Search results

Search for "porosity" in Full Text gives 219 result(s) in Beilstein Journal of Nanotechnology. Showing first 200.

Materials nanoarchitectonics at two-dimensional liquid interfaces

  • Katsuhiko Ariga,
  • Michio Matsumoto,
  • Taizo Mori and
  • Lok Kumar Shrestha

Beilstein J. Nanotechnol. 2019, 10, 1559–1587, doi:10.3762/bjnano.10.153

Graphical Abstract
  • nanowhiskers in liquid–liquid interfacial precipitation processes [245]. The intercalation of polycyclic aromatic compounds generally modifies the growth of fullerene one-dimensional crystals depending on intercalation species. While anthracene and pyrene led to an increased porosity of the structures, the
PDF
Album
Review
Published 30 Jul 2019

High-temperature resistive gas sensors based on ZnO/SiC nanocomposites

  • Vadim B. Platonov,
  • Marina N. Rumyantseva,
  • Alexander S. Frolov,
  • Alexey D. Yapryntsev and
  • Alexander M. Gaskov

Beilstein J. Nanotechnol. 2019, 10, 1537–1547, doi:10.3762/bjnano.10.151

Graphical Abstract
  • nanofibers was estimated from the broadening of the (100) ZnO and (111) 3C-SiC XRD peaks using the Scherrer formula. The measurements of the specific surface area (SBET) and analysis of the porosity of the samples were carried out by the method of low-temperature nitrogen adsorption on an ASAP 2010
PDF
Album
Supp Info
Full Research Paper
Published 26 Jul 2019

Synthesis of P- and N-doped carbon catalysts for the oxygen reduction reaction via controlled phosphoric acid treatment of folic acid

  • Rieko Kobayashi,
  • Takafumi Ishii,
  • Yasuo Imashiro and
  • Jun-ichi Ozaki

Beilstein J. Nanotechnol. 2019, 10, 1497–1510, doi:10.3762/bjnano.10.148

Graphical Abstract
  • higher temperatures resulted in activation and increased porosity rather than in increased P content. The P/C atomic ratios of PN-doped carbon materials correlated well with those of the precursors, which indicated that CPAT is well suited for the preparation of PN-doped carbon materials. The carbon
PDF
Album
Supp Info
Full Research Paper
Published 25 Jul 2019

BiOCl/TiO2/diatomite composites with enhanced visible-light photocatalytic activity for the degradation of rhodamine B

  • Minlin Ao,
  • Kun Liu,
  • Xuekun Tang,
  • Zishun Li,
  • Qian Peng and
  • Jing Huang

Beilstein J. Nanotechnol. 2019, 10, 1412–1422, doi:10.3762/bjnano.10.139

Graphical Abstract
  • a Micromeritics ASAP 2020 surface area and porosity measurement system. A Unico UV-2600 spectrophotometer was used to analyze the concentration of RhB in the photocatalytic process. The photoelectrochemical properties were analyzed using electrochemical workstations (Gamry interface 1010 and Chenhua
  • and pore volume are shown in Table 1. Density functional theory (DFT) mode was undertaken to characterize the porosity of these samples. According to the N2 adsorption–desorption isotherms, we can see that all four samples belong to IV-type isotherms. BiOCl has an H2-type hysteresis loop, while
PDF
Album
Supp Info
Full Research Paper
Published 16 Jul 2019

Multicomponent bionanocomposites based on clay nanoarchitectures for electrochemical devices

  • Giulia Lo Dico,
  • Bernd Wicklein,
  • Lorenzo Lisuzzo,
  • Giuseppe Lazzara,
  • Pilar Aranda and
  • Eduardo Ruiz-Hitzky

Beilstein J. Nanotechnol. 2019, 10, 1303–1315, doi:10.3762/bjnano.10.129

Graphical Abstract
  • ]. The resulting multicomponent systems have advantages such as high electrical conductivity and flexibility that make the bionanocomposite films appropriate components for biosensors [35][40] for glucose detection, while the relatively high porosity of the bioactive foams enhances the power density and
  • (Figure S1, Supporting Information File 1), comparable to similar freeze-cast clay nanocomposite foams [43][44]. Halloysite nanotubes are visible on the surface of the cell walls with free access to the lumen (Figure 3I). The porosity of the foams was estimated from their relative density values (Table 1
  • ). It was found that foams with a high content of chitosan showed the lowest porosity, i.e., 89%. The porosity of films with low chitosan content was 96%. In fact, by reducing the chitosan content (and concomitantly increasing the clay and GNP content) the apparent density slightly decreases, while the
PDF
Album
Supp Info
Full Research Paper
Published 25 Jun 2019

Playing with covalent triazine framework tiles for improved CO2 adsorption properties and catalytic performance

  • Giulia Tuci,
  • Andree Iemhoff,
  • Housseinou Ba,
  • Lapo Luconi,
  • Andrea Rossin,
  • Vasiliki Papaefthimiou,
  • Regina Palkovits,
  • Jens Artz,
  • Cuong Pham-Huu and
  • Giuliano Giambastiani

Beilstein J. Nanotechnol. 2019, 10, 1217–1227, doi:10.3762/bjnano.10.121

Graphical Abstract
  • , such as their semiconducting behaviour, their inherent porosity, high specific surface area, chemical versatility, including their thermal and chemical resistance make them ideal candidates for a number of energy storage and conversion technologies [2][3]. The scope of carbon-based nanomaterials
  • use of a wide variety of rigid and sterically demanding organic building blocks to synthesize POPs allows for a fine control of their morphological and chemical properties [9][10][11]. Thus, POPs provide a permanent porosity (with high accessible specific surface area), combined with a facile chemical
  • conditions, in molten zinc chloride, the rational combination of dicyano-substituted organic moieties can be used to provide stable carbon nanomaterials with diverse morphologies (i.e., porosity and specific surface area) along with variable chemical composition (i.e., content and type of light elements such
PDF
Album
Supp Info
Full Research Paper
Published 12 Jun 2019

Photoactive nanoarchitectures based on clays incorporating TiO2 and ZnO nanoparticles

  • Eduardo Ruiz-Hitzky,
  • Pilar Aranda,
  • Marwa Akkari,
  • Nithima Khaorapapong and
  • Makoto Ogawa

Beilstein J. Nanotechnol. 2019, 10, 1140–1156, doi:10.3762/bjnano.10.114

Graphical Abstract
  • [8][10][11]. A useful strategy to enhance the photocatalytic activity of metal-oxide NPs considered here consists in their distribution as homogenously as possible on the surface of clay minerals acting as supports and provided with large specific area and porosity. Among the clay materials (Figure 1
  • surface area values are of the order of 50–100 m2/g whereas the ZnO NPs alone exhibit values below 15 m2/g. The mesoporosity (ca. 0.25 cm3/g total porosity) together the photoactivity of the ZnO NPs make these materials suitable photocatalysts for the removal of organic dyes from water [118]. ZnO–clay
PDF
Album
Review
Published 31 May 2019

Porous N- and S-doped carbon–carbon composite electrodes by soft-templating for redox flow batteries

  • Maike Schnucklake,
  • László Eifert,
  • Jonathan Schneider,
  • Roswitha Zeis and
  • Christina Roth

Beilstein J. Nanotechnol. 2019, 10, 1131–1139, doi:10.3762/bjnano.10.113

Graphical Abstract
  • obtained inside the macroporous carbon felt. For the investigation of electrode structure and porosity X-ray photoelectron spectroscopy (XPS), scanning electron microscopy (SEM), and nitrogen sorption (BET) were used. The electrochemical performance of the carbon felts was evaluated by cyclic voltammetry
  • functional group promotes the VO2+/VO2+ redox reaction the most [18]. The application of templates is a commonly used strategy to introduce porosity into carbon materials. Depending on the utilized template one can distinguish between a hard-templating and a soft-templating approach [19]. In both cases, the
  • sulfur. The EDX mappings verify the largely homogeneous distribution of all elements. Nitrogen doping as well as sulfur doping through the proposed soft-templating approach were successful. BET measurements were carried out to analyze the porosity of the carbon felts. In Figure 4, a comparison between
PDF
Album
Full Research Paper
Published 28 May 2019

Glucose-derived carbon materials with tailored properties as electrocatalysts for the oxygen reduction reaction

  • Rafael Gomes Morais,
  • Natalia Rey-Raap,
  • José Luís Figueiredo and
  • Manuel Fernando Ribeiro Pereira

Beilstein J. Nanotechnol. 2019, 10, 1089–1102, doi:10.3762/bjnano.10.109

Graphical Abstract
  • of HTC is that the as-prepared hydrothermal carbon materials usually exhibit limited porosity and inadequate chemical properties for the ORR. To solve this problem, different strategies can be addressed: i) carbonization and activation methods to tailor the porosity and ii) the incorporation of
  • nitrogen functionalities on the ORR, leaving aside the effect of porosity. In fact, although some studies suggest the importance of microporosity on the ORR [41], there is a lack of knowledge about its real effect on the ORR performance of nitrogen-doped porous carbon materials, and more specifically, of
  • activation, resulting in materials with a larger volume of micropores (Supporting Information File 1, Table S1). This effect is due to the reverse Boudouard reaction, which extracts carbon atoms from the carbon structure, developing the porosity of the material [42]. Accordingly, a prolonged contact time
PDF
Album
Supp Info
Full Research Paper
Published 21 May 2019

On the transformation of “zincone”-like into porous ZnO thin films from sub-saturated plasma enhanced atomic layer deposition

  • Alberto Perrotta,
  • Julian Pilz,
  • Stefan Pachmajer,
  • Antonella Milella and
  • Anna Maria Coclite

Beilstein J. Nanotechnol. 2019, 10, 746–759, doi:10.3762/bjnano.10.74

Graphical Abstract
  • , development of controlled porosity, and formation and growth of ZnO crystallites. The layers developed controlled nanoporosity in the range of 1–5%, with pore sizes between 0.27 and 2.00 nm as measured with ellipsometric porosimetry (EP), as a function of the plasma dose and post-annealing temperature
  • crystal growth occurred, giving insights in the manufacturing of nanoporous ZnO from Zn-based hybrid materials. Keywords: calcination; PE-ALD; porosity; thin films; ZnO; Introduction Atomic layer deposition (ALD) and molecular layer deposition (MLD) are sequential self-limiting vapor-phase deposition
  • the formation of porosity was investigated with ellipsometric porosimetry (EP), already shown suitable for the determination of porosity in hybrid and polymer-derived oxides [12][18][29][42][43]. In the literature, few contributions investigate the transformation of zinc-based alkoxides into porous
PDF
Album
Supp Info
Full Research Paper
Published 21 Mar 2019

Outstanding chain-extension effect and high UV resistance of polybutylene succinate containing amino-acid-modified layered double hydroxides

  • Adam A. Marek,
  • Vincent Verney,
  • Christine Taviot-Gueho,
  • Grazia Totaro,
  • Laura Sisti,
  • Annamaria Celli and
  • Fabrice Leroux

Beilstein J. Nanotechnol. 2019, 10, 684–695, doi:10.3762/bjnano.10.68

Graphical Abstract
  • small organic molecules used [6][7][8][9] are typically prone to migrate out of the polymer, thus creating some porosity and subsequently causing potential disruption in the polymer barrier integrity. In addition to this, the possible release of the stabilizers is a key issue in terms of health since
PDF
Album
Supp Info
Full Research Paper
Published 12 Mar 2019

Commercial polycarbonate track-etched membranes as substrates for low-cost optical sensors

  • Paula Martínez-Pérez and
  • Jaime García-Rupérez

Beilstein J. Nanotechnol. 2019, 10, 677–683, doi:10.3762/bjnano.10.67

Graphical Abstract
  • that our sensors only have a 0.4% of porosity, while porous silicon typically has porosity in the range of 50%. However, even with such a low porosity value, we were able to clearly see the presence of ethanol in the medium. Furthermore, our porous structure presents an important advantage: it is ready
PDF
Album
Full Research Paper
Published 07 Mar 2019

Ultrathin hydrophobic films based on the metal organic framework UiO-66-COOH(Zr)

  • Miguel A. Andrés,
  • Clemence Sicard,
  • Christian Serre,
  • Olivier Roubeau and
  • Ignacio Gascón

Beilstein J. Nanotechnol. 2019, 10, 654–665, doi:10.3762/bjnano.10.65

Graphical Abstract
  • position and cover MOF particles. Moreover, the presence of MOF particles significantly enhances the surface roughness and allows ultrathin, hydrophobic coverage to be obtained. Finally, it has been shown that the crystallinity and the porosity of the MOF remains almost unaltered in MOF/ODP films
  • particles without significantly affecting the porosity or crystallinity since both properties are intimately linked in a MOF. Finally, it should also be mentioned that the CO2 adsorption capacity at 1 bar for an LB film is similar to that of drop-cast samples but the relative deviations in the measurements
  • MOF/ODP mixed films. Additionally, the CO2 adsorption capacity of bare UiO-66-COOH(Zr) cast films is similar to that of mixed UiO-66-COOH(Zr)/ODP films, which reveals that the mixture with ODP allows modification of the surface of the sMPs without significantly affecting its porosity. Compared to
PDF
Album
Supp Info
Full Research Paper
Published 06 Mar 2019

Ceria/polymer nanocontainers for high-performance encapsulation of fluorophores

  • Kartheek Katta,
  • Dmitry Busko,
  • Yuri Avlasevich,
  • Katharina Landfester,
  • Stanislav Baluschev and
  • Rafael Muñoz-Espí

Beilstein J. Nanotechnol. 2019, 10, 522–530, doi:10.3762/bjnano.10.53

Graphical Abstract
  • inorganic components on the surface have attracted great interest because of the possibility to tune size, composition, porosity, stability, surface functionality, and colloidal stability [6][7][8][9][10][11][12]. Generally, fluorescent dye molecules are sensitive to the external environment, which leads to
PDF
Album
Supp Info
Full Research Paper
Published 22 Feb 2019

Improving control of carbide-derived carbon microstructure by immobilization of a transition-metal catalyst within the shell of carbide/carbon core–shell structures

  • Teguh Ariyanto,
  • Jan Glaesel,
  • Andreas Kern,
  • Gui-Rong Zhang and
  • Bastian J. M. Etzold

Beilstein J. Nanotechnol. 2019, 10, 419–427, doi:10.3762/bjnano.10.41

Graphical Abstract
  • catalysts, require the combination of the contradicting properties of graphitic microstructure and porosity. The usage of graphitization catalysts during the synthesis of carbide-derived carbon materials results in materials that combine the required properties, but controlling the microstructure during
  • large specific surface area and distinct pore character. For applications in which electrical conductivity plays an important role, e.g., battery electrodes, fuel-cell catalysts or supercapacitors [14][15][16], it is necessary for carbon to not only show porosity but also to feature a graphitic
  • were employed to produce carbon combining porosity and graphitic structure [17][18][19]. Among them, the carbide-derived carbon (CDC) is a promising route. CDC can be synthesized through the selective extraction of metals or metalloid atoms from metal carbides (MexC, e.g., TiC, SiC, VC, and Mo2C) by
PDF
Album
Supp Info
Full Research Paper
Published 11 Feb 2019

Biocompatible organic–inorganic hybrid materials based on nucleobases and titanium developed by molecular layer deposition

  • Leva Momtazi,
  • Henrik H. Sønsteby and
  • Ola Nilsen

Beilstein J. Nanotechnol. 2019, 10, 399–411, doi:10.3762/bjnano.10.39

Graphical Abstract
  • quantifying this by porosity ellipsometry (data not shown) revealed only limited or insignificant porosity (thymine ≈4%, uracil ≈1% and adenine ≈1%). The complex nature of these films therefore remains to be further investigated. Judging from the observations that most of the nucleobases leached out during
PDF
Album
Supp Info
Full Research Paper
Published 08 Feb 2019

Integration of LaMnO3+δ films on platinized silicon substrates for resistive switching applications by PI-MOCVD

  • Raquel Rodriguez-Lamas,
  • Dolors Pla,
  • Odette Chaix-Pluchery,
  • Benjamin Meunier,
  • Fabrice Wilhelm,
  • Andrei Rogalev,
  • Laetitia Rapenne,
  • Xavier Mescot,
  • Quentin Rafhay,
  • Hervé Roussel,
  • Michel Boudard,
  • Carmen Jiménez and
  • Mónica Burriel

Beilstein J. Nanotechnol. 2019, 10, 389–398, doi:10.3762/bjnano.10.38

Graphical Abstract
  • thickness (80–100 nm) grown by strategy I (Figure 3A), strategy II (Figure 3B) and strategy III (Figure 3C). All films are polycrystalline and highly compact with average grain sizes of 15 ± 4 nm, 18 ± 4 nm, and 22 ± 4 nm, respectively. Moreover, the LMO films are homogeneous and do not exhibit porosity
PDF
Album
Supp Info
Full Research Paper
Published 07 Feb 2019

One-step nonhydrolytic sol–gel synthesis of mesoporous TiO2 phosphonate hybrid materials

  • Yanhui Wang,
  • P. Hubert Mutin and
  • Johan G. Alauzun

Beilstein J. Nanotechnol. 2019, 10, 356–362, doi:10.3762/bjnano.10.35

Graphical Abstract
  • metals, as shown by the numerous examples of metal phosphonates reported in the literature [12][13][14]. However, in the case of monophosphonate groups, metal phosphonates usually form semicrystalline layered materials with no interlayer porosity. A way to avoid the formation of a layered material is to
  • which was nonporous with a negligible specific surface area. All other samples showed significant porosity. Their specific surface area increased with the P/Ti ratio, from 120 m2 g−1 for TiP0.02 to 240 m2 g−1 for TiP0.1, while their pore volume decreased, from 0.29 to 0.17 cm3 g−1 (Table 1
  • well-ordered self-assembled monolayers). The mesoporosity of the hybrid materials with P/Ti ratios up to 0.1 stems from the aggregation of the grafted nanoparticles (interparticle porosity). The smaller the size of the particles, the higher the specific surface area and the lower the pore volume
PDF
Album
Full Research Paper
Published 05 Feb 2019

pH-mediated control over the mesostructure of ordered mesoporous materials templated by polyion complex micelles

  • Emilie Molina,
  • Mélody Mathonnat,
  • Jason Richard,
  • Patrick Lacroix-Desmazes,
  • Martin In,
  • Philippe Dieudonné,
  • Thomas Cacciaguerra,
  • Corine Gérardin and
  • Nathalie Marcotte

Beilstein J. Nanotechnol. 2019, 10, 144–156, doi:10.3762/bjnano.10.14

Graphical Abstract
  • on the 5.5 ≤ pH ≤ 6.9 isotherms (Figure S3 in Supporting Information File 1) revealed an interparticle porosity, which is consistent with the small size of the silica particles as observed on SEM images (Figure S4 in Supporting Information File 1). As reported in Table 1, the mean particle size
  • us note that the low value of N/AA is associated with a significant porosity of the as-synthesized hybrid materials (see Figure S5 in Supporting Information File 1). Large mesopore volumes (Vmeso = 0.39 and 0.29 cm3·g−1 at pH 7.4 and 7.9, respectively) and large pore diameters (dpore = 9.1 and 10.2
PDF
Album
Supp Info
Full Research Paper
Published 11 Jan 2019

New micro/mesoporous nanocomposite material from low-cost sources for the efficient removal of aromatic and pathogenic pollutants from water

  • Emmanuel I. Unuabonah,
  • Robert Nöske,
  • Jens Weber,
  • Christina Günter and
  • Andreas Taubert

Beilstein J. Nanotechnol. 2019, 10, 119–131, doi:10.3762/bjnano.10.11

Graphical Abstract
  • spectrometer (Oxford INCAx-act SN detector) to determine the morphology of particles prepared in this study. The porosity analysis and specific surface area determination were performed using Autosorb-1MP and Quadrasorb-MP machines (both Quantachrome Instruments). The samples were degassed under high vacuum at
  • indicates that significant porosity in the materials is generated at approximately 500 °C. Indeed, 2Z-HYCA prepared at 450 °C does not show any porosity, while materials prepared at 500 °C and higher show surface areas that remain roughly constant until a preparation temperature of 900 °C. No clear trend of
  • synthesis temperature. Overall, nitrogen sorption analysis indicates that the porosity does not directly correlate with the synthesis conditions as soon as the threshold temperature of 500 °C is passed. As stated above, a high surface area is a key requirement for a material to work in water treatment. The
PDF
Album
Supp Info
Full Research Paper
Published 09 Jan 2019

The nanoscaled metal-organic framework ICR-2 as a carrier of porphyrins for photodynamic therapy

  • Jan Hynek,
  • Sebastian Jurík,
  • Martina Koncošová,
  • Jaroslav Zelenka,
  • Ivana Křížová,
  • Tomáš Ruml,
  • Kaplan Kirakci,
  • Ivo Jakubec,
  • František Kovanda,
  • Kamil Lang and
  • Jan Demel

Beilstein J. Nanotechnol. 2018, 9, 2960–2967, doi:10.3762/bjnano.9.275

Graphical Abstract
  • order to avoid porphyrin aggregation various supramolecular structures have been designed [11][12][13]. In this context, porphyrin-based MOFs offer unique systems in which a regular arrangement prevents porphyrins from aggregation whereas the porosity enables fast diffusion of the ground state O2(3Σg
  • Inorganic Chemistry Rez) constructed from Fe3+ and phenylene-1,4-bis(methylphosphinic acid) (PBPA) linkers [25]. ICR-2 in the microcrystalline form is stable in aqueous solutions even at high temperatures and partly retains its structure and porosity even after treatment with phosphate buffer saline (PBS
PDF
Album
Supp Info
Full Research Paper
Published 30 Nov 2018

Controlling surface morphology and sensitivity of granular and porous silver films for surface-enhanced Raman scattering, SERS

  • Sherif Okeil and
  • Jörg J. Schneider

Beilstein J. Nanotechnol. 2018, 9, 2813–2831, doi:10.3762/bjnano.9.263

Graphical Abstract
  • shrinkage the film porosity increases significantly. Changing plasma treatment time, chamber pressure and plasma power of the oxygen and hydrogen plasmas allows for a further tuning of the morphology of the nanoporous silver films (Figure S13, Supporting Information File 1). Longer treatment with hydrogen
PDF
Album
Supp Info
Full Research Paper
Published 07 Nov 2018

Nanocellulose: Recent advances and its prospects in environmental remediation

  • Katrina Pui Yee Shak,
  • Yean Ling Pang and
  • Shee Keat Mah

Beilstein J. Nanotechnol. 2018, 9, 2479–2498, doi:10.3762/bjnano.9.232

Graphical Abstract
  • adsorbent for wastewater treatment due to its adsorption affinity towards organic pollutants. Unlike micrometre-sized cellulose, the nanometre-sized counterparts are relatively smaller in dimensional size but also possess a larger surface area with improved porosity, which limits internal diffusion and
  • of the photogenerated carriers decreased during the photochemical reaction. It was reported that electrospun cellulose acetate nanofibrous membranes with large specific surface area, high porosity, and high permeability could be an effective support for photocatalysts [122]. This could create a
PDF
Album
Review
Published 19 Sep 2018

Thickness-dependent photoelectrochemical properties of a semitransparent Co3O4 photocathode

  • Malkeshkumar Patel and
  • Joondong Kim

Beilstein J. Nanotechnol. 2018, 9, 2432–2442, doi:10.3762/bjnano.9.228

Graphical Abstract
  • thickness were deposited using large-area (4 inch diameter) sputtering on glass and FTO/glass substrates. Identical rapid thermal processing (RTP) oxidation was applied to these Co films to allow the formation of Co3O4 films of varying thickness and porosity. Figure 1b shows the XRD pattern of two prepared
  • oxidized the Co film into a Co3O4 film with controlled thickness and porosity, which is further validated below. Figure 1c,d shows the surface morphology of both the deposited Co and the RTP-grown Co3O4 film on the glass substrate, respectively. FESEM results confirm that the deposited film contains
  • crystalline Co3O4 can be applied to grade its porosity by simply varying the Co thicknesses prior to thermal oxidation. Therefore, we prepared Co3O4 samples with varying thicknesses from 70 to 230 nm, which were extensively studied with regard to their optical, electrical, interfacial, and
PDF
Album
Supp Info
Full Research Paper
Published 12 Sep 2018

Hydrothermal-derived carbon as a stabilizing matrix for improved cycling performance of silicon-based anodes for lithium-ion full cells

  • Mirco Ruttert,
  • Florian Holtstiege,
  • Jessica Hüsker,
  • Markus Börner,
  • Martin Winter and
  • Tobias Placke

Beilstein J. Nanotechnol. 2018, 9, 2381–2395, doi:10.3762/bjnano.9.223

Graphical Abstract
  • -optimized system” might not be the optimum “reference system”, however, it clearly shows the improvement of embedding Si into the carbon matrix. Overall, many different factors (specific surface area, particle size, porosity, Si content, mass loading, etc.) of the reference system should be comparable to
PDF
Album
Supp Info
Full Research Paper
Published 05 Sep 2018
Other Beilstein-Institut Open Science Activities