Search results

Search for "simulation" in Full Text gives 500 result(s) in Beilstein Journal of Nanotechnology. Showing first 200.

Au–Si plasmonic platforms: synthesis, structure and FDTD simulations

  • Anna Gapska,
  • Marcin Łapiński,
  • Paweł Syty,
  • Wojciech Sadowski,
  • Józef E. Sienkiewicz and
  • Barbara Kościelska

Beilstein J. Nanotechnol. 2018, 9, 2599–2608, doi:10.3762/bjnano.9.241

Graphical Abstract
  • . This sample was subsequently chosen for theoretical calculations. Simulations of electromagnetic field propagation through the produced samples were performed using the finite-difference time domain (FDTD) method. The calculated absorbance, as a result of the FDTD simulation shows a quite good
  • observed at about 545 nm. This sample was subsequently chosen for theoretical calculations. FDTD simulation In order to perform the fully three-dimensional FDTD (finite-differences time-domain) simulations, we reproduced the morphological structure of the gold nanoislands on the silicon surface. A sample
  • of 0.5 μm × 0.5 μm size was chosen (Figure 11). It contained 270 nanoparticles that were modeled as full spheres for simplicity. The minimal, maximal and average diameters of the spheres were 3.4, 40.8 and 16.42 nm, respectively. In the simulation, the samples were excited by perpendicularly
PDF
Album
Full Research Paper
Published 28 Sep 2018

Pattern generation for direct-write three-dimensional nanoscale structures via focused electron beam induced deposition

  • Lukas Keller and
  • Michael Huth

Beilstein J. Nanotechnol. 2018, 9, 2581–2598, doi:10.3762/bjnano.9.240

Graphical Abstract
  • into account in order to deposit well-defined 3D structures that are in satisfying agreement with the originally targeted geometry. Fowlkes and collaborators have demonstrated the potential of a simulation-guided and computer-aided design (CAD)-based approach to 3D nanofabrication via FEBID [24], which
  • eventually leads to the growth of the desired 3D nanostructure. Ideally, this pattern-definition file should be generated quasi-automatically from a simple geometrical description of the target 3D structure. A simulation-guided generation of pattern-definition files may well prove to be superior for some
  • very demanding nanoarchitectures. We refer to [24] for details about 3D FEBID simulation. Nevertheless, at the same time, for complex and large target structures, an exact simulation is a computationally intensive task, whereas employing some computationally cheaper algorithms can yield pattern
PDF
Album
Supp Info
Full Research Paper
Published 27 Sep 2018

Effective sensor properties and sensitivity considerations of a dynamic co-resonantly coupled cantilever sensor

  • Julia Körner

Beilstein J. Nanotechnol. 2018, 9, 2546–2560, doi:10.3762/bjnano.9.237

Graphical Abstract
  • ]. The respective models are depicted in Figure 1 together with an experimental sensor representation. The circuit model gives the opportunity to utilize analytical (e.g., Laplace-space analysis) and simulation tools (e.g., Spice) to study the system’s behaviour. All following considerations will be
  • results in a sixth degree polynomial expression that can only be solved numerically. Consequently, for an estimate of the resonance frequencies, we consider the model from Figure 1c without the damping elements d1,2. The validity of this assumption is supported by comparison of simulation results for the
  • the simulation. Although the comparison between an analytical formula and simulations is somewhat limited by the parameter space covered in the simulation, the results strongly indicate that the derived analytical expression gives a very good estimate for the effective quality factors of a co
PDF
Album
Supp Info
Full Research Paper
Published 25 Sep 2018

Improved catalytic combustion of methane using CuO nanobelts with predominantly (001) surfaces

  • Qingquan Kong,
  • Yichun Yin,
  • Bing Xue,
  • Yonggang Jin,
  • Wei Feng,
  • Zhi-Gang Chen,
  • Shi Su and
  • Chenghua Sun

Beilstein J. Nanotechnol. 2018, 9, 2526–2532, doi:10.3762/bjnano.9.235

Graphical Abstract
  • approximation (GGA) [29] together with the functional by Perdew, Burke, and Ernzerhof [30], which was embedded in the Vienna Ab-Initio Simulation Package [31]. The calculation was carried out with a kinetic cutoff energy of 380 eV, with the use of the projector augmented wave (PAW) method. The k-space was
PDF
Album
Supp Info
Full Research Paper
Published 24 Sep 2018

High-temperature magnetism and microstructure of a semiconducting ferromagnetic (GaSb)1−x(MnSb)x alloy

  • Leonid N. Oveshnikov,
  • Elena I. Nekhaeva,
  • Alexey V. Kochura,
  • Alexander B. Davydov,
  • Mikhail A. Shakhov,
  • Sergey F. Marenkin,
  • Oleg A. Novodvorskii,
  • Alexander P. Kuzmenko,
  • Alexander L. Vasiliev,
  • Boris A. Aronzon and
  • Erkki Lahderanta

Beilstein J. Nanotechnol. 2018, 9, 2457–2465, doi:10.3762/bjnano.9.230

Graphical Abstract
  • (FEI, US) was used for image analysis. P. Stadelmann’s JEMS software [16] was used for the simulation of diffraction patterns and images. Scanning atomic force microscopy (AFM) and magnetic force microscopy (MFM) images were obtained on an SmartSPM microscope (AIST-NT, US) at temperatures of T = 295
PDF
Album
Full Research Paper
Published 14 Sep 2018

Evidence of friction reduction in laterally graded materials

  • Roberto Guarino,
  • Gianluca Costagliola,
  • Federico Bosia and
  • Nicola Maria Pugno

Beilstein J. Nanotechnol. 2018, 9, 2443–2456, doi:10.3762/bjnano.9.229

Graphical Abstract
  • simulation from a Gaussian statistical distribution (to account for surface roughness) with mean values denoted with µs(m) and µk(m), respectively. The standard deviation on the local coefficients of friction are denoted with σµs and σµk, respectively. If the block i is at rest, the static friction force Ffr
  • The overall system of equations is solved with a fourth-order Runge–Kutta algorithm. The simulation is repeated many times, extracting each time new friction coefficients from the statistical distributions, for statistical reliability. An integration time step of 10−8 s is sufficient to reduce the
  • information and the discussions of the influence of the parameters, we refer the reader to our previous work [32]. 3D finite-element model 3D explicit FEM simulations are carried out for a deformable plate sliding on a rigid flat surface. Each simulation is performed in two steps: first, a constant pressure
PDF
Album
Supp Info
Full Research Paper
Published 13 Sep 2018

Adhesive contact of rough brushes

  • Qiang Li and
  • Valentin L. Popov

Beilstein J. Nanotechnol. 2018, 9, 2405–2412, doi:10.3762/bjnano.9.225

Graphical Abstract
  • try to approximate the numerical result by the equation The best fit is achieved with the coefficients A = 0.6222, B = 0.5758 and C = 1.1. Note that dependency of the adhesion coefficient on the dimensionless roughness do not depend on the fill factor (simulation points corresponding to the fill
  • in compression and pull-off contact: (a) load–distance relation; (b) load–contact area relation. Parameters used in this simulation were: Number of pillars: 1000, filling factor: ρ = 0.3, normalized roughness: l / dcrit = 0.42. (a) also provides the exact definition of the preliminary compression
PDF
Album
Full Research Paper
Published 07 Sep 2018

Pinning of a ferroelectric Bloch wall at a paraelectric layer

  • Vilgelmina Stepkova and
  • Jiří Hlinka

Beilstein J. Nanotechnol. 2018, 9, 2356–2360, doi:10.3762/bjnano.9.220

Graphical Abstract
  • ferroelectric Bloch walls encountering a layer of paraelectric material by means of phase-field simulation. This technique allows the relaxed domain wall profiles to be predicted by simulated annealing of the system based on numerical solution of material-specific time-dependent Ginzburg–Landau–Devonshire
  • is zero. In the case of Bloch walls, there is an overall polarization in the Pt component within the few nanometer thickness of the given domain wall itself. This inner polarization can be negative or positive. The relaxed, equilibrium polarization profile in the simulation for pure BaTiO3 is shown
  • in Figure 3. The nonzero Pt peak located at the wall implies that these domain boundaries are indeed Bloch walls. The alternating sign of the Pt component in subsequent domain walls indicates that the energetically equivalent Bloch walls present in this simulation have the same helicity. For
PDF
Album
Full Research Paper
Published 31 Aug 2018

Magnetism and magnetoresistance of single Ni–Cu alloy nanowires

  • Andreea Costas,
  • Camelia Florica,
  • Elena Matei,
  • Maria Eugenia Toimil-Molares,
  • Ionel Stavarache,
  • Andrei Kuncser,
  • Victor Kuncser and
  • Ionut Enculescu

Beilstein J. Nanotechnol. 2018, 9, 2345–2355, doi:10.3762/bjnano.9.219

Graphical Abstract
  • structures in Ni nanowires, leading to magnetic moments enhanced by 25% with respect to bulk Ni. Both saturation and coercive field of the nanowire arrays are much lower than those of single nanowires (with material-related magnetic parameters selected from the best agreement between simulation and
PDF
Album
Supp Info
Full Research Paper
Published 30 Aug 2018

Nanotribology

  • Enrico Gnecco,
  • Susan Perkin,
  • Andrea Vanossi and
  • Ernst Meyer

Beilstein J. Nanotechnol. 2018, 9, 2330–2331, doi:10.3762/bjnano.9.217

Graphical Abstract
  • Kingdom CNR-IOM Democritos National Simulation Center, Via Bonomea 265, 34136 Trieste, Italy International School for Advanced Studies (SISSA), Via Bonomea 265, 34136 Trieste, Italy, Department of Physics, University of Basel, Klingelbergstr. 82, CH-4056 Basel, Switzerland 10.3762/bjnano.9.217 Keywords
PDF
Editorial
Published 28 Aug 2018

Performance analysis of rigorous coupled-wave analysis and its integration in a coupled modeling approach for optical simulation of complete heterojunction silicon solar cells

  • Ziga Lokar,
  • Benjamin Lipovsek,
  • Marko Topic and
  • Janez Krc

Beilstein J. Nanotechnol. 2018, 9, 2315–2329, doi:10.3762/bjnano.9.216

Graphical Abstract
  • boost their conversion efficiency. Reliable and accurate simulation tools are required to design and optimize the individual structures and complete devices. In the first part of this paper, we analyze the performance of rigorous coupled-wave analysis (RCWA) for accurate three-dimensional optical
  • simulation of solar cells, in particular heterojunction silicon (HJ Si) solar cells. The structure of HJ Si solar cells consists of thin and thick layers, and additionally, micro- and nano-textures are also introduced to further exploit the potential of light trapping. The RCWA was tested on the front
  • solar cells, reliable and accurate optical models implemented in numerical simulation tools are of great importance [10]. The models that enable simulations of thick incoherent and thin coherent layers, including textures of nano-, micro- and several micro-(macro) meter size, are required. Different
PDF
Album
Full Research Paper
Published 28 Aug 2018

Two-dimensional photonic crystals increasing vertical light emission from Si nanocrystal-rich thin layers

  • Lukáš Ondič,
  • Marian Varga,
  • Ivan Pelant,
  • Alexander Kromka,
  • Karel Hruška and
  • Robert G. Elliman

Beilstein J. Nanotechnol. 2018, 9, 2287–2296, doi:10.3762/bjnano.9.213

Graphical Abstract
  • . Experimental Sample design and simulation When 2D PhC structures are employed for improving the light extraction from thin layers, the extraction efficiency into the normal direction depends on the interplay of many factors, such as refractive index and thickness of the light-emitting layer, and dimensions of
  • spectral resolution was therefore used only for the simulation of the normal-incidence spectra, which reveals leaky modes at the Γ−point. For the case of angle-resolved reflectance simulations, which will also be presented in this paper, the spectral resolution was decreased to 10−4 nm. By this, even
  • the red line in Figure 1a. It peaks at around 600 nm below the surface with a value of 1.51, which perfectly fulfills the requirement imposed by the simulation. We would like to note that the spatial distribution of the refractive index has already been included in the simulation discussed above. The
PDF
Album
Supp Info
Full Research Paper
Published 24 Aug 2018

Surface energy of nanoparticles – influence of particle size and structure

  • Dieter Vollath,
  • Franz Dieter Fischer and
  • David Holec

Beilstein J. Nanotechnol. 2018, 9, 2265–2276, doi:10.3762/bjnano.9.211

Graphical Abstract
  • particle size is found. The main conclusion of this work is that surface energy values for the equivalent bulk materials should be used if detailed data for nanoparticles are not available. Keywords: ab initio calculations; classical thermodynamics; molecular dynamics simulation; surface energy; surface
  • movement of atoms in a solid. The atoms interact and move in a given time frame due to the action of interatomic forces. The mathematical description of this potential is one of the critical problems of this type of simulation [42]. In general, molecular dynamic simulations are based on the laws of
PDF
Album
Review
Published 23 Aug 2018

Intrinsic ultrasmall nanoscale silicon turns n-/p-type with SiO2/Si3N4-coating

  • Dirk König,
  • Daniel Hiller,
  • Noël Wilck,
  • Birger Berghoff,
  • Merlin Müller,
  • Sangeeta Thakur,
  • Giovanni Di Santo,
  • Luca Petaccia,
  • Joachim Mayer,
  • Sean Smith and
  • Joachim Knoch

Beilstein J. Nanotechnol. 2018, 9, 2255–2264, doi:10.3762/bjnano.9.210

Graphical Abstract
  • Si3N4 (in SiO2) were measured using a Woollam M-2000 ellipsometer (ACCURION nanofilm ep4se ellipsometer). All thickness measurements confirmed the values obtained from TEM. NEGF device simulations A homemade NEGF simulation program was used for simulating nanoscale device characteristics based on h-DFT
  • Si3N4 and SiO2 layers yields self-blocking n-channel FETs and thereby CMOS-compatibility. This concept is applicable to other Si nanostructures with a high surface-to-volume ratio like fin-FETs. NEGF simulation results of undoped Si-NWire-FET illustrated in Figure 7: (a) gate-wrap-around Si-NWire FET
  • for nonequilibrium Green’s function (NEGF) transport simulation of undoped Si-nanowire MISFET devices and details on NEGF device simulations. Supporting Information File 162: Further discussion and data of h-DFT, UPS, and NEGF simulations. Acknowledgements D. K. acknowledges use of Leonardi mainframe
PDF
Album
Supp Info
Full Research Paper
Published 23 Aug 2018

Optimization of the optical coupling in nanowire-based integrated photonic platforms by FDTD simulation

  • Nan Guan,
  • Andrey Babichev,
  • Martin Foldyna,
  • Dmitry Denisov,
  • François H. Julien and
  • Maria Tchernycheva

Beilstein J. Nanotechnol. 2018, 9, 2248–2254, doi:10.3762/bjnano.9.209

Graphical Abstract
  • emitting diode (LED) and a nanowire photodetector connected with a waveguide is proposed. The light coupling efficiency from the LED to the detector is optimized as a function of the geometrical parameters of the system using the finite difference time domain simulation tool Lumerical. Starting from a
  • emitted light is coupled into the NW photodiode. Simulation For our optical simulations, we chose a platform architecture that follows the experimental realization as previously described [30]. The considered geometry is illustrated in Figure 1a,b. The horizontal NW LED with a hexagonal cross-section has
  • fixed at 0.25 nm for both 2D and 3D simulations, giving an accuracy sufficient for this study. As a reference, with the above setting, the 3D simulation of the same geometry as used in [30] required a memory of 6 GB for 107 million FDTD Yee nodes. For the 2D simulation at the horizontal plane in the
PDF
Album
Supp Info
Full Research Paper
Published 22 Aug 2018

Influence of the thickness of an antiferromagnetic IrMn layer on the static and dynamic magnetization of weakly coupled CoFeB/IrMn/CoFeB trilayers

  • Deepika Jhajhria,
  • Dinesh K. Pandya and
  • Sujeet Chaudhary

Beilstein J. Nanotechnol. 2018, 9, 2198–2208, doi:10.3762/bjnano.9.206

Graphical Abstract
  • obtained from the simulation of specular XRR spectra recorded on Si/Ta (5 nm)/CoFeB (10 nm)/IrMn (1–7 nm)/CoFeB (10 nm)/Ta (5 nm) multilayer structures. Acknowledgements One of the authors (D.J.) acknowledges the financial support of MHRD, Government of India.
PDF
Album
Full Research Paper
Published 20 Aug 2018

Dumbbell gold nanoparticle dimer antennas with advanced optical properties

  • Janning F. Herrmann and
  • Christiane Höppener

Beilstein J. Nanotechnol. 2018, 9, 2188–2197, doi:10.3762/bjnano.9.205

Graphical Abstract
  • local electromagnetic field is strongest in the gap, the electromagnetic field at the end point of the smallest nanoparticle of these structures can be also increased (see for Metallic Nanopaticle Boundary Element Method (MNPBEM)-simulation of the electromagnetic field distribution [44], Figure 1A
PDF
Album
Full Research Paper
Published 17 Aug 2018

Localized photodeposition of catalysts using nanophotonic resonances in silicon photocathodes

  • Evgenia Kontoleta,
  • Sven H. C. Askes,
  • Lai-Hung Lai and
  • Erik C. Garnett

Beilstein J. Nanotechnol. 2018, 9, 2097–2105, doi:10.3762/bjnano.9.198

Graphical Abstract
  • on a 3.5 × 3.5 × 2 μm silicon substrate. Absorbed power simulations were conducted with an 18 nm TiO2 layer, with refractive index values (n and k) retrieved from ellipsometry (Figure S3, Supporting Information File 1). An example of the simulation environment can be found in Figure S13 (Supporting
PDF
Album
Supp Info
Full Research Paper
Published 03 Aug 2018

Nanoconjugates of a calixresorcinarene derivative with methoxy poly(ethylene glycol) fragments for drug encapsulation

  • Alina M. Ermakova,
  • Julia E. Morozova,
  • Yana V. Shalaeva,
  • Victor V. Syakaev,
  • Aidar T. Gubaidullin,
  • Alexandra D. Voloshina,
  • Vladimir V. Zobov,
  • Irek R. Nizameev,
  • Olga B. Bazanova,
  • Igor S. Antipin and
  • Alexander I. Konovalov

Beilstein J. Nanotechnol. 2018, 9, 2057–2070, doi:10.3762/bjnano.9.195

Graphical Abstract
  • summarized, so that the total time of each experiment was equal to 30000 sec. The 2D scattering patterns were integrated using the SAXS program package [40]. Calculation of structural parameters, simulation, and graphical representation of the results were performed using PRIMUS [26] and SASView [41
PDF
Album
Supp Info
Full Research Paper
Published 27 Jul 2018

Metal-free catalysis based on nitrogen-doped carbon nanomaterials: a photoelectron spectroscopy point of view

  • Mattia Scardamaglia and
  • Carla Bittencourt

Beilstein J. Nanotechnol. 2018, 9, 2015–2031, doi:10.3762/bjnano.9.191

Graphical Abstract
  • dynamics: (d) simulation setup. (e, h) Probability for the formation of single and double vacancies as a function of the ion energy. The insets show the atomic structures of the reconstructed vacancies. (f) Average area of defects as a function of the ion energy. The areas corresponding to single vacancies
PDF
Album
Review
Published 18 Jul 2018

Recent highlights in nanoscale and mesoscale friction

  • Andrea Vanossi,
  • Dirk Dietzel,
  • Andre Schirmeisen,
  • Ernst Meyer,
  • Rémy Pawlak,
  • Thilo Glatzel,
  • Marcin Kisiel,
  • Shigeki Kawai and
  • Nicola Manini

Beilstein J. Nanotechnol. 2018, 9, 1995–2014, doi:10.3762/bjnano.9.190

Graphical Abstract
  • Andrea Vanossi Dirk Dietzel Andre Schirmeisen Ernst Meyer Remy Pawlak Thilo Glatzel Marcin Kisiel Shigeki Kawai Nicola Manini CNR-IOM Democritos National Simulation Center, Via Bonomea 265, 34136 Trieste, Italy International School for Advanced Studies (SISSA), Via Bonomea 265, 34136 Trieste
PDF
Album
Review
Published 16 Jul 2018

Defect formation in multiwalled carbon nanotubes under low-energy He and Ne ion irradiation

  • Santhana Eswara,
  • Jean-Nicolas Audinot,
  • Brahime El Adib,
  • Maël Guennou,
  • Tom Wirtz and
  • Patrick Philipp

Beilstein J. Nanotechnol. 2018, 9, 1951–1963, doi:10.3762/bjnano.9.186

Graphical Abstract
  • maximum in ID/IG for temperatures up to 473 K [54]. Hence our data for He+ agrees well with results in literature. For Ne+ in this work, it is probable that the maximum in ID/IG would occur at a higher fluence. The sample thickness may also have an influence on damage formation (cf. Simulation of He and
  • the extent of damage observed by TEM in Figure 3B,E is consistent with the ratio of intensities of D to G band shown in Figure 2b. This agrees also with the simulation results discussed later which indicate a higher sputtering yield and a higher displacement due to Ne+ irradiation in comparison to He
  • structural information from TEM images and the chemical signal from Raman spectra are both consistent with each other and also with the simulations results shown below in Figure 4. Simulation of He and Ne irradiation Numerical simulations have been carried out using the SDTRIMSP code [47]. As this code does
PDF
Album
Supp Info
Full Research Paper
Published 09 Jul 2018

A differential Hall effect measurement method with sub-nanometre resolution for active dopant concentration profiling in ultrathin doped Si1−xGex and Si layers

  • Richard Daubriac,
  • Emmanuel Scheid,
  • Hiba Rizk,
  • Richard Monflier,
  • Sylvain Joblot,
  • Rémi Beneyton,
  • Pablo Acosta Alba,
  • Sébastien Kerdilès and
  • Filadelfo Cristiano

Beilstein J. Nanotechnol. 2018, 9, 1926–1939, doi:10.3762/bjnano.9.184

Graphical Abstract
  • LTA in this energy range. In order to investigate the first point, we calculated by using SRIM the depth distribution of the implanted boron ions according to the process conditions used in this experiment. The simulation results indicate that only about 45% of the implanted boron dose is available
PDF
Album
Supp Info
Full Research Paper
Published 05 Jul 2018

The inhibition effect of water on the purification of natural gas with nanoporous graphene membranes

  • Krzysztof Nieszporek,
  • Tomasz Pańczyk and
  • Jolanta Nieszporek

Beilstein J. Nanotechnol. 2018, 9, 1906–1916, doi:10.3762/bjnano.9.182

Graphical Abstract
  • the results are valuable for practical purposes and can be applied to design real membrane-separation systems. Simulation Model The simulation system chosen by the authors is similar to that used in [13]. In brief, all calculations were conducted using Gromacs 4.6.7 suite [14] in NVT ensemble
  • fixed. Cutoff distances for Lennard-Jones and Columbic interactions were set to 1 nm and equations of motion were integrated using the velocity Verlet algorithm with a time step of 0.5 fs. Each simulation was equilibrated for 1 ps and then run for 10 ns. In practice, it is very challenging to produce
  • ) in the retentate area. Although Figure 1 shows that at the beginning the gaseous mixture is located only in the upper part of the simulation box, it diffuses to the bottom part of the retentate area due to the presence of periodic walls just after several simulation steps. Such a starting
PDF
Album
Full Research Paper
Published 02 Jul 2018

The role of the Ge mole fraction in improving the performance of a nanoscale junctionless tunneling FET: concept and scaling capability

  • Hichem Ferhati,
  • Fayçal Djeffal and
  • Toufik Bentrcia

Beilstein J. Nanotechnol. 2018, 9, 1856–1862, doi:10.3762/bjnano.9.177

Graphical Abstract
  • exhaustive numerical study of the electrical behavior of the proposed device at the nanoscale level is performed using the ATLAS 2-D simulation software [25]. Further, the impact of the Ge content on the electrical performance of the transistor is investigated. It is found that the proposed design offers
PDF
Album
Full Research Paper
Published 22 Jun 2018
Other Beilstein-Institut Open Science Activities