bjnano.11.118

Graphical Abstract
  • interface of the bulk semiconductor electrode, with thickness LS = 10ξS. In addition, we considered the proximity effect of an artificial ferromagnetic material (AFM), consisting of alternating thin superconducting (LS = 1ξS) and ferromagnetic layers, with an exchange energy of H = 10TC. In an AFM, every
  • parallel (solid lines) and antiparallel (dashed lines) magnetization orientations at low, T = 0.25TC (panel b), and high, T = 0.6TC (panel c), temperature values. The real part of F1(x) decreases inside the AFM almost exponentially, with a small step-like modulation in thin superconducting layers. In the
  • , predicted in the model, for the pair potential in thin s-layers of a [Co(1.5 nm)/Nb(8 nm)/Co(2.5 nm)/Nb(8 nm)]3 AFM. For these superlattices, the possibility of switching between the P and AP cases, using a magnetic field with an intensity of ≈30 oersteds, has already been demonstrated [9]. The samples were
PDF
Album
Full Research Paper
Published 07 Sep 2020

An atomic force microscope integrated with a helium ion microscope for correlative nanoscale characterization

  • Santiago H. Andany,
  • Gregor Hlawacek,
  • Stefan Hummel,
  • Charlène Brillard,
  • Mustafa Kangül and
  • Georg E. Fantner

Beilstein J. Nanotechnol. 2020, 11, 1272–1279, doi:10.3762/bjnano.11.111

Graphical Abstract
  • -Zentrum Dresden-Rossendorf, Dresden 01328, Germany GETec Microscopy GmbH, Vienna 1220, Austria 10.3762/bjnano.11.111 Abstract In this work, we report on the integration of an atomic force microscope (AFM) into a helium ion microscope (HIM). The HIM is a powerful instrument, capable of imaging and
  • machining of nanoscale structures with sub-nanometer resolution, while the AFM is a well-established versatile tool for multiparametric nanoscale characterization. Combining the two techniques opens the way for unprecedented in situ correlative analysis at the nanoscale. Nanomachining and analysis can be
  • performed without contamination of the sample and environmental changes between processing steps. The practicality of the resulting tool lies in the complementarity of the two techniques. The AFM offers not only true 3D topography maps, something the HIM can only provide in an indirect way, but also allows
PDF
Album
Full Research Paper
Published 26 Aug 2020

Ultrasensitive detection of cadmium ions using a microcantilever-based piezoresistive sensor for groundwater

  • Dinesh Rotake,
  • Anand Darji and
  • Nitin Kale

Beilstein J. Nanotechnol. 2020, 11, 1242–1253, doi:10.3762/bjnano.11.108

Graphical Abstract
  • . It was calibrated using atomic force microscopy (AFM) [40]. The process begins with thermal oxidation of Si at 1000 °C using an oxidation furnace to obtain a thermally grown SiO2 layer followed by masking and etching to get the desired pattern. The polysilicon is deposited in a low-pressure chemical
  • vapor deposition (LPCVD) furnace at 630 °C and boron doping (1018 per cm3) is carried out using ion implantation at 35 keV. The upper SiO2 layer is formed by re-oxidizing the polysilicon in an oxidation furnace [40]. The stiffness (k) of the fabricated piezoresistive sensor measured using AFM is 131–146
PDF
Album
Full Research Paper
Published 18 Aug 2020

High permittivity, breakdown strength, and energy storage density of polythiophene-encapsulated BaTiO3 nanoparticles

  • Adnanullah Khan,
  • Amir Habib and
  • Adeel Afzal

Beilstein J. Nanotechnol. 2020, 11, 1190–1197, doi:10.3762/bjnano.11.103

Graphical Abstract
  • studied using atomic force microscopy, after depositing the samples on quartz wafers. Figure 5 shows the 2D- and 3D-AFM images of BTO, BTO-PTh, and PTh samples along with their surface profiles. The micrographs of BTO nanoparticles show the presence of clusters on the surface. This is in agreement with
  • tetragonal BTO lattice (JCPDS No. 05-0626), while peaks denoted by (*) correspond to the orthorhombic BaSO4 impurities. SEM images of the as-prepared BTO nanoparticles (a) and the core–shell BTO-PTh nanoparticles (b). The core–shell structure of BTO-PTh nanoparticles is demonstrated in panels (c, d). AFM
PDF
Album
Full Research Paper
Published 10 Aug 2020

Hybridization vs decoupling: influence of an h-BN interlayer on the physical properties of a lander-type molecule on Ni(111)

  • Maximilian Schaal,
  • Takumi Aihara,
  • Marco Gruenewald,
  • Felix Otto,
  • Jari Domke,
  • Roman Forker,
  • Hiroyuki Yoshida and
  • Torsten Fritz

Beilstein J. Nanotechnol. 2020, 11, 1168–1177, doi:10.3762/bjnano.11.101

Graphical Abstract
  • investigated in reciprocal space using an Omicron MCP-LEED (MCP2-SPECTALEED) and in real space by LT-STM using a JT-STM/AFM (SPECS Surface Nano Analysis GmbH) with a tungsten tip operated at 4.5 K. We used the non-commercial software LEEDCal [49] for the distortion correction of the LEED images and the
PDF
Album
Supp Info
Full Research Paper
Published 04 Aug 2020

Revealing the local crystallinity of single silicon core–shell nanowires using tip-enhanced Raman spectroscopy

  • Marius van den Berg,
  • Ardeshir Moeinian,
  • Arne Kobald,
  • Yu-Ting Chen,
  • Anke Horneber,
  • Steffen Strehle,
  • Alfred J. Meixner and
  • Dai Zhang

Beilstein J. Nanotechnol. 2020, 11, 1147–1156, doi:10.3762/bjnano.11.99

Graphical Abstract
  • antenna. This nanoantenna is typically made by chemical etching of a thin Ag or Au wire or by evaporating a Ag or Au thin film on AFM tips. The tip works like an optical antenna when it is brought as close as a few nanometers to the sample surface and when it is illuminated with a tightly focused laser
PDF
Album
Supp Info
Full Research Paper
Published 31 Jul 2020

Extracting viscoelastic material parameters using an atomic force microscope and static force spectroscopy

  • Cameron H. Parvini,
  • M. A. S. R. Saadi and
  • Santiago D. Solares

Beilstein J. Nanotechnol. 2020, 11, 922–937, doi:10.3762/bjnano.11.77

Graphical Abstract
  • microscopy (AFM) techniques have provided and continue to provide increasingly important insights into surface morphology, mechanics, and other critical material characteristics at the nanoscale. One attractive implementation involves extracting meaningful material properties, which demands physically
  • accurate models specifically designed for AFM experimentation and simulation. The AFM community has pursued the precise quantification and extraction of rate-dependent material properties, in particular, for a significant period of time, attempting to describe the standard viscoelastic response of
  • materials. AFM static force spectroscopy (SFS) is one approach commonly used in pursuit of this goal. It is capable of acquiring rich temporal insight into the behavior of a sample. During AFM-SFS experiments the cantilever base approaches samples with a nearly constant velocity, which is manipulated to
PDF
Album
Supp Info
Correction
Full Research Paper
Published 16 Jun 2020

Measurement of electrostatic tip–sample interactions by time-domain Kelvin probe force microscopy

  • Christian Ritz,
  • Tino Wagner and
  • Andreas Stemmer

Beilstein J. Nanotechnol. 2020, 11, 911–921, doi:10.3762/bjnano.11.76

Graphical Abstract
  • , including the component arising from the bias modulation. This constitutes an important improvement over conventional techniques and paves the way for more reliable and accurate measurements of electrostatics and topography. Keywords: atomic force microscopy (AFM); electrostatic height error; extended
  • Kalman filter; Kelvin probe force microscopy (KFM); time domain; Introduction Electrostatic forces are important interactions in non-contact atomic force microscopy (NC-AFM). They arise from differences in the work function of the tip and the sample, from trapped charges, or from potentials applied to
  • FM-AFM can be separated into a component induced by surface topography, Δftopo, and a component induced electrically, Δfel, therefore The coefficient a is proportional to the capacitance gradient C′′ and has the unit of Hz V−2. It is one of the three sample properties that are continuously estimated
PDF
Album
Supp Info
Full Research Paper
Published 15 Jun 2020

Band tail state related photoluminescence and photoresponse of ZnMgO solid solution nanostructured films

  • Vadim Morari,
  • Aida Pantazi,
  • Nicolai Curmei,
  • Vitalie Postolache,
  • Emil V. Rusu,
  • Marius Enachescu,
  • Ion M. Tiginyanu and
  • Veaceslav V. Ursaki

Beilstein J. Nanotechnol. 2020, 11, 899–910, doi:10.3762/bjnano.11.75

Graphical Abstract
  • microscopy (AFM), UV–vis spectroscopy, photoluminescence (PL) and resistivity measurements in Zn1−xMgxO thin films deposited by the sol–gel spin-coating route in the composition range x = 0.00–0.40 [23]. It was found that the phase segregation manifests itself starting at a Mg content of x = 0.25. However
  • pyrolysis. The roughness parameters of films were determined from the analysis of AFM images as published in our previous paper [28]. Graphical representations of the AFM profiles for films prepared by spin coating and aerosol spray pyrolysis are presented in Figure 1b. The RMS values deduced from the AFM
  • °C with the morphology of the film prepared by spin coating annealed at 650 °C. The analysis of the morphology in Figure 2a and Figure 2b corroborate the results of the AFM analysis revealing a larger roughness of films prepared by spin coating as compared to those prepared by aerosol spray pyrolysis
PDF
Album
Full Research Paper
Published 12 Jun 2020

Three-dimensional solvation structure of ethanol on carbonate minerals

  • Hagen Söngen,
  • Ygor Morais Jaques,
  • Peter Spijker,
  • Christoph Marutschke,
  • Stefanie Klassen,
  • Ilka Hermes,
  • Ralf Bechstein,
  • Lidija Zivanovic,
  • John Tracey,
  • Adam S. Foster and
  • Angelika Kühnle

Beilstein J. Nanotechnol. 2020, 11, 891–898, doi:10.3762/bjnano.11.74

Graphical Abstract
  • surfaces interact with a large variety of organic molecules, which can result in surface restructuring. This process is decisive for the formation of biominerals. With the development of 3D atomic force microscopy (AFM) it is now possible to image solid–liquid interfaces with unprecedented molecular
  • resolution. However, the majority of 3D AFM studies have been focused on the arrangement of water at carbonate surfaces. Here, we present an analysis of the assembly of ethanol – an organic molecule with a single hydroxy group – at the calcite and magnesite (10.4) surfaces by using high-resolution 3D AFM and
  • molecular dynamics (MD) simulations. Within a single AFM data set we are able to resolve both the first laterally ordered solvation layer of ethanol on the calcite surface as well as the following solvation layers that show no lateral order. Our experimental results are in excellent agreement with MD
PDF
Album
Supp Info
Full Research Paper
Published 10 Jun 2020

Templating effect of single-layer graphene supported by an insulating substrate on the molecular orientation of lead phthalocyanine

  • K. Priya Madhuri,
  • Abhay A. Sagade,
  • Pralay K. Santra and
  • Neena S. John

Beilstein J. Nanotechnol. 2020, 11, 814–820, doi:10.3762/bjnano.11.66

Graphical Abstract
  • specific device applications. Keywords: conducting atomic force microscopy (C-AFM); lead phthalocyanine (PbPc); molecular orientation; single-layer graphene; substrate effect; two-dimensional grazing incidence X-ray diffraction (2D-GIXRD); Introduction Organic semiconductors have been extensively used in
  • molecules with monoclinic and triclinic fractions on the surface of SLG/SiO2/Si is inferred in Figure 4. The topography of the PbPc layer was studied using atomic force microscopy (AFM, Figure 5). Figure 5a and the inset show that the film consists of granular PbPc crystallites deposited uniformly on the
  • electrical studies using conducting-AFM (C-AFM). Figure 6a,b shows the topography and the corresponding current map of the film. The current response map shows an average current value of about 1 nA across the surface with highly conducting grains, which exhibit current values as high as 8–9 nA (Figure 6c
PDF
Album
Full Research Paper
Published 19 May 2020

Light–matter interactions in two-dimensional layered WSe2 for gauging evolution of phonon dynamics

  • Avra S. Bandyopadhyay,
  • Chandan Biswas and
  • Anupama B. Kaul

Beilstein J. Nanotechnol. 2020, 11, 782–797, doi:10.3762/bjnano.11.63

Graphical Abstract
PDF
Album
Supp Info
Full Research Paper
Published 12 May 2020

Hexagonal boron nitride: a review of the emerging material platform for single-photon sources and the spin–photon interface

  • Stefania Castelletto,
  • Faraz A. Inam,
  • Shin-ichiro Sato and
  • Alberto Boretti

Beilstein J. Nanotechnol. 2020, 11, 740–769, doi:10.3762/bjnano.11.61

Graphical Abstract
PDF
Album
Review
Published 08 May 2020

Quantitative determination of the interaction potential between two surfaces using frequency-modulated atomic force microscopy

  • Nicholas Chan,
  • Carrie Lin,
  • Tevis Jacobs,
  • Robert W. Carpick and
  • Philip Egberts

Beilstein J. Nanotechnol. 2020, 11, 729–739, doi:10.3762/bjnano.11.60

Graphical Abstract
  • frequency-modulated atomic force microscopy (AFM). Furthermore, this technique can be extended to the experimental verification of potential forms for any given material pair. Specifically, interaction forces are determined between an AFM tip apex and a nominally flat substrate using dynamic force
  • then compared to experimental results. The method is demonstrated here using a silicon AFM probe with its native oxide and a diamond sample. Assuming the 6-12 Lennard-Jones potential form, best-fit values for the work of adhesion (Wadh) and range of adhesion (z0) parameters were determined to be 80
  • AFM; interaction potential; Lennard-Jones; surfaces; Introduction Knowledge of material interface interaction behavior is crucial to the design of nanometer-scale devices and processes, such as high-density hard disk storage [1], digital light processing (DLP) projectors [2][3], atomic force
PDF
Album
Full Research Paper
Published 06 May 2020

Stochastic excitation for high-resolution atomic force acoustic microscopy imaging: a system theory approach

  • Edgar Cruz Valeriano,
  • José Juan Gervacio Arciniega,
  • Christian Iván Enriquez Flores,
  • Susana Meraz Dávila,
  • Joel Moreno Palmerin,
  • Martín Adelaido Hernández Landaverde,
  • Yuri Lizbeth Chipatecua Godoy,
  • Aime Margarita Gutiérrez Peralta,
  • Rafael Ramírez Bon and
  • José Martín Yañez Limón

Beilstein J. Nanotechnol. 2020, 11, 703–716, doi:10.3762/bjnano.11.58

Graphical Abstract
  • –sample interaction is excited with a white-noise signal. Then, a fast Fourier transform is applied to the deflection signal that comes from the photodiodes of the atomic force microscopy (AFM) equipment. This approach allows for the measurement of several vibrational modes in a single step with high
  • frequency resolution, with less computational cost and at a faster speed than other similar techniques. This technique is referred to as stochastic atomic force acoustic microscopy (S-AFAM), and the frequency shifts of the free resonance frequencies of an AFM cantilever are used to determine the mechanical
  • properties of a material. S-AFAM is implemented and compared with a conventional technique (resonance tracking-atomic force acoustic microscopy, RT-AFAM). A sample of a graphite film on a glass substrate is analyzed. S-AFAM can be implemented in any AFM system due to its reduced instrumentation requirements
PDF
Album
Full Research Paper
Published 04 May 2020

Structural optical and electrical properties of a transparent conductive ITO/Al–Ag/ITO multilayer contact

  • Aliyu Kabiru Isiyaku,
  • Ahmad Hadi Ali and
  • Nafarizal Nayan

Beilstein J. Nanotechnol. 2020, 11, 695–702, doi:10.3762/bjnano.11.57

Graphical Abstract
  • fraction of Sn is low because it is the dopant element in ITO. The low content of Al is attributed to the very thin layer. The EDXS spectra of the films before and after annealing are shown in Figure 2. The surface morphology of the IAAI and ITO films was studied using atomic force microscopy (AFM) of an
  • this annealing temperature. The films surface roughness results obtained from FESEM and AFM are in good agreement. The optical characteristics of the as-deposited and annealed IAAI and ITO films measured by UV–vis spectrophotometry are shown in Figure 5. It can be seen, that the annealed IAAI and ITO
  • , OXFORD X-MAX, Energy 200 premium was used. Morphological analyses by atomic force microscopic An AFM Standard Operation AFM5010 Hitachi model in tapping mode was used to examine the surface morphology of the films. Root mean square Rrms and average Ra roughness plus morphological grain size analyses were
PDF
Album
Full Research Paper
Published 27 Apr 2020
Other Beilstein-Institut Open Science Activities