Search results

Search for "drift" in Full Text gives 187 result(s) in Beilstein Journal of Nanotechnology.

High-temperature resistive gas sensors based on ZnO/SiC nanocomposites

  • Vadim B. Platonov,
  • Marina N. Rumyantseva,
  • Alexander S. Frolov,
  • Alexey D. Yapryntsev and
  • Alexander M. Gaskov

Beilstein J. Nanotechnol. 2019, 10, 1537–1547, doi:10.3762/bjnano.10.151

Graphical Abstract
  • oxides, such as SnO2, ZnO, WO3, and In2O3, that have been widely used in resistive gas sensors cannot be applied directly, primarily due to the drift of the sensor parameters at temperatures above 500 °C. The stability of nanostructured semiconductor oxides at high temperature can be enhanced by creating
PDF
Album
Supp Info
Full Research Paper
Published 26 Jul 2019

Gas sensing properties of individual SnO2 nanowires and SnO2 sol–gel nanocomposites

  • Alexey V. Shaposhnik,
  • Dmitry A. Shaposhnik,
  • Sergey Yu. Turishchev,
  • Olga A. Chuvenkova,
  • Stanislav V. Ryabtsev,
  • Alexey A. Vasiliev,
  • Xavier Vilanova,
  • Francisco Hernandez-Ramirez and
  • Joan R. Morante

Beilstein J. Nanotechnol. 2019, 10, 1380–1390, doi:10.3762/bjnano.10.136

Graphical Abstract
  • ambient conditions containing ammonia, where the sensor was also kept for one hour. As shown in Figure 9, both sensing devices demonstrated stable readings, the background air resistance maintained a constant value, and long-term drift of the zero line was not observed. The response of the device
  • broken and others are being formed. This process leads to the continuous drift of sensor resistance, which distorts the signal. A monocrystalline surface is more stable, therefore resistance drift should be minimized in this case. A second advantage of individual nanowire sensors is the possibility of
PDF
Album
Full Research Paper
Published 08 Jul 2019

Fabrication of phase masks from amorphous carbon thin films for electron-beam shaping

  • Lukas Grünewald,
  • Dagmar Gerthsen and
  • Simon Hettler

Beilstein J. Nanotechnol. 2019, 10, 1290–1302, doi:10.3762/bjnano.10.128

Graphical Abstract
  • rings. Without the offset angle an unwanted radial line is patterned in the PM after a few iterations. Before starting a pattern we waited for a few minutes to reduce stage drift. The total milling duration was kept below 15 min to further minimize stage-drift artifacts. As the floated aC thin films
  • film with each repetition. Finer FIB probes at smaller FIB currents could improve this at the cost of increasing milling duration and possible artifacts due to stage drift. Furthermore, implanted Ga induces a dark contrast and alters the effective MIP compared to pristine aC. Since the FIB was only
PDF
Album
Supp Info
Full Research Paper
Published 25 Jun 2019

Imaging the surface potential at the steps on the rutile TiO2(110) surface by Kelvin probe force microscopy

  • Masato Miyazaki,
  • Huan Fei Wen,
  • Quanzhen Zhang,
  • Yuuki Adachi,
  • Jan Brndiar,
  • Ivan Štich,
  • Yan Jun Li and
  • Yasuhiro Sugawara

Beilstein J. Nanotechnol. 2019, 10, 1228–1236, doi:10.3762/bjnano.10.122

Graphical Abstract
  • . This measurement was performed along a grid line of 200 points. The atom-tracking technique [54] was employed to reduce the effects of thermal drift. Results and Discussion CPD measurements around the steps A topographic image obtained in the lift-mode and the height profile are shown, respectively, in
PDF
Album
Supp Info
Full Research Paper
Published 13 Jun 2019

Pure and mixed ordered monolayers of tetracyano-2,6-naphthoquinodimethane and hexathiapentacene on the Ag(100) surface

  • Robert Harbers,
  • Timo Heepenstrick,
  • Dmitrii F. Perepichka and
  • Moritz Sokolowski

Beilstein J. Nanotechnol. 2019, 10, 1188–1199, doi:10.3762/bjnano.10.118

Graphical Abstract
  • constant-current mode with typical tunneling currents (It) between 75 and 127 pA and negative bias voltages (Ub), thus imaging occupied states. The displayed STM images were corrected for thermal drift distortions using the correction tool that is implemented in the SPIP software (version 4.8, Image
  •  2c shows a drift-corrected and Fourier-filtered STM image taken of a large island of HTPEN molecules. The darker areas (lower tip position) between the molecules are significant. By comparison with the overlaid hard-sphere model we identify these as the voids between the molecules where a reduced
  • orientation of the Ag(100) substrate and aid in the identification of the symmetry of the LEED pattern. The lengths in reciprocal space are defined by k = 2π/λ, with λ denoting the electron wavelength. (b) Hard-sphere model of HTPEN on Ag(100). (c) Fourier-filtered, drift-corrected and contrast-enhanced STM
PDF
Album
Supp Info
Full Research Paper
Published 06 Jun 2019

Porous N- and S-doped carbon–carbon composite electrodes by soft-templating for redox flow batteries

  • Maike Schnucklake,
  • László Eifert,
  • Jonathan Schneider,
  • Roswitha Zeis and
  • Christina Roth

Beilstein J. Nanotechnol. 2019, 10, 1131–1139, doi:10.3762/bjnano.10.113

Graphical Abstract
  • -dispersive X-ray spectroscopy (EDX) analyses were performed with an X-Max 50 silicon drift detector (Oxford Instruments) at an acceleration voltage of 10 kV. Nitrogen adsorption and desorption isotherms were recorded at 77 K using a high-resolution Micromeritics 3Flex instrument. Prior to the measurement the
PDF
Album
Full Research Paper
Published 28 May 2019

Quantitative analysis of annealing-induced instabilities of photo-leakage current and negative-bias-illumination-stress in a-InGaZnO thin-film transistors

  • Dapeng Wang and
  • Mamoru Furuta

Beilstein J. Nanotechnol. 2019, 10, 1125–1130, doi:10.3762/bjnano.10.112

Graphical Abstract
  • carriers are driven by the electric field and drift to the interfaces (Figure 5b). In virtue of the relative high quality of the IGZO bulk as well as its adjacent interfaces, the transfer curves show only a small hump and a small gap-shift without SS distortion in the forward and reverse scanning. When the
PDF
Album
Full Research Paper
Published 27 May 2019

CuInSe2 quantum dots grown by molecular beam epitaxy on amorphous SiO2 surfaces

  • Henrique Limborço,
  • Pedro M.P. Salomé,
  • Rodrigo Ribeiro-Andrade,
  • Jennifer P. Teixeira,
  • Nicoleta Nicoara,
  • Kamal Abderrafi,
  • Joaquim P. Leitão,
  • Juan C. Gonzalez and
  • Sascha Sadewasser

Beilstein J. Nanotechnol. 2019, 10, 1103–1111, doi:10.3762/bjnano.10.110

Graphical Abstract
  • electron microscopy (STEM) images were taken with a FEI Titan ChemiSTEM 80-200 kV Cs-probe corrected transmission electron microscope, operating at 200 kV accelerating potential and equipped with an energy-dispersive X-ray spectroscopy (EDS) SuperX-Bruker silicon drift detector. In this method a coherent
PDF
Album
Full Research Paper
Published 22 May 2019

Capillary force-induced superlattice variation atop a nanometer-wide graphene flake and its moiré origin studied by STM

  • Loji K. Thomas and
  • Michael Reichling

Beilstein J. Nanotechnol. 2019, 10, 804–810, doi:10.3762/bjnano.10.80

Graphical Abstract
  • measurement of Figure 1f, the periodicity is found to be 7.6 nm. Thus, there is a perfect agreement between the periodicities in the model and the STM images of Figure 1e and Figure 1f. The small discrepancy between STM measurements and the calculation could be attributed to thermal drift in STM imaging under
  • graphite, the scanner was calibrated in regular time intervals so that the precision of measurements are solely limited by thermal drift. The ambient temperature is stabilized to be within ±1.0 °C of room temperature and the scanner is always given time to thermally equilibrate and mechanically relax to
  • reduce thermal drift and piezo creep to a minimum during measurements. Typical tunnelling conditions were Vb = 0.05 to 0.19 V and It = 0.6 nA. Images represent raw data and were analyzed using the WSxM software [52]. (a) STM image of a 160 nm wide, one-layer thick graphene flake (encircled); (b) cut out
PDF
Album
Supp Info
Full Research Paper
Published 01 Apr 2019

Review of time-resolved non-contact electrostatic force microscopy techniques with applications to ionic transport measurements

  • Aaron Mascaro,
  • Yoichi Miyahara,
  • Tyler Enright,
  • Omur E. Dagdeviren and
  • Peter Grütter

Beilstein J. Nanotechnol. 2019, 10, 617–633, doi:10.3762/bjnano.10.62

Graphical Abstract
  • measurement was repeated 20 times with the z-feedback turned on and then back off between each measurement to minimize drift. Each pulse had the form V(t) = V0 + ΔV(1 − exp[−t/τ)] during the pulse-on period and V(t) = V0 during the pulse-off period with a duty cycle of 20%. To fit the data, the integral in
PDF
Album
Supp Info
Review
Published 01 Mar 2019

Hydrophilicity and carbon chain length effects on the gas sensing properties of chemoresistive, self-assembled monolayer carbon nanotube sensors

  • Juan Casanova-Cháfer,
  • Carla Bittencourt and
  • Eduard Llobet

Beilstein J. Nanotechnol. 2019, 10, 565–577, doi:10.3762/bjnano.10.58

Graphical Abstract
  • , pristine carbon nanotubes (CNTs) present some limitations for gas sensing. For example, carbon nanotube gas sensors often suffer from slow recovery, especially when operated at room temperature, which eventually results in baseline and response drift. For that reason, it is usually necessary to heat up the
PDF
Album
Supp Info
Full Research Paper
Published 27 Feb 2019

Polymorphic self-assembly of pyrazine-based tectons at the solution–solid interface

  • Achintya Jana,
  • Puneet Mishra and
  • Neeladri Das

Beilstein J. Nanotechnol. 2019, 10, 494–499, doi:10.3762/bjnano.10.50

Graphical Abstract
  • lattice parameters as well as the number, type, and orientation of molecules within a unit cell. In general, the STM experiments conducted under ambient conditions are prone to thermal drift and suffer from piezo creep and hysteresis. To overcome this limitation, the acquired STM images were corrected by
  • 1.18 ± 0.07 nm−2 and 1.12 ± 0.06 nm−2, respectively. Figure 3 shows the high-resolution, drift-corrected, and calibrated images (Figure 3a and Figure 3c) of the two polymorphs and their proposed packing structures (Figure 3b and Figure 3d). The exact registry of the molecules on HOPG was not determined
PDF
Album
Supp Info
Full Research Paper
Published 18 Feb 2019

Nanoporous water oxidation electrodes with a low loading of laser-deposited Ru/C exhibit enhanced corrosion stability

  • Sandra Haschke,
  • Dmitrii Pankin,
  • Vladimir Mikhailovskii,
  • Maïssa K. S. Barr,
  • Adriana Both-Engel,
  • Alina Manshina and
  • Julien Bachmann

Beilstein J. Nanotechnol. 2019, 10, 157–167, doi:10.3762/bjnano.10.15

Graphical Abstract
  • silicon drift detector (SDD). All Raman spectra were collected at room temperature in a backscattering geometry using a Horiba Jobin-Yvon LabRam HR 800 Raman spectrometer equipped with an Olympus BX41 microscope. The spectra were obtained with 488 nm radiation from an Ar+ gas laser and recorded in the 35
PDF
Album
Supp Info
Full Research Paper
Published 11 Jan 2019

Bidirectional biomimetic flow sensing with antiparallel and curved artificial hair sensors

  • Claudio Abels,
  • Antonio Qualtieri,
  • Toni Lober,
  • Alessandro Mariotti,
  • Lily D. Chambers,
  • Massimo De Vittorio,
  • William M. Megill and
  • Francesco Rizzi

Beilstein J. Nanotechnol. 2019, 10, 32–46, doi:10.3762/bjnano.10.4

Graphical Abstract
  • behaviour. Influence of temperature on micro strain gauges As shown in Figure 8, the offset voltage of the Wheatstone quarter-bridge circuit (single cantilever) drifted around 100 mV, from 7.22 V up to 7.32 V after cooling down the sensor unit from 25 °C to 19 °C. This drift suggests that the sudden
  • temperature decrease influenced the offset voltage for the single cantilever sensor. In the subsequent warming up phase (data not shown), the output dropped back to its offset voltage (7.22 V). Accommodating for signal amplification, the actual drift was 1 mV. The temperature experiments were repeated for the
  • . Due to variation in the resistances (see Table 3), the half-bridge circuit was not perfectly balanced and a drift of 15 mV was measured. Accommodating for signal amplification, the actual drift was 0.15 mV. The artificial hair sensors did not generate heat, which suggests that they changed their
PDF
Album
Full Research Paper
Published 03 Jan 2019

Colloidal chemistry with patchy silica nanoparticles

  • Pierre-Etienne Rouet,
  • Cyril Chomette,
  • Laurent Adumeau,
  • Etienne Duguet and
  • Serge Ravaine

Beilstein J. Nanotechnol. 2018, 9, 2989–2998, doi:10.3762/bjnano.9.278

Graphical Abstract
  • carboxylic acid groups. The grafting efficiency was evidenced by zeta potential measurements and diffuse reflectance infrared Fourier-transform (DRIFT) spectroscopy. Figure 2b shows that after treatment of the silica surface by APTES, the so-aminated nanoparticles display a quite high zeta potential value of
  • Fourier-transform (DRIFT) spectroscopy We evaporated solvent from the solution of PS or modified PS. To 9 mg of the dried sample we added 281 mg of desiccated KBr (spectroscopy grade). We ground the mixture in an agate mortar and deposited the powder on the sample holder. The sample was then introduced
  • carboxylic acid groups, (b) zeta potential as a function of pH value, and (c) DRIFT spectra of bare (purple curve), aminated (orange curve) and carboxylated (green curve) silica particles; d) photograph of dimpled silica nanoparticles suspension before (left) and after (right) amination of the PS residues in
PDF
Album
Full Research Paper
Published 06 Dec 2018

Investigation of CVD graphene as-grown on Cu foil using simultaneous scanning tunneling/atomic force microscopy

  • Majid Fazeli Jadidi,
  • Umut Kamber,
  • Oğuzhan Gürlü and
  • H. Özgür Özer

Beilstein J. Nanotechnol. 2018, 9, 2953–2959, doi:10.3762/bjnano.9.274

Graphical Abstract
  • -specific spectroscopy at room temperature due to thermal drift. Our goal was to carry out spectroscopy on a carbon and a hollow site. We imaged the surface for a long while until the thermal drift was minimized. Then by moving the tip to targeted lateral positions (carbon and hollow sites) we obtained
PDF
Album
Full Research Paper
Published 28 Nov 2018

Charged particle single nanometre manufacturing

  • Philip D. Prewett,
  • Cornelis W. Hagen,
  • Claudia Lenk,
  • Steve Lenk,
  • Marcus Kaestner,
  • Tzvetan Ivanov,
  • Ahmad Ahmad,
  • Ivo W. Rangelow,
  • Xiaoqing Shi,
  • Stuart A. Boden,
  • Alex P. G. Robinson,
  • Dongxu Yang,
  • Sangeetha Hari,
  • Marijke Scotuzzi and
  • Ejaz Huq

Beilstein J. Nanotechnol. 2018, 9, 2855–2882, doi:10.3762/bjnano.9.266

Graphical Abstract
  • substrate properties. Due to the time taken for etching, drift in the system is also noted as being significant. This is another factor requiring optimisation since it affects the quality of etched lines. Understanding the chemical kinetics of EBIE is important for achieving greater control over the
PDF
Album
Review
Published 14 Nov 2018

Graphene-enhanced metal oxide gas sensors at room temperature: a review

  • Dongjin Sun,
  • Yifan Luo,
  • Marc Debliquy and
  • Chao Zhang

Beilstein J. Nanotechnol. 2018, 9, 2832–2844, doi:10.3762/bjnano.9.264

Graphical Abstract
  • the width of depletion layer at the α-Fe2O3 and rGO interfaces leading to higher sensitivity. In addition, the periodic exposure of the α-Fe2O3–rGO sensor to 0.1 ppm NO2 indicated that the process of response was repeatable. However, a drift of the baseline was easily noted, which usually appears in
  • room-temperature sensors, and further optimization is needed to control the drift. In another work, p–p junctions were accounted for the outstanding sensitivity to NO2 of Co3O4–rGO sensors at room temperature [60]. Liu et al. [61] prepared sulfonated reduced graphene oxide (S-rGO) via adding a solution
  • showed low surface affinity to these molecules, which makes detection difficult. A small number of these composite sensors seem to exhibit the phenomenon of resistance-baseline drift, which is due to the formation of chemical bonds during the adsorption of gas molecules at the material surface, resulting
PDF
Album
Review
Published 09 Nov 2018

Effective sensor properties and sensitivity considerations of a dynamic co-resonantly coupled cantilever sensor

  • Julia Körner

Beilstein J. Nanotechnol. 2018, 9, 2546–2560, doi:10.3762/bjnano.9.237

Graphical Abstract
  • frequency drift noise), the measurement principle (e.g., magnetic noise in case of magnetic measurements) and the excitation and detection setup (e.g., oscillator noise, detector noise) [8][20]. However, the lowest limit for a cantilever’s sensitivity is given by its thermal fluctuations leading to a
PDF
Album
Supp Info
Full Research Paper
Published 25 Sep 2018

High-throughput synthesis of modified Fresnel zone plate arrays via ion beam lithography

  • Kahraman Keskinbora,
  • Umut Tunca Sanli,
  • Margarita Baluktsian,
  • Corinne Grévent,
  • Markus Weigand and
  • Gisela Schütz

Beilstein J. Nanotechnol. 2018, 9, 2049–2056, doi:10.3762/bjnano.9.194

Graphical Abstract
  • in Figure 1b–d. Removal of large volumes of material (for instance, 100 µm diameter, 500 nm gold thickness [36]) usually means lengthy processes that require an multi-pass-exposure (MP-E) strategy as depicted in Figure 1b, and involves drift correction steps in between cycles [29][35][36]. In some
  • cases, the drift correction can be unnecessary, but the MP-E can still be desired when a better dose distribution or a well-defined wall geometry is aimed for in structures with higher aspect ratio [38]. We have shown that a much faster process can be devised by employing a single-pass-exposure (SP-E
  • 35% in total time. Thanks to the speed of fabrication, the maximum shift of the central zones caused by drift during the process were estimated to be less than 100 nm. Due to the particular nature of the writing strategy, the line-to-space ratio (L:S) continuously decreases towards the outermost
PDF
Album
Supp Info
Full Research Paper
Published 25 Jul 2018

A variable probe pitch micro-Hall effect method

  • Maria-Louise Witthøft,
  • Frederik W. Østerberg,
  • Janusz Bogdanowicz,
  • Rong Lin,
  • Henrik H. Henrichsen,
  • Ole Hansen and
  • Dirch H. Petersen

Beilstein J. Nanotechnol. 2018, 9, 2032–2039, doi:10.3762/bjnano.9.192

Graphical Abstract
  • MHE measurement itself is performed simply by placing a micro four-point probe (M4PP) in parallel and close proximity to an insulating boundary, with an orthogonal magnetic field applied. Then the measured resistance will have three contributions: a drift term, a Hall effect term and a magnetoresitive
PDF
Album
Full Research Paper
Published 20 Jul 2018

Nonlinear effect of carrier drift on the performance of an n-type ZnO nanowire nanogenerator by coupling piezoelectric effect and semiconduction

  • Yuxing Liang,
  • Shuaiqi Fan,
  • Xuedong Chen and
  • Yuantai Hu

Beilstein J. Nanotechnol. 2018, 9, 1917–1925, doi:10.3762/bjnano.9.183

Graphical Abstract
  • University of Science and Technology, Wuhan 430074, China 10.3762/bjnano.9.183 Abstract In piezoelectric semiconductors, electric fields drive carriers into motion/redistribution, and in turn the carrier motion/redistribution has an opposite effect on the electric field itself. Thus, carrier drift in a
  • piezoelectric semiconducting structure is essentially nonlinear unless the induced fluctuation of carrier concentration is very small. In this paper, the nonlinear governing equation of carrier concentration was established by coupling both piezoelectric effect and semiconduction. A nonlinear carrier-drift
  • power was analyzed in detail. The electrode size for the optimal performance of a ZnO nanowire generator was proposed. This analysis that couples electromechanical fields and carrier concentration as a whole has some referential significance to piezotronics. Keywords: carrier drift; crystallogrpahic c
PDF
Album
Full Research Paper
Published 04 Jul 2018

The role of the Ge mole fraction in improving the performance of a nanoscale junctionless tunneling FET: concept and scaling capability

  • Hichem Ferhati,
  • Fayçal Djeffal and
  • Toufik Bentrcia

Beilstein J. Nanotechnol. 2018, 9, 1856–1862, doi:10.3762/bjnano.9.177

Graphical Abstract
  • modified drift–diffusion model, which includes other effects related to the short-channel nature of the investigated transistor and to quantum effects is used. Further, the gradient density model is also included, which consists of the quantum correction associated with the local potential to the carrier
PDF
Album
Full Research Paper
Published 22 Jun 2018

Direct AFM-based nanoscale mapping and tomography of open-circuit voltages for photovoltaics

  • Katherine Atamanuk,
  • Justin Luria and
  • Bryan D. Huey

Beilstein J. Nanotechnol. 2018, 9, 1802–1808, doi:10.3762/bjnano.9.171

Graphical Abstract
  • practically removed per image frame, leading to effective 30 nm resolution in the z-direction between consecutive pairs of ISC* and VOC* maps throughout the polycrystalline film thickness. During such progressive imaging some spatial drift is unavoidable, though this is easily accommodated by commercial, free
  • , or custom image analysis routines (respectively Igor Pro, FIJI, and in this case programs written for MATLAB). The necessary drift corrections, typically based on purely rigid registration, cause ca. 10% around the outskirts of the initial property maps to be incomplete for the overall 3D dataset
  • ) conditions. In addition to protecting the specimen and probe from high currents as in conventional I/V sweeps, the efficiency of this single-pass approach for direct VOC* mapping is beneficial for measurements sensitive to ambient exposure, thermal drift, or multi-image investigations such as tomographic AFM
PDF
Album
Supp Info
Full Research Paper
Published 14 Jun 2018

Multimodal noncontact atomic force microscopy and Kelvin probe force microscopy investigations of organolead tribromide perovskite single crystals

  • Yann Almadori,
  • David Moerman,
  • Jaume Llacer Martinez,
  • Philippe Leclère and
  • Benjamin Grévin

Beilstein J. Nanotechnol. 2018, 9, 1695–1704, doi:10.3762/bjnano.9.161

Graphical Abstract
  • drift under the built-in electric field (step 1), the ion migration under illumination (step 2), the photocarrier recombination (step 3), and finally, the reverse ion migration under dark conditions (step 4). Note that the whole crystal volume is not represented in this sketch, which depicts only the
PDF
Album
Supp Info
Full Research Paper
Published 07 Jun 2018
Other Beilstein-Institut Open Science Activities