Search results

Search for "morphology" in Full Text gives 1110 result(s) in Beilstein Journal of Nanotechnology. Showing first 200.

A stretchable triboelectric nanogenerator made of silver-coated glass microspheres for human motion energy harvesting and self-powered sensing applications

  • Hui Li,
  • Yaju Zhang,
  • Yonghui Wu,
  • Hui Zhao,
  • Weichao Wang,
  • Xu He and
  • Haiwu Zheng

Beilstein J. Nanotechnol. 2021, 12, 402–412, doi:10.3762/bjnano.12.32

Graphical Abstract
  • LabVIEW programs to record information. The sheet resistance of the flexible SCGM/silicone rubber electrode was measured using the M-3 Mini four-probe tester. SEM (JSM-7001F) was used for morphology characterization of the surface of the SCGMs. Conclusion In summary, an easily manufactured, inexpensive
PDF
Album
Supp Info
Full Research Paper
Published 03 May 2021

Spontaneous shape transition of MnxGe1−x islands to long nanowires

  • S. Javad Rezvani,
  • Luc Favre,
  • Gabriele Giuli,
  • Yiming Wubulikasimu,
  • Isabelle Berbezier,
  • Augusto Marcelli,
  • Luca Boarino and
  • Nicola Pinto

Beilstein J. Nanotechnol. 2021, 12, 366–374, doi:10.3762/bjnano.12.30

Graphical Abstract
  • report a spontaneous morphology modification, from islands to nanowires, in Mn-rich GeMn nanoparticles. The growth is initiated via reaction of a thin Mn wetting layer, evaporated by MBE, with a Ge(111) substrate. Morphology and microstructure of the NWs have been studied by scanning electron microscopy
  • electron beam. Results and Discussion High-temperature annealing of the evaporated Mn thin films on Ge(111) results in a significant change of the film morphology with the appearance of nanostructures onto the surface. The features of the structures are related to the Mn layer thickness and the duration of
  • −x alloy (x ≤ 5%), the formation of Mn11Ge8 and Mn5Ge3 phases is energetically favoured with a preference for the latter [19][20][21][22][23][24][27][37]. Under the same annealing conditions, for a Mn film thickness of 4.5 ML a drastic change of the resulting morphology is observed with the
PDF
Album
Full Research Paper
Published 28 Apr 2021

Structural and optical characteristics determined by the sputtering deposition conditions of oxide thin films

  • Petronela Prepelita,
  • Florin Garoi and
  • Valentin Craciun

Beilstein J. Nanotechnol. 2021, 12, 354–365, doi:10.3762/bjnano.12.29

Graphical Abstract
  • films with thickness values ranging from 200 to 300 nm. Thus, we analyzed the beneficial effect of increasing film thickness on the composition, morphology, structure, and spectral characteristics of the studied samples. This way of analyzing oxide thin film thickness dependence on the optical and
  • we studied the surface of the samples at different magnifications (50000× and 20000×) by scanning them with a beam of accelerated electrons at very high energies (≈20 keV). The structural quality and surface morphology were investigated using a scanning electron microscope (FEI Co., model Inspect S50
  • (Figure 6a’–c’) and ZnO (Figure 7a’–c’) thin films is also provided by SEM surface measurements. The surfaces are smooth, with small differences between the surface morphology of a thinner oxide film as compared to a thicker one. For ZnO samples, there is a tendency for self-structuring of the deposited
PDF
Album
Full Research Paper
Published 19 Apr 2021

Nickel nanoparticle-decorated reduced graphene oxide/WO3 nanocomposite – a promising candidate for gas sensing

  • Ilka Simon,
  • Alexandr Savitsky,
  • Rolf Mülhaupt,
  • Vladimir Pankov and
  • Christoph Janiak

Beilstein J. Nanotechnol. 2021, 12, 343–353, doi:10.3762/bjnano.12.28

Graphical Abstract
  • temperature [32]. The combination of MOS with graphene materials can improve the gas sensing abilities [33][34]. MOS prevent graphene from agglomerating, which leads to a higher specific surface area. Graphene can control the size and morphology of MOS during the synthesis and decreases the resistance of MOS
PDF
Album
Supp Info
Full Research Paper
Published 15 Apr 2021

The patterning toolbox FIB-o-mat: Exploiting the full potential of focused helium ions for nanofabrication

  • Victor Deinhart,
  • Lisa-Marie Kern,
  • Jan N. Kirchhof,
  • Sabrina Juergensen,
  • Joris Sturm,
  • Enno Krauss,
  • Thorsten Feichtner,
  • Sviatoslav Kovalchuk,
  • Michael Schneider,
  • Dieter Engel,
  • Bastian Pfau,
  • Bert Hecht,
  • Kirill I. Bolotin,
  • Stephanie Reich and
  • Katja Höflich

Beilstein J. Nanotechnol. 2021, 12, 304–318, doi:10.3762/bjnano.12.25

Graphical Abstract
  • opposite out-of-plane magnetization in remanence. We are particularly interested in how ion irradiation changes the morphology of the magnetic domains and how it influences the nucleation and annihilation of domains in a typical adiabatic field cycle as well as after picosecond laser excitation [37][38
PDF
Album
Supp Info
Full Research Paper
Published 06 Apr 2021

Differences in surface chemistry of iron oxide nanoparticles result in different routes of internalization

  • Barbora Svitkova,
  • Vlasta Zavisova,
  • Veronika Nemethova,
  • Martina Koneracka,
  • Miroslava Kretova,
  • Filip Razga,
  • Monika Ursinyova and
  • Alena Gabelova

Beilstein J. Nanotechnol. 2021, 12, 270–281, doi:10.3762/bjnano.12.22

Graphical Abstract
  • , Figure S1A) and the mRNA level (Supporting Information File 1, Figure S1B). The expression of Dyn was analyzed only at the protein level. Our results demonstrated that A549 cells are proficient in both CME and CavME pathways. The effect of endocytic inhibitors on cell proliferation and morphology The
  • exposure of cells to surface-modified MNPs and Noc affect substantially the cell proliferation and morphology. Noc affects microtubule formation, thus interfering with cytoskeleton structure and mitosis, leading to cell cycle arrest in G2/M [26]. As MNPs interfere with tubulin polymerization as well [27
  • the IncuCyte ZOOM™ Live Content Imaging System (Essen BioScience, Hertfordshire, UK) at 2 h intervals. Cell morphology and confluence after exposure to inhibitors were monitored using the IncuCyte ZOOM 2013A software as recommended by the manufacturer. Real-time RT-PCR (qRT-PCR) Total RNA was isolated
PDF
Album
Supp Info
Full Research Paper
Published 23 Mar 2021

The nanomorphology of cell surfaces of adhered osteoblasts

  • Christian Voelkner,
  • Mirco Wendt,
  • Regina Lange,
  • Max Ulbrich,
  • Martina Gruening,
  • Susanne Staehlke,
  • Barbara Nebe,
  • Ingo Barke and
  • Sylvia Speller

Beilstein J. Nanotechnol. 2021, 12, 242–256, doi:10.3762/bjnano.12.20

Graphical Abstract
  • image of a whole osteoblast in the fixed state. The morphology is polar, that is, a flat region (lamellipodium) at the “leading” side and a bulkier region containing the nucleus at the trailing side were formed. The height of the bulky side of the shown cell is 8 µm while that of the lamellipodium is
  • current error appears counterintuitive regarding the material properties. However, considering the fin or springboard morphology of ruffles, the elasticity may not result from changes of material properties only but also from the flexible shape. Thus, the extremely low error probably points towards lower
  • after initial adhesion [40]. In order to quantify the excess membrane associated with dorsal ruffles, we focused on local frames in the vicinity of the cell rim, not on the large-scale cell morphology. We define the excess surface Aexc as the difference between the effective and the projected surface
PDF
Album
Full Research Paper
Published 12 Mar 2021

TiOx/Pt3Ti(111) surface-directed formation of electronically responsive supramolecular assemblies of tungsten oxide clusters

  • Marco Moors,
  • Yun An,
  • Agnieszka Kuc and
  • Kirill Yu. Monakhov

Beilstein J. Nanotechnol. 2021, 12, 203–212, doi:10.3762/bjnano.12.16

Graphical Abstract
  • and 900 K. It should be remarked that, although the height information in STM images is always a convolution of electronic and topographic surface properties, their origin in this case is expected to be strongly dominated by the surface morphology. This is due to the formation of compact oxide island
PDF
Album
Full Research Paper
Published 16 Feb 2021

Imaging of SARS-CoV-2 infected Vero E6 cells by helium ion microscopy

  • Natalie Frese,
  • Patrick Schmerer,
  • Martin Wortmann,
  • Matthias Schürmann,
  • Matthias König,
  • Michael Westphal,
  • Friedemann Weber,
  • Holger Sudhoff and
  • Armin Gölzhäuser

Beilstein J. Nanotechnol. 2021, 12, 172–179, doi:10.3762/bjnano.12.13

Graphical Abstract
  • the uncoated surface morphology of cells and virus particles, allowing one to identify and investigate sites at which a cell interacts with the virus. While its principle of operation is very similar to SEM, HIM utilizes a beam of positively charged helium ions (He+) instead of negatively charged
PDF
Album
Supp Info
Full Research Paper
Published 02 Feb 2021

Paper-based triboelectric nanogenerators and their applications: a review

  • Jing Han,
  • Nuo Xu,
  • Yuchen Liang,
  • Mei Ding,
  • Junyi Zhai,
  • Qijun Sun and
  • Zhong Lin Wang

Beilstein J. Nanotechnol. 2021, 12, 151–171, doi:10.3762/bjnano.12.12

Graphical Abstract
  • . Therefore, corresponding treatment processes (e.g., deposition of conductive materials by laser patterning, screen printing, spray coating, thermal deposition, surface morphology engineering, and chemical modification [46][92][93][94][95][96][97][98]) are often applied to convert paper into a conductive
  • comparative results shown in the photographs of the A3 steel pieces with and without a self-powered cathodic protection system revealed that there were no obvious changes in the morphology and color of the surface of the A3 steel in connection with the TENG. However, the A3 steel without the self-powered
PDF
Album
Review
Published 01 Feb 2021

A review on the green and sustainable synthesis of silver nanoparticles and one-dimensional silver nanostructures

  • Sina Kaabipour and
  • Shohreh Hemmati

Beilstein J. Nanotechnol. 2021, 12, 102–136, doi:10.3762/bjnano.12.9

Graphical Abstract
  • but not limited to renewable energy, electronics, biosensors, wastewater treatment, medicine, and clinical equipment. The properties of silver nanostructures, such as size, size distribution, and morphology, are strongly dependent on synthesis process conditions such as the process type, equipment
  • reaction parameters, such as temperature, pH, precursor, and reagent concentration, on silver nanostructure size and morphology are discussed. Also, green synthesis techniques used for the synthesis of one-dimensional (1D) silver nanostructures have been reviewed, and the potential of alternative green
  • . Nanotechnology has emerged as a means to delve further into the usefulness of this precious element. Silver nanostructures can be categorized based on their shape and morphology. Different shapes and morphologies of silver nanostructures have been synthesized, including cubes [46][47], spheres [48][49][50
PDF
Album
Review
Published 25 Jan 2021

Numerical analysis of vibration modes of a qPlus sensor with a long tip

  • Kebei Chen,
  • Zhenghui Liu,
  • Yuchen Xie,
  • Chunyu Zhang,
  • Gengzhao Xu,
  • Wentao Song and
  • Ke Xu

Beilstein J. Nanotechnol. 2021, 12, 82–92, doi:10.3762/bjnano.12.7

Graphical Abstract
  • which one prong is fixed onto a substrate and the other prong with an attached tip serves as a self-sensing cantilever [2]. In 1996, F. J. Giessibl et al. first used the qPlus sensor to measure the morphology of a grating and a CD at room temperature [3]. Since then, this technique has been used
PDF
Album
Supp Info
Full Research Paper
Published 21 Jan 2021

ZnO and MXenes as electrode materials for supercapacitor devices

  • Ameen Uddin Ammar,
  • Ipek Deniz Yildirim,
  • Feray Bakan and
  • Emre Erdem

Beilstein J. Nanotechnol. 2021, 12, 49–57, doi:10.3762/bjnano.12.4

Graphical Abstract
  • high power density as well as due to the potential to further increase the energy density. Supercapacitors may act as batteries in electrochemical performance tests. The choice of the materials, their morphology, dimension, and synthesis technique, as well the synergy with the other components of the
  • , their locations, and their concentration depend on two major characteristic properties, namely size and morphology. To detect, identify, and determine the defect structures and their concentrations microscopic characterization techniques need to be used to yield detailed information on the local
  • play a vital role in the creation of the defect centers. Different routes may create different size distributions. The defects may have different thermodynamics and kinetics. Also, secondary phases may occur, and impurities and morphology may change. All these facts affect the creation of defects
PDF
Album
Review
Published 13 Jan 2021

Effect of different silica coatings on the toxicity of upconversion nanoparticles on RAW 264.7 macrophage cells

  • Cynthia Kembuan,
  • Helena Oliveira and
  • Christina Graf

Beilstein J. Nanotechnol. 2021, 12, 35–48, doi:10.3762/bjnano.12.3

Graphical Abstract
  • μg/mL fungizone at 37 °C in a 5% CO2 humidified atmosphere [73]. The cells were observed daily for confluence and cell morphology by using an inverted phase-contrast Eclipse TS100 microscope (Nikon, Tokyo, Japan). For routine subculturing, cells at approx. 80% confluency were gently lifted off by
PDF
Album
Supp Info
Full Research Paper
Published 08 Jan 2021

Atomic layer deposited films of Al2O3 on fluorine-doped tin oxide electrodes: stability and barrier properties

  • Hana Krýsová,
  • Michael Neumann-Spallart,
  • Hana Tarábková,
  • Pavel Janda,
  • Ladislav Kavan and
  • Josef Krýsa

Beilstein J. Nanotechnol. 2021, 12, 24–34, doi:10.3762/bjnano.12.2

Graphical Abstract
  • 7.2). Chronoamperometric measurements were performed in buffered solution (pH 7.2) at −1.2 V (vs Ag/AgCl). The morphology of the films was characterized ex situ, under ambient conditions, by atomic force microscopy (AFM, Dimension Icon, Bruker, USA) in a semicontact (tapping) mode. A silicon
  • cantilever (TESPA-V2) with a resonant frequency fres of approx. 300 kHz, a spring constant k of 0.42 N·m−1, and a nominal tip radius of 8 nm (Bruker, USA) was employed. The Gwyddion software (v. 2.53) was utilized for processing AFM image data. Results and Discussion AFM was used to compare the morphology of
  • the substrates before and after ALD deposition of an Al2O3 layer. As shown in Figure S1 and Figure S2 (Supporting Information File 1), the surface morphology of both substrates, the as-received and the Al2O3-coated SiO2 layer, was almost identical. This indicates a uniform distribution of the
PDF
Album
Supp Info
Full Research Paper
Published 05 Jan 2021

Bio-imaging with the helium-ion microscope: A review

  • Matthias Schmidt,
  • James M. Byrne and
  • Ilari J. Maasilta

Beilstein J. Nanotechnol. 2021, 12, 1–23, doi:10.3762/bjnano.12.1

Graphical Abstract
  • the samples were dried. The samples were stored under desiccant at room temperature, and the authors noted no obvious changes to the samples after one week of storage. This protocol was repeated by Paunescu et al. to preserve the morphology of rat and mouse epididymal tissue [65]. (III
  • and the morphology is reasonably well maintained. However, the surface is less well preserved. Figure 4 shows a Pseudomonas putida biofilm imaged using HIM [69]. One image shows the biofilm prepared using ethanol dehydration followed by HMDS drying (Figure 4A). The other image shows the biofilm
  • is a trade-off between preservation of the cell morphology, avoiding precipitates on the sample and maintaining the filigreed EPS. Therefore, Sharma et al. used a protocol both simple and effective: The sample was kept in the medium (water from the hot springs at Manikaran) to which gently and slowly
PDF
Album
Review
Published 04 Jan 2021

Towards 3D self-assembled rolled multiwall carbon nanotube structures by spontaneous peel off

  • Jonathan Quinson

Beilstein J. Nanotechnol. 2020, 11, 1865–1872, doi:10.3762/bjnano.11.168

Graphical Abstract
  • ”, and a final “straight” section. A wavy structure is the expected morphology for undoped MWCNTs, whereas a straight section is expected for N-doped MWCNTs [6][16][21]. Thus, the sequence observed is in agreement with the synthesis sequence performed and with a root-growth mechanism previously detailed
  • , there is a wavy, a straight, and another wavy section. This sequential changes in the morphology is in agreement with the synthesis sequence used. The interface between the expected N2 and C3 sections is marked by a brighter line. Raman spectra of undoped MWCNTs and nitrogen-doped MWCNTs are
  • same cross section, unambiguously assign a given morphology to a given structure in a confirmed root-growth mechanism, since the sample can be kept on a substrate [16]. TEM characterization is more challenging since the information regarding the relative position of the different sections is lost
PDF
Album
Supp Info
Full Research Paper
Published 18 Dec 2020

Piezotronic effect in AlGaN/AlN/GaN heterojunction nanowires used as a flexible strain sensor

  • Jianqi Dong,
  • Liang Chen,
  • Yuqing Yang and
  • Xingfu Wang

Beilstein J. Nanotechnol. 2020, 11, 1847–1853, doi:10.3762/bjnano.11.166

Graphical Abstract
  • /GaN NW was transferred to a flexible PET substrate, and ITO electrodes were prepared by magnetron sputtering on both ends of the NW to form an ohmic contact. Measurements The selective EC etching process and the morphology of the NWs were imaged using an optical microscope (Leica DM2500M), an SEM
PDF
Album
Full Research Paper
Published 10 Dec 2020

Unravelling the interfacial interaction in mesoporous SiO2@nickel phyllosilicate/TiO2 core–shell nanostructures for photocatalytic activity

  • Bridget K. Mutuma,
  • Xiluva Mathebula,
  • Isaac Nongwe,
  • Bonakele P. Mtolo,
  • Boitumelo J. Matsoso,
  • Rudolph Erasmus,
  • Zikhona Tetana and
  • Neil J. Coville

Beilstein J. Nanotechnol. 2020, 11, 1834–1846, doi:10.3762/bjnano.11.165

Graphical Abstract
  • @NiPS/TiO2) core–shell nanostructures. The TEM results showed that the mSiO2@NiPS composite has a core–shell nanostructure with a unique flake-like shell morphology. XPS analysis revealed the successful formation of 1:1 nickel phyllosilicate on the SiO2 surface. The addition of TiO2 to the mSiO2@NiPS
  • photocatalyst with a degradation efficacy of 93% after three cycles. The porous flake-like morphology of the nickel phyllosilicate acted as a suitable support for the TiO2 nanoparticles. Further, a coating of TiO2 on the mSiO2@NiPS surface greatly affected the surface features and optoelectronic properties of
  • metal oxides, such as ZrO2 [16] and SiO2 [17], influence the morphology and surface features of the resulting binary metal oxide semiconductors. Moreover, these binary metal oxide semiconductors act as charge-transfer catalysts and significantly reduce the electron–hole recombination [18][19]. Another
PDF
Album
Supp Info
Full Research Paper
Published 09 Dec 2020

Nanocasting synthesis of BiFeO3 nanoparticles with enhanced visible-light photocatalytic activity

  • Thomas Cadenbach,
  • Maria J. Benitez,
  • A. Lucia Morales,
  • Cesar Costa Vera,
  • Luis Lascano,
  • Francisco Quiroz,
  • Alexis Debut and
  • Karla Vizuete

Beilstein J. Nanotechnol. 2020, 11, 1822–1833, doi:10.3762/bjnano.11.164

Graphical Abstract
  • diffraction with a Bruker D2 Phaser diffractometer equipped with a Cu tube (λ = 1.54 Å) and a LYNXEYE XE-T detector. Crystalline impurities were identified using MATCH! Phase Identification from Powder Diffraction. Size and morphology of the samples were obtained using a FEI Tecnai G2 spirit twin transmission
PDF
Album
Supp Info
Full Research Paper
Published 07 Dec 2020

Self-standing heterostructured NiCx-NiFe-NC/biochar as a highly efficient cathode for lithium–oxygen batteries

  • Shengyu Jing,
  • Xu Gong,
  • Shan Ji,
  • Linhui Jia,
  • Bruno G. Pollet,
  • Sheng Yan and
  • Huagen Liang

Beilstein J. Nanotechnol. 2020, 11, 1809–1821, doi:10.3762/bjnano.11.163

Graphical Abstract
  • PANalytical B.V. Empyean X-ray diffractometer with Cu Kα radiation (λ = 1.5406 Å). The surface morphology of the film catalyst was studied via scanning electron microscopy (SEM) on a Carl Zeiss Ultra Plus scanning electron microscope. Transmission electron microscopy (TEM), high-resolution TEM (HR-TEM), and
  • calcined at 700 °C, NiFe-PBA/PP-900 had a grape-like morphology (Figure 2c). The crystal structure of NiFe-PBA/PP-T samples was obtained from XRD (Figure 2d). A characteristic peak at approx. 2θ = 26.4° was observed in the XRD patterns of both samples, and was attributed to the (002) plane of graphite
  • flocculent morphology of NiFe-PBA/PP-900 was observed in the HR-TEM image (Figure 3a), and was found to be composed of many irregular sheet-like materials. In the zoomed HR-TEM image (Figure 3b), many cavities and wrinkles are clearly observed in the carbon material. Moreover, irregular black particles were
PDF
Album
Full Research Paper
Published 02 Dec 2020

Nanomechanics of few-layer materials: do individual layers slide upon folding?

  • Ronaldo J. C. Batista,
  • Rafael F. Dias,
  • Ana P. M. Barboza,
  • Alan B. de Oliveira,
  • Taise M. Manhabosco,
  • Thiago R. Gomes-Silva,
  • Matheus J. S. Matos,
  • Andreij C. Gadelha,
  • Cassiano Rabelo,
  • Luiz G. L. Cançado,
  • Ado Jorio,
  • Hélio Chacham and
  • Bernardo R. A. Neves

Beilstein J. Nanotechnol. 2020, 11, 1801–1808, doi:10.3762/bjnano.11.162

Graphical Abstract
  • exfoliated onto a silicon oxide substrate (blue shades). During the exfoliation/deposition processes, such a talc flake folds over itself, creating a well-defined folded edge, shown in orange shades. Figure 1b shows a schematic drawing of the morphology of the fold in Figure 1a. This is the morphology of the
  • middle of the flake for folded edges in flakes more than one atom layer thick, as it is shown in the inset of Figure 1c and in Figure 2b for the three-layered folded edge. Figure 2 shows that the model geometry describes very well the morphology of folded edges in flakes with different thicknesses (the
  • layers shows a different behavior than the other samples and was much stiffer than expected. This might be attributed to a distinct morphology. From the above, we conclude that sufficiently thick talc flakes behave like rigid objects without interlayer sliding. Therefore, upon fold formation, the layers
PDF
Album
Supp Info
Full Research Paper
Published 30 Nov 2020

Molecular dynamics modeling of the influence forming process parameters on the structure and morphology of a superconducting spin valve

  • Alexander Vakhrushev,
  • Aleksey Fedotov,
  • Vladimir Boian,
  • Roman Morari and
  • Anatolie Sidorenko

Beilstein J. Nanotechnol. 2020, 11, 1776–1788, doi:10.3762/bjnano.11.160

Graphical Abstract
  • superconductor nanolayers. The aim was to study the influence of the main technological parameters including temperature, concentration and spatial distribution of deposited atoms over the nanosystem surface on the atomic structure and morphology of the nanosystem. The studies were carried out using the
  • technological parameters (substrate temperature, concentration and spatial distribution of the deposited atoms over the interface) on the structure and morphology of the layered nanosystem. Mathematical Model and Theoretical Foundations The formation processes and the structure of multilayer systems for
  • computational experiments was aimed at understanding the deposition flux area influence and the modeling region size on the structure and morphology of the simulated layered nanosystem. Figure 8 shows these parameters of the nanosystem. The change in the area of the deposition flow, illustrated in Figure 8a
PDF
Album
Full Research Paper
Published 24 Nov 2020

PEG/PEI-functionalized single-walled carbon nanotubes as delivery carriers for doxorubicin: synthesis, characterization, and in vitro evaluation

  • Shuoye Yang,
  • Zhenwei Wang,
  • Yahong Ping,
  • Yuying Miao,
  • Yongmei Xiao,
  • Lingbo Qu,
  • Lu Zhang,
  • Yuansen Hu and
  • Jinshui Wang

Beilstein J. Nanotechnol. 2020, 11, 1728–1741, doi:10.3762/bjnano.11.155

Graphical Abstract
  • Annexin V-FITC and PI were used as control. Cell morphology was also observed using the fluorescence microscope. Data processing and analysis Data were given as mean ± standard deviation (SD), and mean values were considered significantly different when p < 0.05 (*) or p < 0.001 (***) using one-way
  • diffraction patterns of the CNTs remain the same after conjugation with PEG and PEI, which indicate that the surface modification will not change the atomic structure of CNTs. The morphology of the different nanocarriers was observed using AFM after deposition on a mica substrate. The raw SWCNTs exhibit large
PDF
Album
Full Research Paper
Published 13 Nov 2020

Out-of-plane surface patterning by subsurface processing of polymer substrates with focused ion beams

  • Serguei Chiriaev,
  • Luciana Tavares,
  • Vadzim Adashkevich,
  • Arkadiusz J. Goszczak and
  • Horst-Günter Rubahn

Beilstein J. Nanotechnol. 2020, 11, 1693–1703, doi:10.3762/bjnano.11.151

Graphical Abstract
  • of the polymer. Effects of subsurface and surface processes on the surface morphology have been studied for three polymer materials: poly(methyl methacrylate), polycarbonate, and polydimethylsiloxane, by using focused ion beam irradiation with He+, Ne+, and Ga+. Thin films of a Pt60Pd40 alloy and of
  • polymer bulk [7]. In fact, the method utilizes ion energy losses to manipulate the surface morphology by means of radiation damage generated in the substrate bulk and minimizes the surface damage resulting from sputtering. This leaves the thin films and the prefabricated thin-film nanostructures on the
  • high transparency, biocompatibility, and low cost, enable the broad use of PDMS for the fabrication of microfluidic, microelectromechanical, and microoptical devices [20]. The effects of ion irradiation on chemical and physical properties and on the surface morphology of PDMS have been extensively
PDF
Album
Supp Info
Full Research Paper
Published 06 Nov 2020
Other Beilstein-Institut Open Science Activities