Search results

Search for "sensor" in Full Text gives 438 result(s) in Beilstein Journal of Nanotechnology. Showing first 200.

Growth dynamics and light scattering of gold nanoparticles in situ synthesized at high concentration in thin polymer films

  • Corentin Guyot,
  • Philippe Vandestrick,
  • Ingrid Marenne,
  • Olivier Deparis and
  • Michel Voué

Beilstein J. Nanotechnol. 2019, 10, 1768–1777, doi:10.3762/bjnano.10.172

Graphical Abstract
  • constitute a set of coordinates for the emergence directions. Each direction is mapped to a point on a disk on the Fourier plane, before the image is transferred to a CCD sensor. The sensor measures therefore all the intensities in the disk-shaped map, which contains a planar projection of the intensity
PDF
Album
Supp Info
Full Research Paper
Published 23 Aug 2019

Remarkable electronic and optical anisotropy of layered 1T’-WTe2 2D materials

  • Qiankun Zhang,
  • Rongjie Zhang,
  • Jiancui Chen,
  • Wanfu Shen,
  • Chunhua An,
  • Xiaodong Hu,
  • Mingli Dong,
  • Jing Liu and
  • Lianqing Zhu

Beilstein J. Nanotechnol. 2019, 10, 1745–1753, doi:10.3762/bjnano.10.170

Graphical Abstract
  • great promise for future photodetector applications. Angle- and wavelength-dependent photodetector To evaluate the potential application of 1T’-WTe2 as a photoelectric sensor we also performed another angle-resolved photoelectric measurement. In this test, we first fixed the incident wavelength at 633
PDF
Album
Correction
Full Research Paper
Published 20 Aug 2019

Materials nanoarchitectonics at two-dimensional liquid interfaces

  • Katsuhiko Ariga,
  • Michio Matsumoto,
  • Taizo Mori and
  • Lok Kumar Shrestha

Beilstein J. Nanotechnol. 2019, 10, 1559–1587, doi:10.3762/bjnano.10.153

Graphical Abstract
  • with platinum interdigitated electrodes. An excellent sensor capability for H2 gas in humid air at room temperature was observed for a film of 10 layers of the aligned one-dimensional W18O49 nanowires. Various additional techniques to fabricate two-dimensional structures have been proposed. Advincula
PDF
Album
Review
Published 30 Jul 2019

High-temperature resistive gas sensors based on ZnO/SiC nanocomposites

  • Vadim B. Platonov,
  • Marina N. Rumyantseva,
  • Alexander S. Frolov,
  • Alexey D. Yapryntsev and
  • Alexander M. Gaskov

Beilstein J. Nanotechnol. 2019, 10, 1537–1547, doi:10.3762/bjnano.10.151

Graphical Abstract
  • °C. The ZnO/SiC nanocomposites were characterized by a higher concentration of chemisorbed oxygen, higher activation energy of conductivity, and higher sensor response towards CO and NH3 as compared with ZnO nanofibers. The obtained experimental results were interpreted in terms of the formation of
  • an n–n heterojunction at the ZnO/SiC interface. Keywords: electrospinning; high temperature gas sensor; n–n heterojunction; ZnO/SiC nanocomposite; Introduction The risk of air pollution is growing due to the development of new technologies in the chemical, metallurgical and food industries, the use
  • oxides, such as SnO2, ZnO, WO3, and In2O3, that have been widely used in resistive gas sensors cannot be applied directly, primarily due to the drift of the sensor parameters at temperatures above 500 °C. The stability of nanostructured semiconductor oxides at high temperature can be enhanced by creating
PDF
Album
Supp Info
Full Research Paper
Published 26 Jul 2019

Selective gas detection using Mn3O4/WO3 composites as a sensing layer

  • Yongjiao Sun,
  • Zhichao Yu,
  • Wenda Wang,
  • Pengwei Li,
  • Gang Li,
  • Wendong Zhang,
  • Lin Chen,
  • Serge Zhuivkov and
  • Jie Hu

Beilstein J. Nanotechnol. 2019, 10, 1423–1433, doi:10.3762/bjnano.10.140

Graphical Abstract
  • between the two metal oxides. The sensor based on the Mn3O4/WO3 composite with 3 atom % Mn showed a high selective response to hydrogen sulfide (H2S), ammonia (NH3) and carbon monoxide (CO) at working temperatures of 90 °C, 150 °C and 210 °C, respectively. The demonstrated superior selectivity opens the
  • to enhance the selectivity of WO3-based gas sensors. Previous studies found that the gas sensing response of pure phase WO3 is usually low and improving this response for a particular gas could simultaneously enhance their selectivity [7][8][9]. Kabcum et al. developed a sensor based on PdO
  • Cr2O3-functionalzied WO3 nanorod sensor had better selectivity toward ethanol than that of pristine WO3 [11]. From previous reports, it is almost certainly clear that catalytic Mn3O4 attached to WO3 should promote the gas sensing reactions, and the Mn3O4/WO3 composite is expected to be a more effective
PDF
Album
Supp Info
Full Research Paper
Published 17 Jul 2019

Gas sensing properties of individual SnO2 nanowires and SnO2 sol–gel nanocomposites

  • Alexey V. Shaposhnik,
  • Dmitry A. Shaposhnik,
  • Sergey Yu. Turishchev,
  • Olga A. Chuvenkova,
  • Stanislav V. Ryabtsev,
  • Alexey A. Vasiliev,
  • Xavier Vilanova,
  • Francisco Hernandez-Ramirez and
  • Joan R. Morante

Beilstein J. Nanotechnol. 2019, 10, 1380–1390, doi:10.3762/bjnano.10.136

Graphical Abstract
  • sensor response due to the unlikelihood of sample recrystallization. The results from the ammonia detection experiments showed that the ratio of the sensor response to the surface area exhibits similar values for both the individual nanowire and nanopowders-based sensor materials. Keywords: gas sensors
  • ; gas transport method; nanowires; quasi-one-dimensional materials; sol–gel synthesis; tin dioxide; X-ray absorption near edge structure (XANES); X-ray photoelectron spectroscopy (XPS); Introduction Semiconductor sensor functionality relies on heterogeneous catalytic chemical processes, which makes the
  • mainstream process in sensor development, because researchers have reached the limits of this method. For this reason, the interest in the development of nanowire devices (i.e., quasi-1-dimensional objects) has increased. Their surface-to-volume ratio can be as high as that of nanopowders obtained from
PDF
Album
Full Research Paper
Published 08 Jul 2019

Highly ordered mesoporous silica film nanocomposites containing gold nanoparticles for the catalytic reduction of 4-nitrophenol

  • Mohamad Azani Jalani,
  • Leny Yuliati,
  • Siew Ling Lee and
  • Hendrik O. Lintang

Beilstein J. Nanotechnol. 2019, 10, 1368–1379, doi:10.3762/bjnano.10.135

Graphical Abstract
  • complex ([Au3Pz3]C10TEG) as a self-assembled template. Indeed, the resulting mesostructured silica nanocomposites not only exhibited perfect self-repairing properties, but also worked as a metal ion sensor [26] with excellent phosphorescent sensing and temperature imaging capabilities [27]. Hence, it is
PDF
Album
Supp Info
Full Research Paper
Published 05 Jul 2019

Nanoscale spatial mapping of mechanical properties through dynamic atomic force microscopy

  • Zahra Abooalizadeh,
  • Leszek Josef Sudak and
  • Philip Egberts

Beilstein J. Nanotechnol. 2019, 10, 1332–1347, doi:10.3762/bjnano.10.132

Graphical Abstract
  • the force sensor were determined under ultrahigh vacuum using the beam-geometry method, involving the measurement of the frequency of the first normal oscillation mode to determine the thickness of the cantilever [26]. The normal stiffness of the cantilevers was determined to be in the range of 0.25
PDF
Album
Full Research Paper
Published 03 Jul 2019

Janus-micromotor-based on–off luminescence sensor for active TNT detection

  • Ye Yuan,
  • Changyong Gao,
  • Daolin Wang,
  • Chang Zhou,
  • Baohua Zhu and
  • Qiang He

Beilstein J. Nanotechnol. 2019, 10, 1324–1331, doi:10.3762/bjnano.10.131

Graphical Abstract
  • Kuang Jie 2, Harbin 150080, China 10.3762/bjnano.10.131 Abstract An active TNT (2,4,6-trinitrotoluene) catalytic sensor based on Janus upconverting nanoparticle (UCNP)-functionalized micromotor capsules, displaying “on–off” luminescence with a low limit of detection has been developed. The Janus
  • developed a micromotor-based active sensor for the detection of TNT based on the on–off luminescence of a Janus UCNP capsule motor. The Janus UCNP capsule motors were fabricated by layer-by-layer assembly combined with vacuum deposition. These Janus motors with a catalytic Pt layer can be propelled by
PDF
Album
Supp Info
Full Research Paper
Published 28 Jun 2019

A biomimetic nanofluidic diode based on surface-modified polymeric carbon nitride nanotubes

  • Kai Xiao,
  • Baris Kumru,
  • Lu Chen,
  • Lei Jiang,
  • Bernhard V. K. J. Schmidt and
  • Markus Antonietti

Beilstein J. Nanotechnol. 2019, 10, 1316–1323, doi:10.3762/bjnano.10.130

Graphical Abstract
  • with ion rectification have the potential to be used in salinity-gradient energy conversion and ion sensor systems. Keywords: carbon nitride; ion transport; nanochannel; nanofluidic system; photofunctionalization; Introduction Ion transport is the basis of energy and sensory systems in living
  • simple fabrication process, the CNNM with ion rectification has the potential to be used in the energy generation through salinity gradients and ion sensor system. Experimental Materials: Unless otherwise noted, all of the commercial reagents were used as received. Allylamine (98%, Sigma-Aldrich), 3
PDF
Album
Supp Info
Full Research Paper
Published 27 Jun 2019

Multicomponent bionanocomposites based on clay nanoarchitectures for electrochemical devices

  • Giulia Lo Dico,
  • Bernd Wicklein,
  • Lorenzo Lisuzzo,
  • Giuseppe Lazzara,
  • Pilar Aranda and
  • Eduardo Ruiz-Hitzky

Beilstein J. Nanotechnol. 2019, 10, 1303–1315, doi:10.3762/bjnano.10.129

Graphical Abstract
  • nanocomposite interface. B) Effect of glucose on the Film-GOx sample in CV measurement in PBS, pH 7 and 0.1 mM of potassium ferricyanide at a scan rate of 5 mV·s−1. C) Sensor response as a function of the glucose concentration. The red line is a linear fit. ΔI = steady-state current at 0.45 V. D) LSV
PDF
Album
Supp Info
Full Research Paper
Published 25 Jun 2019

A silver-nanoparticle/cellulose-nanofiber composite as a highly effective substrate for surface-enhanced Raman spectroscopy

  • Yongxin Lu,
  • Yan Luo,
  • Zehao Lin and
  • Jianguo Huang

Beilstein J. Nanotechnol. 2019, 10, 1270–1279, doi:10.3762/bjnano.10.126

Graphical Abstract
  • bacterial nanocellulose adsorbed with gold nanoparticles in the form of a hydrogel had a detection limit of 1 × 10−9 M for R6G [54], the Au–Ag bimetallic microfluidic SERS sensor had a detection limit of 1 × 10−13 M for the same analyte [64]; and a detection limit of 1 × 10−6 M was offered by a hybrid
PDF
Album
Supp Info
Full Research Paper
Published 24 Jun 2019

Angle-dependent structural colors in a nanoscale-grating photonic crystal fabricated by reverse nanoimprint technology

  • Xu Zheng,
  • Qing Wang,
  • Jinjin Luan,
  • Yao Li,
  • Ning Wang and
  • Rui Zhang

Beilstein J. Nanotechnol. 2019, 10, 1211–1216, doi:10.3762/bjnano.10.120

Graphical Abstract
  • , there is a blue-shift of the peak wavelength when the observation angle is increased. An equation for the observed wavelength as a function of the observation angle is proposed. Keywords: observation angle; photonic crystal; reverse nanoimprint lithography; structural color; visualized sensor
  • ][17][18][19]. Duempelmann et al. fabricated asymmetric periodic nanostructures to explore the effects of the optical properties on the structural color [20]. Then, they used the photonic crystal as a strain sensor by mechanically changing the structural period to achieve the different structural
  • experimental results, a function for reflection wavelength and observation angle is proposed. These results are useful for a possible application as visual sensor. Results and Discussion Figure 1 shows scanning electron microscopy (SEM) images of the photonic crystal with nanoscale grating pattern. The top
PDF
Album
Full Research Paper
Published 11 Jun 2019

Direct growth of few-layer graphene on AlN-based resonators for high-sensitivity gravimetric biosensors

  • Jimena Olivares,
  • Teona Mirea,
  • Lorena Gordillo-Dagallier,
  • Bruno Marco,
  • José Miguel Escolano,
  • Marta Clement and
  • Enrique Iborra

Beilstein J. Nanotechnol. 2019, 10, 975–984, doi:10.3762/bjnano.10.98

Graphical Abstract
  • quartz crystal microbalances (QCMs), and can be configured in sensor arrays and integrated (on-wafer or in-package) along with their driving electronics and microfluidic arrangements, offering compact and inexpensive measurement systems [5][6]. Among the wide variety of thin-film resonators exploiting
  • sensor with the desired selectivity and sensitivity to the targeted species. Selectivity mainly depends on the specificity of the receptor (e.g., for proteins, aptamers or antibodies) to the targeted species and the non-specific binding degree of other species that can be achieved; effective
  • also account for the observed trend. The response of the SMR-based gravimetric sensor is comparable to that obtained in similar biosensors subjected to a silane-based functionalization [24]. Non-covalent functionalization According to previous studies [25], non-covalent binding is possible on pristine
PDF
Album
Full Research Paper
Published 29 Apr 2019

Experimental study of an evanescent-field biosensor based on 1D photonic bandgap structures

  • Jad Sabek,
  • Francisco Javier Díaz-Fernández,
  • Luis Torrijos-Morán,
  • Zeneida Díaz-Betancor,
  • Ángel Maquieira,
  • María-José Bañuls,
  • Elena Pinilla-Cienfuegos and
  • Jaime García-Rupérez

Beilstein J. Nanotechnol. 2019, 10, 967–974, doi:10.3762/bjnano.10.97

Graphical Abstract
  • sites towards the target sample. Then, the biofunctionalized PBG biosensor has been used to perform a direct and real-time detection of the target BSA antigen. Keywords: evanescent field; half-antibodies; light-assisted immobilization; photonic bandgap sensor; SNOM characterization; Introduction The
  • that part of the optical mode going into the cladding, it is important to maximize that interaction. This is achieved for distances closer to the sensor surface, where the intensity of the evanescent field is higher. Therefore, to achieve an optimum biodetection performance, it is important to consider
  • optical microscopy (SNOM) in order to determine how the interaction will vary with the distance to the sensor surface. This near-field characterization has demonstrated the importance of having biorecognition layers being as thin as possible in order to reach optimal sensitivities. Taking this requirement
PDF
Album
Full Research Paper
Published 26 Apr 2019

On the transformation of “zincone”-like into porous ZnO thin films from sub-saturated plasma enhanced atomic layer deposition

  • Alberto Perrotta,
  • Julian Pilz,
  • Stefan Pachmajer,
  • Antonella Milella and
  • Anna Maria Coclite

Beilstein J. Nanotechnol. 2019, 10, 746–759, doi:10.3762/bjnano.10.74

Graphical Abstract
  • layers, the THMS600 temperature stage was equipped with a custom-made humidity pump, and the principles of ellipsometric porosimetry (EP) were used. The relative humidity was monitored via a sensor in the measurement chamber (Sparkfun SHT-15) and tuned in the range of 0–95% [44]. In this way, pores with
PDF
Album
Supp Info
Full Research Paper
Published 21 Mar 2019

Commercial polycarbonate track-etched membranes as substrates for low-cost optical sensors

  • Paula Martínez-Pérez and
  • Jaime García-Rupérez

Beilstein J. Nanotechnol. 2019, 10, 677–683, doi:10.3762/bjnano.10.67

Graphical Abstract
  • porous sensors with such easily available mesoporous material. Keywords: chemical sensor; Fabry–Pérot interferometer; optical sensor; polycarbonate; track-etched membrane; Introduction Sensors are present in our daily life in order to detect and monitor chemical, biological and physical agents of
  • an evanescent field with the target substance are the best known [2]. However, this kind of optical sensor presents a limited sensitivity, as only part of the light interacts with the substances of interest. To overcome this limitation, porous materials are a good option. Since they allow the
  • shift registered for the first FTIR measurement after the deposition of the drop is the maximum shift achieved by the spectrum, as the liquid could have slightly evaporated during this time lapse [16] allowing the air to refill the pores. To check this, we calculated the sensitivity of our sensor
PDF
Album
Full Research Paper
Published 07 Mar 2019

A carrier velocity model for electrical detection of gas molecules

  • Ali Hosseingholi Pourasl,
  • Sharifah Hafizah Syed Ariffin,
  • Mohammad Taghi Ahmadi,
  • Razali Ismail and
  • Niayesh Gharaei

Beilstein J. Nanotechnol. 2019, 10, 644–653, doi:10.3762/bjnano.10.64

Graphical Abstract
  • remarkable changes in their electrical characteristics when exposed to different gases through molecular adsorption. In this paper, the adsorption effects of the target gas molecules (CO and NO) on the electrical properties of the armchair graphene nanoribbon (AGNR)-based sensor are analytically modelled
  • the presence of the gas molecules. Furthermore, the I–V characteristics and energy band structure of the AGNR sensor are simulated using first principle calculations to investigate the gas adsorption effects on these properties. To ensure the accuracy of the proposed model, the I–V characteristics of
  • the AGNR sensor that are simulated based both on the proposed model and first principles calculations are compared, and an acceptable agreement is achieved. Keywords: armchair graphene nanoribbons; carrier velocity; gas sensor; I–V characteristics; molecular adsorption; Introduction The unique
PDF
Album
Full Research Paper
Published 04 Mar 2019

Hydrophilicity and carbon chain length effects on the gas sensing properties of chemoresistive, self-assembled monolayer carbon nanotube sensors

  • Juan Casanova-Cháfer,
  • Carla Bittencourt and
  • Eduard Llobet

Beilstein J. Nanotechnol. 2019, 10, 565–577, doi:10.3762/bjnano.10.58

Graphical Abstract
  • attributed to the interaction, via strong hydrogen bonding, of the polar molecules tested to the polar surface of hydrophilic thiols. The approach discussed here could be extended further by combining hydrophilic and hydrophobic thiol SAMs in Au-MWCNT sensor arrays as a helpful strategy for tuning sensor
  • gas sensitive nanomaterial to higher temperatures [3] or to irradiate the sensor employing ultraviolet (UV) light, in order to promote surface cleaning. Despite these efforts, sometimes CNTs present irreversible resistance changes due to the chemisorption of gas molecules. In addition, other problems
  • such as lack of selectivity, environmental variations (e.g., changes in humidity level) affecting sensor response, or the difficulty to detect gases characterized by low adsorption energies are often encountered [11]. In order to enhance their selectivity and/or their sensitivity, CNTs have been
PDF
Album
Supp Info
Full Research Paper
Published 27 Feb 2019

Wearable, stable, highly sensitive hydrogel–graphene strain sensors

  • Jian Lv,
  • Chuncai Kong,
  • Chao Yang,
  • Lu Yin,
  • Itthipon Jeerapan,
  • Fangzhao Pu,
  • Xiaojing Zhang,
  • Sen Yang and
  • Zhimao Yang

Beilstein J. Nanotechnol. 2019, 10, 475–480, doi:10.3762/bjnano.10.47

Graphical Abstract
  • 21500, P. R. China Research institute of Xi'an Jiaotong University, Hangzhou, Zhejiang, 311215, P. R. China 10.3762/bjnano.10.47 Abstract A stable and highly sensitive graphene/hydrogel strain sensor is designed by introducing glycerol as a co-solvent in the formation of a hydrogel substrate and then
  • casting a graphene solution onto the hydrogel in a simple, two-step method. This hydrogel-based strain sensor can effectively retain water in the polymer network due to the formation of strong hydrogen bonding between glycerol and water. The addition of glycerol not only enhances the stability of the
  • sensor to be used in both stretching and bending modes. As a demonstration, the as-prepared strain sensor was applied to sense the movement of finger knuckles. Given the outstanding performance of this wearable sensor, together with the proposed scalable fabrication method, this stable and sensitive
PDF
Album
Supp Info
Letter
Published 14 Feb 2019

Temperature-dependent Raman spectroscopy and sensor applications of PtSe2 nanosheets synthesized by wet chemistry

  • Mahendra S. Pawar and
  • Dattatray J. Late

Beilstein J. Nanotechnol. 2019, 10, 467–474, doi:10.3762/bjnano.10.46

Graphical Abstract
  • well with the reported 2D transition metal dichalcogenides. A PtSe2 nanosheet-based sensor device was tested for its applicability as a humidity sensor and photodetector. The humidity sensor based on PtSe2 nanosheets showed an excellent recovery time of ≈5 s, indicating the great potential of PtSe2 for
  • future sensor devices. Keywords: nanosheets; PtSe2; Raman spectroscopy; sensor; thermal effect; Introduction Graphene, the most well-studied example of the two-dimensional (2D) aromatic compounds, is the building block of all forms of carbon allotropes [1]. In recent years, it has been widely studied
  • onto a Si substrate and heated at 100 °C on a hot plate. After complete evaporation, the substrate was annealed in a chemical vapour deposition system at 500 °C in argon gas atmosphere for 5 h. Supporting Information File 1, Figure S1 shows the schematic of the PtSe2 nanosheet synthesis steps. Sensor
PDF
Album
Supp Info
Full Research Paper
Published 13 Feb 2019

Ultraviolet patterns of flowers revealed in polymer replica – caused by surface architecture

  • Anna J. Schulte,
  • Matthias Mail,
  • Lisa A. Hahn and
  • Wilhelm Barthlott

Beilstein J. Nanotechnol. 2019, 10, 459–466, doi:10.3762/bjnano.10.45

Graphical Abstract
  • (Camag, Muttenz, Switzerland) illumination at 366 nm. An extension of the sensor detection spectrum of the D 300s camera from 340 nm to 1100 nm was implemented by Optik Makario (Mönchengladbach, Germany) and allowed images in the UV-spectrum to be captured. An analog Nikon FM2 was used to take pictures
PDF
Album
Full Research Paper
Published 13 Feb 2019

Sub-wavelength waveguide properties of 1D and surface-functionalized SnO2 nanostructures of various morphologies

  • Venkataramana Bonu,
  • Binaya Kumar Sahu,
  • Arindam Das,
  • Sankarakumar Amirthapandian,
  • Sandip Dhara and
  • Harish C. Barshilia

Beilstein J. Nanotechnol. 2019, 10, 379–388, doi:10.3762/bjnano.10.37

Graphical Abstract
  • commercial application as a gas sensor, transparent conducting electrodes, and catalyst [13][14][15]. SnO2 NSs have been used in several other areas such as sub-wavelength waveguide sensors [4], microelectronics [6], Li-ion batteries [16], and lubricants [17]. Oxygen vacancy related defects in SnO2
PDF
Album
Supp Info
Full Research Paper
Published 07 Feb 2019

Transport signatures of an Andreev molecule in a quantum dot–superconductor–quantum dot setup

  • Zoltán Scherübl,
  • András Pályi and
  • Szabolcs Csonka

Beilstein J. Nanotechnol. 2019, 10, 363–378, doi:10.3762/bjnano.10.36

Graphical Abstract
  • the price of decreasing the currents, too. Charge sensing [76][77] is another method to map out the boundaries of the phase diagram, as we illustrate in the right column of Figure 2. A charge sensor is usually engineered to be mostly sensitive to the average electron occupation of one of the quantum
  • charge sensor is an additional device element. Similar methods, yielding information related to average electron occupation, are based on reflectometry with electromagnetic radiofrequency signals [78][79] or microwave resonators [80][81]; those are not discussed further in this work. The ground-state
  • tunnel-coupled to the QD–SC–QD system. Transport Calculation As pointed out earlier, a charge-sensing measurement is demanding, since the addition of the charge sensor complicates device fabrication. However, the ground-state phase diagrams discussed above can also be explored experimentally by
PDF
Album
Supp Info
Full Research Paper
Published 06 Feb 2019

Intuitive human interface to a scanning tunnelling microscope: observation of parity oscillations for a single atomic chain

  • Sumit Tewari,
  • Jacob Bakermans,
  • Christian Wagner,
  • Federica Galli and
  • Jan M. van Ruitenbeek

Beilstein J. Nanotechnol. 2019, 10, 337–348, doi:10.3762/bjnano.10.33

Graphical Abstract
  • structural evolution of the junction during the manipulation operation and alter the trajectory at will. Figure 1 shows the scheme of communication between operator and STM using the MD simulator. The 3D motion tracking sensor sends the same x,y,z- signals to both the STM and the simulator simultaneously and
  • the operator, and depends on the speed with which the 3D motion control sensor is moved. In the scale of the operator this is approximately 5 cm/sec, which corresponds to 1 Å/sec on the atomic scale. We perform a classical MD simulation here in which we ignore the electronic effects (which in fact
PDF
Album
Supp Info
Full Research Paper
Published 04 Feb 2019
Other Beilstein-Institut Open Science Activities