Search results

Search for "atomic force microscopy" in Full Text gives 541 result(s) in Beilstein Journal of Nanotechnology. Showing first 200.

Surface plasmon resonance enhancement of photoluminescence intensity and bioimaging application of gold nanorod@CdSe/ZnS quantum dots

  • Siyi Hu,
  • Yu Ren,
  • Yue Wang,
  • Jinhua Li,
  • Junle Qu,
  • Liwei Liu,
  • Hanbin Ma and
  • Yuguo Tang

Beilstein J. Nanotechnol. 2019, 10, 22–31, doi:10.3762/bjnano.10.3

Graphical Abstract
  • particle per 1 × 1 μm area. The experimental microspectroscopy equipment was used to collect the integrated, white light, dark-field scattering, as well as the PL spectra and the atomic force microscopy techniques. We measured the scattering and the PL emission signal from a single particle. The
PDF
Album
Supp Info
Full Research Paper
Published 03 Jan 2019

Characterization and influence of hydroxyapatite nanopowders on living cells

  • Przemyslaw Oberbek,
  • Tomasz Bolek,
  • Adrian Chlanda,
  • Seishiro Hirano,
  • Sylwia Kusnieruk,
  • Julia Rogowska-Tylman,
  • Ganna Nechyporenko,
  • Viktor Zinchenko,
  • Wojciech Swieszkowski and
  • Tomasz Puzyn

Beilstein J. Nanotechnol. 2018, 9, 3079–3094, doi:10.3762/bjnano.9.286

Graphical Abstract
  • done taking into account at least 15 different agglomerates for each sample. Atomic force microscopy Atomic force microscope (AFM) was used for topography imaging, surface evaluation at the nanoscale and evaluation of the particle shapes [35]. The sample preparation protocol was as follows: A water
  • distribution of all tested HAps (Table 2). Obtained SEM data were further verified using atomic force microscopy. It is worth to note that AFM has proven to be a powerful visualization technique for a wide range of nanomaterials and nanoscale changes in the materials [51][52][53], including qualitative and
PDF
Album
Full Research Paper
Published 27 Dec 2018

Electrostatic force microscopy for the accurate characterization of interphases in nanocomposites

  • Diana El Khoury,
  • Richard Arinero,
  • Jean-Charles Laurentie,
  • Mikhaël Bechelany,
  • Michel Ramonda and
  • Jérôme Castellon

Beilstein J. Nanotechnol. 2018, 9, 2999–3012, doi:10.3762/bjnano.9.279

Graphical Abstract
  • deduced by comparison of experimental data and numerical simulations, as well as the interface state of silicone dioxide layers. Keywords: atomic force microscopy; building-block materials; dielectric permittivity; electrostatic force microscopy; finite element simulation; interphases; nanocomposites
  • conditions are fulfilled by electrostatic force microscopy (EFM) [18][19]. EFM is an atomic force microscopy (AFM)-based electrostatic method in which a conductive tip and a metallic sample holder are used. The probe-to-stage system is electrically polarized for the detection of electrostatic forces or force
PDF
Album
Full Research Paper
Published 07 Dec 2018

Investigation of CVD graphene as-grown on Cu foil using simultaneous scanning tunneling/atomic force microscopy

  • Majid Fazeli Jadidi,
  • Umut Kamber,
  • Oğuzhan Gürlü and
  • H. Özgür Özer

Beilstein J. Nanotechnol. 2018, 9, 2953–2959, doi:10.3762/bjnano.9.274

Graphical Abstract
  • Majid Fazeli Jadidi Umut Kamber Oguzhan Gurlu H. Ozgur Ozer Department of Physics Engineering, İstanbul Technical University, 34469, İstanbul, Turkey 10.3762/bjnano.9.274 Abstract Scanning tunneling microscopy (STM) and atomic force microscopy (AFM) images of graphene reveal either a triangular
  • array with maxima located in between the two carbon atoms was acquired in STM topography. Keywords: atomic force microscopy; CVD graphene; scanning tunneling microscopy; simultaneous operation; small amplitude; Introduction Graphene has been widely studied because of its potential use in future
  • scanning tunneling microscopy (STM) and atomic force microscopy (AFM) by various groups [3]. The interaction of graphene with its substrate affects the STM measurements and that casts doubts on its electronic structure. Having the possibility to make simultaneous STM and AFM measurements, on the same area
PDF
Album
Full Research Paper
Published 28 Nov 2018

Ternary nanocomposites of reduced graphene oxide, polyaniline and hexaniobate: hierarchical architecture and high polaron formation

  • Claudio H. B. Silva,
  • Maria Iliut,
  • Christopher Muryn,
  • Christian Berger,
  • Zachary Coldrick,
  • Vera R. L. Constantino,
  • Marcia L. A. Temperini and
  • Aravind Vijayaraghavan

Beilstein J. Nanotechnol. 2018, 9, 2936–2946, doi:10.3762/bjnano.9.272

Graphical Abstract
  • nanocomposite composed of polyaniline (PANI), reduced graphene oxide (rGO) and hexaniobate (hexNb) nanoscrolls. Atomic force microscopy images show an interesting architecture of rGO flakes coated with PANI and decorated by hexNb. Such features are attributed to the high stability of the rGO flakes prepared at
  • that the nanocomposites may exhibit low compositional heterogeneity and possibly strong interactions (such as electrostatic and π–π interactions) between their components. The morphological characterisation of rGO-25, rGO/PANI and rGO/PANI/hexNb samples was carried out by atomic force microscopy, as
PDF
Album
Supp Info
Full Research Paper
Published 26 Nov 2018

In situ characterization of nanoscale contaminations adsorbed in air using atomic force microscopy

  • Jesús S. Lacasa,
  • Lisa Almonte and
  • Jaime Colchero

Beilstein J. Nanotechnol. 2018, 9, 2925–2935, doi:10.3762/bjnano.9.271

Graphical Abstract
  • model system for investigating a variety of nanoscale phenomena. In the present work we use atomic force microscopy to directly image nanoscale contamination on surfaces, and to characterize this contamination by using multidimensional spectroscopy techniques. By acquisition of spectroscopy data as a
  • to access the state of contamination of real surfaces under ambient conditions using advanced atomic force microscopy techniques. Keywords: atomic force microscopy; cantilever; contact potential; electrostatic forces; force spectroscopy; Hamaker constant; Kelvin probe microscopy; surface
  • of clean and well-prepared surfaces. Accordingly, a wealth of experimental techniques have been developed to control and characterize their contamination state [8]. In the present work we propose atomic force microscopy (AFM) [9][10] as a valuable tool to visualize nanoscale surface contamination and
PDF
Album
Full Research Paper
Published 23 Nov 2018

Layered calcium phenylphosphonate: a hybrid material for a new generation of nanofillers

  • Kateřina Kopecká,
  • Ludvík Beneš,
  • Klára Melánová,
  • Vítězslav Zima,
  • Petr Knotek and
  • Kateřina Zetková

Beilstein J. Nanotechnol. 2018, 9, 2906–2915, doi:10.3762/bjnano.9.269

Graphical Abstract
  • molecular weight epoxy resin based on bisphenol A was used as a polymer matrix. The prepared samples were characterized by powder X-ray diffraction, atomic force microscopy, optical and scanning electron microscopy, and dynamic mechanical analysis. Flammability and gas permeation tests were also performed
  • as nucleation centers; however, these methods were not successful. Although the shape of the particles differs minimally as they are rod-shaped in each case, the thickness of the individual lamellas differs significantly with the selected procedure, as was confirmed by the atomic force microscopy
PDF
Album
Supp Info
Full Research Paper
Published 20 Nov 2018

Charged particle single nanometre manufacturing

  • Philip D. Prewett,
  • Cornelis W. Hagen,
  • Claudia Lenk,
  • Steve Lenk,
  • Marcus Kaestner,
  • Tzvetan Ivanov,
  • Ahmad Ahmad,
  • Ivo W. Rangelow,
  • Xiaoqing Shi,
  • Stuart A. Boden,
  • Alex P. G. Robinson,
  • Dongxu Yang,
  • Sangeetha Hari,
  • Marijke Scotuzzi and
  • Ejaz Huq

Beilstein J. Nanotechnol. 2018, 9, 2855–2882, doi:10.3762/bjnano.9.266

Graphical Abstract
  • , the second approach, also stems from microscopy in the form of scanning tunneling microscopy and atomic force microscopy; the corresponding lithography techniques include scanning tunneling lithography and field-emission scanning probe lithography. The electron microscope evolved from the use of
  • techniques of atomic force microscopy (AFM) and scanning tunneling microscopy (STM). In both cases, a probe is scanned over a sample and the interaction is used to study the sample properties. For AFM, the atomic force between a sharp tip at the end of a cantilever beam and the sample surface is measured by
  • uses so-called active cantilevers in cantilever scanning configuration [146]. These are self-actuated and self-sensing scanning probes [147], which can be used both for lithography and for measuring the generated structures by atomic force microscopy and related techniques such as Kelvin force
PDF
Album
Review
Published 14 Nov 2018

Controlling surface morphology and sensitivity of granular and porous silver films for surface-enhanced Raman scattering, SERS

  • Sherif Okeil and
  • Jörg J. Schneider

Beilstein J. Nanotechnol. 2018, 9, 2813–2831, doi:10.3762/bjnano.9.263

Graphical Abstract
  • silver films were characterized using atomic force microscopy (AFM) in contact mode on a CP-II AFM (Bruker-Veeco) with SiC cantilevers to determine the topography and surface roughness (root mean square roughness, Rq). Scanning electron microscopy (SEM) of the silver films was performed on a Philips XL
  • surfaces act as efficient SERS substrates showing greater enhancement factors compared to as prepared, sputtered, but untreated silver films when using rhodamine B as Raman probe molecule. The obtained roughened silver films were fully characterized by scanning electron microscopy (SEM), atomic force
  • microscopy (AFM), X-ray diffraction (XRD), transmission electron microscopy (TEM), X-ray photoelectron (XPS and Auger) and ultraviolet–visible spectroscopy (UV–vis) as well as contact angle measurements. It was found that different morphologies of the roughened Ag films could be obtained under controlled
PDF
Album
Supp Info
Full Research Paper
Published 07 Nov 2018

Variation of the photoluminescence spectrum of InAs/GaAs heterostructures grown by ion-beam deposition

  • Alexander S. Pashchenko,
  • Leonid S. Lunin,
  • Eleonora M. Danilina and
  • Sergei N. Chebotarev

Beilstein J. Nanotechnol. 2018, 9, 2794–2801, doi:10.3762/bjnano.9.261

Graphical Abstract
  • microscopy images of the morphology of InAs QDs on GaAs0.95Bi0.05; c) Atomic force microscopy images of the morphology of InAs QDs on GaAs. Energy band diagram of heterostructures: a) InAs/GaAs; b) InAs/GaAs1−xBix. Acknowledgements This work was carried out within the framework of the state assignment of
  • peaks as a function of the thickness of the i-GaAs barrier layer. a) XRD spectra of GaAs1−xBix films grown on GaAs(100) substrates; b) Raman spectra of InAs/GaAs and InAs/GaAs1−xBix heterostructures. a) Photoluminescence spectra of InAs/GaAs heterostructures with different Bi content; b) Atomic force
PDF
Album
Full Research Paper
Published 02 Nov 2018

Low cost tips for tip-enhanced Raman spectroscopy fabricated by two-step electrochemical etching of 125 µm diameter gold wires

  • Antonino Foti,
  • Francesco Barreca,
  • Enza Fazio,
  • Cristiano D’Andrea,
  • Paolo Matteini,
  • Onofrio Maria Maragò and
  • Pietro Giuseppe Gucciardi

Beilstein J. Nanotechnol. 2018, 9, 2718–2729, doi:10.3762/bjnano.9.254

Graphical Abstract
  • ]. The tips efficiently enhance and confine the electromagnetic field at the nanoscale [8][9] or even at sub-nanometer levels [10]. TERS has a sensitivity that can reach the single molecule level [11][12]. TERS setups based on atomic force microscopy (AFM) [1][13], scanning tunneling microscopy (STM) [14
PDF
Album
Supp Info
Full Research Paper
Published 22 Oct 2018

Disorder in H+-irradiated HOPG: effect of impinging energy and dose on Raman D-band splitting and surface topography

  • Lisandro Venosta,
  • Noelia Bajales,
  • Sergio Suárez and
  • Paula G. Bercoff

Beilstein J. Nanotechnol. 2018, 9, 2708–2717, doi:10.3762/bjnano.9.253

Graphical Abstract
  • techniques is advantageous in order to gain a better insight into the origin of defects. Atomic force microscopy (AFM) can help to reveal an increase in the graphene/graphite surface roughness, which has been correlated with the disorder generated by increasing hydrogen irradiation doses [21][22][23
  • from the irradiation chamber to the SQUID holder by using a portable vacuum chamber in order to avoid contamination during manipulation. After Raman and SQUID characterizations, atomic force microscopy (AFM) measurements were performed at room temperature using a Di-Innova Microscope (Bruker, USA) in
PDF
Album
Full Research Paper
Published 19 Oct 2018

Optimization of Mo/Cr bilayer back contacts for thin-film solar cells

  • Nima Khoshsirat,
  • Fawad Ali,
  • Vincent Tiing Tiong,
  • Mojtaba Amjadipour,
  • Hongxia Wang,
  • Mahnaz Shafiei and
  • Nunzio Motta

Beilstein J. Nanotechnol. 2018, 9, 2700–2707, doi:10.3762/bjnano.9.252

Graphical Abstract
  • scanning electron microscopy (SEM), atomic force microscopy (AFM), UV–vis–NIR spectroscopy and X-ray photoelectron spectroscopy. A careful analysis of the resulting Mo/Cr thin film across all the sputtering parameters led us to the best combination, optimizing both the electro-optical response of the Mo/Cr
PDF
Album
Supp Info
Full Research Paper
Published 18 Oct 2018

Characterization of the microscopic tribological properties of sandfish (Scincus scincus) scales by atomic force microscopy

  • Weibin Wu,
  • Christian Lutz,
  • Simon Mersch,
  • Richard Thelen,
  • Christian Greiner,
  • Guillaume Gomard and
  • Hendrik Hölscher

Beilstein J. Nanotechnol. 2018, 9, 2618–2627, doi:10.3762/bjnano.9.243

Graphical Abstract
  • conducted with a non-standard granular tribometer. Here, we characterise microscopic adhesion, friction and wear of single sandfish scales by atomic force microscopy. The analysis of frictional properties with different types of probes (sharp silicon tips, spherical glass tips and sand debris) demonstrates
  • , it is highly unlikely that the surface structure of the scales is responsible for the observed low abrasion. Baumgartner and co-workers [10][11][16] measured adhesion by atomic force microscopy (AFM) on scales of S. scincus and observed extremely low values. They analysed the chemical composition of
  • separating sand particles from the dense scales thereby reducing van der Waals forces [16]. Even a glycosylated technical surface showed a reduced granular friction coefficient [16]. Here, we analyse the tribological properties of single scales of sandfish (S. scincus) by atomic force microscopy and
PDF
Album
Full Research Paper
Published 02 Oct 2018

Friction reduction through biologically inspired scale-like laser surface textures

  • Johannes Schneider,
  • Vergil Djamiykov and
  • Christian Greiner

Beilstein J. Nanotechnol. 2018, 9, 2561–2572, doi:10.3762/bjnano.9.238

Graphical Abstract
  • investigating a possible size effect under dry sliding, sapphire discs were used as counter body material. These were prepared as previously described [23] and had a final roughness of Ra < 0.01 µm, measured by atomic force microscopy (Park XE7, Suwon, Korea). These sapphire discs had a Knoop hardness of 2200
PDF
Album
Supp Info
Full Research Paper
Published 26 Sep 2018

Non-agglomerated silicon–organic nanoparticles and their nanocomplexes with oligonucleotides: synthesis and properties

  • Asya S. Levina,
  • Marina N. Repkova,
  • Nadezhda V. Shikina,
  • Zinfer R. Ismagilov,
  • Svetlana A. Yashnik,
  • Dmitrii V. Semenov,
  • Yulia I. Savinovskaya,
  • Natalia A. Mazurkova,
  • Inna A. Pyshnaya and
  • Valentina F. Zarytova

Beilstein J. Nanotechnol. 2018, 9, 2516–2525, doi:10.3762/bjnano.9.234

Graphical Abstract
  • groups in oligonucleotides. The Si–NH2 nanoparticles and Si–NH2·ODN nanocomplexes were characterized by transmission electron microscopy, atomic force microscopy and IR and electron spectroscopy. The size and zeta potential values of the prepared nanoparticles and nanocomplexes were evaluated
  • coupled plasma mass spectrometry (ICP-MS). The experimental Si/P value (10.9) showed a reasonable correlation with the calculated data (10.0). The atomic force microscopy (AFM) image of the Si–NH2 nanoparticles was not obtained in a satisfactory quality because of the very small size of the particles
  • microscope. The results are presented in Figure 3. Atomic force microscopy (AFM) was performed on a Solver P47 Bio atomic force microscope (NT-МDT, Russia) in a tapping mode. The aqueous solution of the Si–NH2·ODN(1) sample (10 µL, 0.16 µM, NH2/p = 10) was applied to a freshly cleaved mica area of 25–30 mm2
PDF
Album
Full Research Paper
Published 21 Sep 2018

Enhanced antineoplastic/therapeutic efficacy using 5-fluorouracil-loaded calcium phosphate nanoparticles

  • Shanid Mohiyuddin,
  • Saba Naqvi and
  • Gopinath Packirisamy

Beilstein J. Nanotechnol. 2018, 9, 2499–2515, doi:10.3762/bjnano.9.233

Graphical Abstract
  • characteristic surface morphology and size of the CaP@5-FU NPs was examined in a scanning electron microscope (Carl Zeiss ULTRA PLUS) operating at 5.0 kV and atomic force microscopy analysis (NTEGRA PNL) operating in semi-contact mode. An aqueous solution of CaP@5-FU NPs was dropped onto a glass slide and air
PDF
Album
Supp Info
Full Research Paper
Published 20 Sep 2018

High-temperature magnetism and microstructure of a semiconducting ferromagnetic (GaSb)1−x(MnSb)x alloy

  • Leonid N. Oveshnikov,
  • Elena I. Nekhaeva,
  • Alexey V. Kochura,
  • Alexander B. Davydov,
  • Mikhail A. Shakhov,
  • Sergey F. Marenkin,
  • Oleg A. Novodvorskii,
  • Alexander P. Kuzmenko,
  • Alexander L. Vasiliev,
  • Boris A. Aronzon and
  • Erkki Lahderanta

Beilstein J. Nanotechnol. 2018, 9, 2457–2465, doi:10.3762/bjnano.9.230

Graphical Abstract
  • (FEI, US) was used for image analysis. P. Stadelmann’s JEMS software [16] was used for the simulation of diffraction patterns and images. Scanning atomic force microscopy (AFM) and magnetic force microscopy (MFM) images were obtained on an SmartSPM microscope (AIST-NT, US) at temperatures of T = 295
PDF
Album
Full Research Paper
Published 14 Sep 2018

High-throughput micro-nanostructuring by microdroplet inkjet printing

  • Hendrikje R. Neumann and
  • Christine Selhuber-Unkel

Beilstein J. Nanotechnol. 2018, 9, 2372–2380, doi:10.3762/bjnano.9.222

Graphical Abstract
  • maximum and minimum. Apparently, the micelle-containing o-xylene solution spreads out most reproducibly on silicon and less on NiTi. To explain the differences in the droplet diameters of our different materials, the surface topography of the samples was measured using atomic force microscopy (AFM). As
  • all nanoparticles, the particle analyzer was used (included in ImageJ) and the image was converted to a binary image. Finally, a freely accessible nearest-neighbor detection algorithm was employed for the determination of the nanoparticle distances [36]. Atomic force microscopy (AFM) imaging and image
  • processing Atomic force microscopy (AFM) topographic imaging was employed to measure the roughness of the samples. Imaging was performed on a JPK NanoWizard 3 (JPK Instruments AG) operated in ac mode using ACTA cantilevers (spring constant ≈40 N/m, resonance frequency ≈300 kHz; Applied NanoStructuresInc
PDF
Album
Full Research Paper
Published 04 Sep 2018

Block copolymers for designing nanostructured porous coatings

  • Roberto Nisticò

Beilstein J. Nanotechnol. 2018, 9, 2332–2344, doi:10.3762/bjnano.9.218

Graphical Abstract
  • mol−1) at low magnification. c) PS-b-PEO (10.6-b-5.0 kg mol−1) at high magnification. d) Freeze fracture cross section PS-b-PEO (10.6-b-5.0 kg mol−1). Reprinted with permission from [62], copyright 2011 The Royal Society of Chemistry. a) Atomic force microscopy (AFM) images of a composite nanoporous
PDF
Album
Review
Published 29 Aug 2018

Nanotribology

  • Enrico Gnecco,
  • Susan Perkin,
  • Andrea Vanossi and
  • Ernst Meyer

Beilstein J. Nanotechnol. 2018, 9, 2330–2331, doi:10.3762/bjnano.9.217

Graphical Abstract
  • techniques for materials characterization are those typical of surface science (e.g., X-ray diffraction, SEM, TEM, XPS and Raman spectroscopy), more specific to nanotribology are nanoindenters, nanotribometers, quartz force microbalance and especially atomic force microscopy (AFM), which, without a doubt
PDF
Editorial
Published 28 Aug 2018

Nanoscale characterization of the temporary adhesive of the sea urchin Paracentrotus lividus

  • Ana S. Viana and
  • Romana Santos

Beilstein J. Nanotechnol. 2018, 9, 2277–2286, doi:10.3762/bjnano.9.212

Graphical Abstract
  • , the first nanoscale characterization of sea urchin temporary adhesives was performed using atomic force microscopy (AFM). Results: The adhesive topography was similar under dry and native (seawater) conditions, which was comprised of a honeycomb-like meshwork of aggregated globular nanostructures. In
  • . Keywords: adhesive footprint; atomic force microscopy; nanomechanical properties; sea urchin; temporary adhesion; Introduction Unlike the thin homogeneous films that are typical for adhesives produced by humans, biological adhesives present complex hierarchical micro- and nanostructures. Among marine
  • organisms such as marine flatworms [1], barnacle cyprids [2][3][4], freshwater cnidaria [5] and echinoderms such as sea cucumbers [6] and sea stars [7][8]. This characterization was performed using atomic force microscopy (AFM), a technique that allows high-resolution images of soft biological materials to
PDF
Album
Full Research Paper
Published 24 Aug 2018

Spin-coated planar Sb2S3 hybrid solar cells approaching 5% efficiency

  • Pascal Kaienburg,
  • Benjamin Klingebiel and
  • Thomas Kirchartz

Beilstein J. Nanotechnol. 2018, 9, 2114–2124, doi:10.3762/bjnano.9.200

Graphical Abstract
  • chosen to be 265 °C slightly above the minimum crystallization temperature of Sb2S3. The morphology was studied with SEM and atomic force microscopy (AFM). Possible changes in electronic quality with crystallization temperature were investigated via photothermal deflection spectroscopy (PDS) where the
PDF
Album
Supp Info
Full Research Paper
Published 08 Aug 2018

Phosphorus monolayer doping (MLD) of silicon on insulator (SOI) substrates

  • Noel Kennedy,
  • Ray Duffy,
  • Luke Eaton,
  • Dan O’Connell,
  • Scott Monaghan,
  • Shane Garvey,
  • James Connolly,
  • Chris Hatem,
  • Justin D. Holmes and
  • Brenda Long

Beilstein J. Nanotechnol. 2018, 9, 2106–2113, doi:10.3762/bjnano.9.199

Graphical Abstract
  • capping layer the dopant monolayer is essentially “burnt” off during high-temperature annealing. Cap removal was carried out using a standard buffered oxide etch. Atomic force microscopy (AFM) was used to acquire high-resolution topographic images to evaluate the surface quality throughout MLD processing
  • Figure S2 (Supporting Information File 1), which lead to the use of a 1050 °C annealing for a time period of 5 s for all applications to SOI. Characterisation Atomic force microscopy was carried out in tapping mode at room temperature to analyse the surface quality throughout the MLD process. ECV
PDF
Album
Supp Info
Full Research Paper
Published 06 Aug 2018

A scanning probe microscopy study of nanostructured TiO2/poly(3-hexylthiophene) hybrid heterojunctions for photovoltaic applications

  • Laurie Letertre,
  • Roland Roche,
  • Olivier Douhéret,
  • Hailu G. Kassa,
  • Denis Mariolle,
  • Nicolas Chevalier,
  • Łukasz Borowik,
  • Philippe Dumas,
  • Benjamin Grévin,
  • Roberto Lazzaroni and
  • Philippe Leclère

Beilstein J. Nanotechnol. 2018, 9, 2087–2096, doi:10.3762/bjnano.9.197

Graphical Abstract
  • average spacing between the columns is (10 ± 3) nm, with an average width of the columns of (19 ± 4) nm, as determined by SEM measurements [24]. The topography of the deposit is shown in the tapping-mode atomic force microscopy (TM-AFM) image of Figure 1d, where the apex of the columns appears as
PDF
Album
Supp Info
Full Research Paper
Published 01 Aug 2018
Other Beilstein-Institut Open Science Activities