Search results

Search for "Sonogashira coupling" in Full Text gives 114 result(s) in Beilstein Journal of Organic Chemistry.

Total syntheses of highly oxidative Ryania diterpenoids facilitated by innovations in synthetic strategies

  • Zhi-Qi Cao,
  • Jin-Bao Qiao and
  • Yu-Ming Zhao

Beilstein J. Org. Chem. 2025, 21, 2553–2570, doi:10.3762/bjoc.21.198

Graphical Abstract
  • alkyne difunctionalization, furyl group installation, Achmatowicz rearrangement, and subsequent functional group manipulations provided intermediates 84 and 85. C5-acylation and methylation under kinetically controlled conditions followed by Sonogashira coupling yielded cyclization precursor 89
PDF
Album
Review
Published 19 Nov 2025

Pentacyclic aromatic heterocycles from Pd-catalyzed annulation of 1,5-diaryl-1,2,3-triazoles

  • Kaylen D. Lathrum,
  • Emily M. Hanneken,
  • Katelyn R. Grzelak and
  • James T. Fletcher

Beilstein J. Org. Chem. 2025, 21, 2524–2534, doi:10.3762/bjoc.21.194

Graphical Abstract
  • tandem deprotection/click chemistry followed by Pd-catalyzed annulation is summarized in Table 1. The alkyne-substituted analogs 1–6 [48][49][50][51][52] used in this study were prepared from commercially available aryl halides using microwave-promoted Sonogashira coupling (Table S1, Supporting
PDF
Album
Supp Info
Full Research Paper
Published 13 Nov 2025

C2 to C6 biobased carbonyl platforms for fine chemistry

  • Jingjing Jiang,
  • Muhammad Noman Haider Tariq,
  • Florence Popowycz,
  • Yanlong Gu and
  • Yves Queneau

Beilstein J. Org. Chem. 2025, 21, 2103–2172, doi:10.3762/bjoc.21.165

Graphical Abstract
PDF
Album
Review
Published 15 Oct 2025

Enantioselective desymmetrization strategy of prochiral 1,3-diols in natural product synthesis

  • Lihua Wei,
  • Rui Yang,
  • Zhifeng Shi and
  • Zhiqiang Ma

Beilstein J. Org. Chem. 2025, 21, 1932–1963, doi:10.3762/bjoc.21.151

Graphical Abstract
  • dihydroxyketone 216 in two steps, Sonogashira coupling with indoline 218 followed by acetylation afforded compound 219. A Au-catalyzed cyclization and subsequent saponification with NaOMe gave indoline 220. Three subsequent steps yielded diol 221, which was treated with vinyl benzoate and a Zn-complex derived
PDF
Album
Review
Published 18 Sep 2025

Formal synthesis of a selective estrogen receptor modulator with tetrahydrofluorenone structure using [3 + 2 + 1] cycloaddition of yne-vinylcyclopropanes and CO

  • Jing Zhang,
  • Guanyu Zhang,
  • Hongxi Bai and
  • Zhi-Xiang Yu

Beilstein J. Org. Chem. 2025, 21, 1639–1644, doi:10.3762/bjoc.21.127

Graphical Abstract
  • alkyne moiety is installed via Sonogashira coupling reaction using aryl iodide 5. The cyclopropyl ring in 5 can be introduced via an SN2 reaction of compound 2 with tert-butyl cyclopropanecarboxylate (3). Scheme 5 summarizes the final successful execution of this route. The starting material 2 is a known
  • % yield with a cyclopropyl group. Then reducing the carboxylate group in 4 with DIBAL-H afforded alcohol 5 in 67% yield. Next, Sonogashira coupling reaction between 5 and trimethylsilylacetylene generated 6 with an alkyne moiety quantitatively. After that, the hydroxy group in 6 was oxidized into a
PDF
Album
Supp Info
Full Research Paper
Published 14 Aug 2025

Oxetanes: formation, reactivity and total syntheses of natural products

  • Peter Gabko,
  • Martin Kalník and
  • Maroš Bella

Beilstein J. Org. Chem. 2025, 21, 1324–1373, doi:10.3762/bjoc.21.101

Graphical Abstract
PDF
Album
Review
Published 27 Jun 2025

Recent advances in synthetic approaches for bioactive cinnamic acid derivatives

  • Betty A. Kustiana,
  • Galuh Widiyarti and
  • Teni Ernawati

Beilstein J. Org. Chem. 2025, 21, 1031–1086, doi:10.3762/bjoc.21.85

Graphical Abstract
PDF
Album
Review
Published 28 May 2025

Synthesis of the 1,5-disubstituted tetrazole-methanesulfonylindole hybrid system via high-order multicomponent reaction

  • Cesia M. Aguilar-Morales,
  • América A. Frías-López,
  • Nadia V. Emilio-Velázquez,
  • Alejandro Islas-Jácome,
  • Angelica Judith Granados-López,
  • Jorge Gustavo Araujo-Huitrado,
  • Yamilé López-Hernández,
  • Hiram Hernández-López,
  • Luis Chacón-García,
  • Jesús Adrián López and
  • Carlos J. Cortés-García

Beilstein J. Org. Chem. 2024, 20, 3077–3084, doi:10.3762/bjoc.20.256

Graphical Abstract
  • ]. Therefore, the key component for this reaction was methanesulfonyl 2-iodoaniline 17, as it has been reported that the use of 2-iodoaniline results in the formation of only the Sonogashira coupling product [29][30]. Moreover, as shown in Scheme 2, this high-order multicomponent protocol yielded fourteen 1,5
  • to obtain the 1,5-disubstituted tetrazole-alkyne 19 is well-documented and hence, it is not herein described in detail [1][26][31]. Thus, based on Pal and co-workers’ proposal [32][33], the second process involves two catalytic cycles: 1) a Sonogashira coupling, and 2) a 5-endo-dig cyclization. The
PDF
Album
Supp Info
Full Research Paper
Published 26 Nov 2024
Graphical Abstract
  • into the polymer system, further modification and structural analyses were performed [48][74]. The axle end was easily modified by bromination of the benzene ring and successive transition metal–catalyzed cross-coupling reaction, such as Suzuki or Sonogashira coupling (Figure 10A). Furthermore, the
PDF
Album
Review
Published 19 Nov 2024

Synthesis of fluoroalkenes and fluoroenynes via cross-coupling reactions using novel multihalogenated vinyl ethers

  • Yukiko Karuo,
  • Keita Hirata,
  • Atsushi Tarui,
  • Kazuyuki Sato,
  • Kentaro Kawai and
  • Masaaki Omote

Beilstein J. Org. Chem. 2024, 20, 2691–2703, doi:10.3762/bjoc.20.226

Graphical Abstract
  • low yields of 3a (Table 2, entries 2 and 3). In the case of palladium(II), which produced good yields of the Suzuki–Miyaura cross-coupling products, only a small amount of 3a was obtained (Table 2, entries 4–8). In particular, when the allylpalladium dichloride dimer was used, Sonogashira coupling
PDF
Album
Supp Info
Full Research Paper
Published 24 Oct 2024

Metal-free double azide addition to strained alkynes of an octadehydrodibenzo[12]annulene derivative with electron-withdrawing substituents

  • Naoki Takeda,
  • Shuichi Akasaka,
  • Susumu Kawauchi and
  • Tsuyoshi Michinobu

Beilstein J. Org. Chem. 2024, 20, 2234–2241, doi:10.3762/bjoc.20.191

Graphical Abstract
  • 5 was prepared from phthalimide (1, Scheme 1). Iodination followed by hydrolysis afforded 4,5-diiodophthalic acid (2) in 46.7% yield. Esterification with 1-hexanol yielded compound 3 in 56.8% yield and the subsequent Sonogashira coupling with trimethylsilylacetylene provided compound 4 in 80.0
PDF
Album
Supp Info
Full Research Paper
Published 04 Sep 2024

Multicomponent syntheses of pyrazoles via (3 + 2)-cyclocondensation and (3 + 2)-cycloaddition key steps

  • Ignaz Betcke,
  • Alissa C. Götzinger,
  • Maryna M. Kornet and
  • Thomas J. J. Müller

Beilstein J. Org. Chem. 2024, 20, 2024–2077, doi:10.3762/bjoc.20.178

Graphical Abstract
  • and high optical refraction. Functionalized alkynes can alternatively be prepared in situ by a Kumada coupling [133] of aryl iodides and ethynylmagnesium bromide [134]. The Pd catalyst is reused in the subsequent Sonogashira coupling for the synthesis of alkynones in the sense of sequential catalysis
  • to 97%. The Sonogashira coupling can also be effectively integrated with the CuAAC (copper-catalyzed azide–alkyne cycloaddition) reaction, offering a powerful tool for synthesizing diverse molecular architectures. In a consecutive multicomponent reaction, pyrazoles were first presented in a
  • (122) with oxalyl chloride (123) and a subsequent decarbonylating Sonogashira coupling of glyoxylchloride 125, were transformed in the same reaction vessel with methylhydrazine afforded pyrazoles 124 in moderate yields (Scheme 44) [146]. Analogous to Bishop's observations [73], a single regioisomer was
PDF
Album
Review
Published 16 Aug 2024
Graphical Abstract
  • through scanning tunneling microscopy [85]. For TCBDs bearing unsubstituted anilino (p-H2NC6H4–) groups, their conversion into the p-iodophenyl derivatives via the Sandmeyer reaction and subsequent post-functionalization via the Suzuki and Sonogashira coupling reactions are achieved [86]. In the reaction
PDF
Album
Review
Published 22 Jan 2024

Multi-redox indenofluorene chromophores incorporating dithiafulvene donor and ene/enediyne acceptor units

  • Christina Schøttler,
  • Kasper Lund-Rasmussen,
  • Line Broløs,
  • Philip Vinterberg,
  • Ema Bazikova,
  • Viktor B. R. Pedersen and
  • Mogens Brøndsted Nielsen

Beilstein J. Org. Chem. 2024, 20, 59–73, doi:10.3762/bjoc.20.8

Graphical Abstract
  • , ethynylbenzene, or 4-ethynylbenzonitrile yielded compounds 19–21, while two-fold Sonogashira coupling with ((2-ethynylphenyl)ethynyl)triisopropylsilane resulted in compound 22. Desilylation of the alkynes of compound 22 with tetrabutylammonium fluoride (TBAF) and subsequent intramolecular Glaser–Hay coupling of
PDF
Album
Supp Info
Full Research Paper
Published 15 Jan 2024

Aromatic systems with two and three pyridine-2,6-dicarbazolyl-3,5-dicarbonitrile fragments as electron-transporting organic semiconductors exhibiting long-lived emissions

  • Karolis Leitonas,
  • Brigita Vigante,
  • Dmytro Volyniuk,
  • Audrius Bucinskas,
  • Pavels Dimitrijevs,
  • Sindija Lapcinska,
  • Pavel Arsenyan and
  • Juozas Vidas Grazulevicius

Beilstein J. Org. Chem. 2023, 19, 1867–1880, doi:10.3762/bjoc.19.139

Graphical Abstract
  • -dicarbazolyl-3,5-dicarbonitrile. The compounds are synthesized by Sonogashira coupling reactions and characterized by steady-state and time-resolved luminescence spectroscopy. The compounds show efficient intramolecular charge transfer (ICT) from the donor to the acceptor. The photoluminescence (PL) spectra of
  • )-4-(4-bromophenyl)pyridine-3,5-carbonitrile (4) was obtained by the interaction of 3,6-di-tert-butyl-9H-carbazole with compound 3 in THF/DMF solution. The ethynylphenyl-substituted pyridine 5 was synthesized by Sonogashira coupling of 4 with ethynyltrimethylsilane in the presence of PdCl2(PPh3)2 and
  • copper(I) iodide in DMF/DIPEA solution at 55 °C with subsequent desilylation with potassium carbonate. Finally, butadiyne 6 was prepared by a homocoupling reaction of 5 with 80% yield. Derivatives containing two dicyanopyridyl moieties, 7 and 8, were prepared starting with a Sonogashira coupling of
PDF
Album
Supp Info
Full Research Paper
Published 12 Dec 2023

Consecutive four-component synthesis of trisubstituted 3-iodoindoles by an alkynylation–cyclization–iodination–alkylation sequence

  • Nadia Ledermann,
  • Alae-Eddine Moubsit and
  • Thomas J. J. Müller

Beilstein J. Org. Chem. 2023, 19, 1379–1385, doi:10.3762/bjoc.19.99

Graphical Abstract
  • synthesis of 1,2,5-trisubstituted 7-azaindoles [34]. Inspired by the coupling–cyclization–alkylation sequence and the stepwise Sonogashira coupling–cyclization–iodination protocol to give valuable 3-iodoindoles by Amjad and Knight [35], we reasoned that the interception by an electrophilic iodination step
PDF
Album
Supp Info
Full Research Paper
Published 14 Sep 2023

Construction of hexabenzocoronene-based chiral nanographenes

  • Ranran Li,
  • Di Wang,
  • Shengtao Li and
  • Peng An

Beilstein J. Org. Chem. 2023, 19, 736–751, doi:10.3762/bjoc.19.54

Graphical Abstract
  • )benzene through Co-catalyzed cyclotrimerization in a 45% yield. Then monoiodide NG 49 was obtained through oxidative cyclodehydronation in a high yield. From the heptagon-containing NG 49, Sonogashira coupling with p-tert-butylphenylacetylene (50) afforded 51 in a quantitative yield. Subsequent Diels
  • -workers synthesized a helical bilayer NG by using helicene in the initial step as the linker to fuse two HBC units [48]. As shown in Scheme 6, starting from the helical alkyne 54, Sonogashira coupling with 4-tert-butyliodobenzene (55) afforded structure 56 in a 77% yield. Subsequent Diels–Alder reaction
  • cyclodehydrogenation in the presence of DDQ/TfOH in an 83% yield. Through two-fold Sonogashira coupling reaction with 4-tert-butylphenylacetylene (50), compound 88 was converted to alkyne 89. Then compound 89 was subjected to a double Diels–Alder reaction with cyclopentadienone 2, affording precursor 90 in a 64% yield
PDF
Album
Review
Published 30 May 2023

Strategies in the synthesis of dibenzo[b,f]heteropines

  • David I. H. Maier,
  • Barend C. B. Bezuidenhoudt and
  • Charlene Marais

Beilstein J. Org. Chem. 2023, 19, 700–718, doi:10.3762/bjoc.19.51

Graphical Abstract
  • relies on a double Sonogashira coupling [(i) and (iii)], reduction (iv), and bromination (v), followed by Buchwald–Hartwig amination (viii) (Scheme 14). While interesting, the reaction has limited substrate scope due to the reliance on a late-stage bromination. To achieve the correct ortho-bromo
PDF
Album
Review
Published 22 May 2023

Synthesis, structure, and properties of switchable cross-conjugated 1,4-diaryl-1,3-butadiynes based on 1,8-bis(dimethylamino)naphthalene

  • Semyon V. Tsybulin,
  • Ekaterina A. Filatova,
  • Alexander F. Pozharskii,
  • Valery A. Ozeryanskii and
  • Anna V. Gulevskaya

Beilstein J. Org. Chem. 2023, 19, 674–686, doi:10.3762/bjoc.19.49

Graphical Abstract
  • –Stephens reaction, method A) and arylacetylenes (Sonogashira reaction, method B). In all cases, even when using a small excess of 8, in addition to the desired monoalkynyl derivative 7, a double alkynylation product 9 was formed (Table 1). The Sonogashira coupling was somewhat more efficient, yielding
PDF
Album
Supp Info
Full Research Paper
Published 15 May 2023

Combretastatins D series and analogues: from isolation, synthetic challenges and biological activities

  • Jorge de Lima Neto and
  • Paulo Henrique Menezes

Beilstein J. Org. Chem. 2023, 19, 399–427, doi:10.3762/bjoc.19.31

Graphical Abstract
  • esterification reactions gave the ester 33 which was submitted to a Sonogashira coupling reaction with propargyl alcohol to give the advanced intermediate 34 [34]. Partial hydrogenation of the triple bond in 34 using Lindlar’s catalyst led to the cis-allylic alcohol 35 and subsequent ester hydrolysis led to the
PDF
Album
Review
Published 29 Mar 2023

Formal total synthesis of macarpine via a Au(I)-catalyzed 6-endo-dig cycloisomerization strategy

  • Jiayue Fu,
  • Bingbing Li,
  • Zefang Zhou,
  • Maosheng Cheng,
  • Lu Yang and
  • Yongxiang Liu

Beilstein J. Org. Chem. 2022, 18, 1589–1595, doi:10.3762/bjoc.18.169

Graphical Abstract
  • . The convergent synthetic strategies feature the utilization of Au(I)-catalyzed cycloisomerizations of a 1,5-enyne and alkynyl ketone substrates, which were prepared by Sonogashira coupling reactions. Keywords: benzo[c]phenanthridine alkaloids; 1,5-enyne; formal total synthesis; gold catalysis
  • be synthesized from silyl enol ether compound 10 via the Au(I)-catalyzed cycloisomerization reaction developed by our group [15]. The compound 10 could be constructed by the Sonogashira coupling reaction from readily prepared iodoarene 8 [12][16] and ketone 5, which could be synthesized by using
  • cheap 6-bromopiperonal (2) as the starting material. To attempt the proposed synthetic strategy, ketone 5 and iodoarene 8 were prepared by following the synthetic route outlined in Scheme 4. Ketone 5 was prepared in a four-step procedure. Firstly, a Sonogashira coupling between 6-bromopiperonal (2) and
PDF
Album
Supp Info
Letter
Published 23 Nov 2022

Simple synthesis of multi-halogenated alkenes from 2-bromo-2-chloro-1,1,1-trifluoroethane (halothane)

  • Yukiko Karuo,
  • Atsushi Tarui,
  • Kazuyuki Sato,
  • Kentaro Kawai and
  • Masaaki Omote

Beilstein J. Org. Chem. 2022, 18, 1567–1574, doi:10.3762/bjoc.18.167

Graphical Abstract
  • dichloride (4 mol %), copper iodide (4 mol %) and triethylamine (0.75 mmol) in THF (2.5 mL) was added dropwise trimethylsislylacetylene (1.0 mmol) for 1 min at room temperature. The solution was stirred at rt until the Sonogashira coupling reaction was completed. The reaction mixture was filtered and
PDF
Album
Supp Info
Full Research Paper
Published 21 Nov 2022

Recent developments and trends in the iron- and cobalt-catalyzed Sonogashira reactions

  • Surendran Amrutha,
  • Sankaran Radhika and
  • Gopinathan Anilkumar

Beilstein J. Org. Chem. 2022, 18, 262–285, doi:10.3762/bjoc.18.31

Graphical Abstract
  • , Kottayam, Kerala, 686560, India 10.3762/bjoc.18.31 Abstract Iron- and cobalt-catalyzed Sonogashira coupling reactions are becoming central areas of research in organic synthesis. Owing to their significant importance in the formation of carbon–carbon bonds, numerous green and nanoparticle protocols have
  • emerged during the past decades. The non-toxic and inexpensive nature of catalysts gained much attention in recent times. In this context, their catalytic nature and activity in Sonogashira coupling reactions were well explored and compared. Most importantly, one of the highlights of this review is the
  • emphasis given to green strategies. This is the first review on iron- and cobalt-catalyzed Sonogashira coupling reactions which comprehends literature up to 2020. Keywords: C–C bond formation; cobalt; green reaction; iron; nanoparticles; Sonogashira; Introduction The palladium-catalyzed cross-coupling
PDF
Album
Review
Published 03 Mar 2022

Visible-light-mediated copper photocatalysis for organic syntheses

  • Yajing Zhang,
  • Qian Wang,
  • Zongsheng Yan,
  • Donglai Ma and
  • Yuguang Zheng

Beilstein J. Org. Chem. 2021, 17, 2520–2542, doi:10.3762/bjoc.17.169

Graphical Abstract
  • promising, scalable green process that can be used as an alternative to the conventional Sonogashira cross-coupling reactions. In 2018, Lalic and co-workers [66] extended this approach to alkyl halides and reported the photoinduced copper-catalyzed Sonogashira coupling of alkynes and alkyl iodide 21. The
PDF
Album
Review
Published 12 Oct 2021

Recent advances in the tandem annulation of 1,3-enynes to functionalized pyridine and pyrrole derivatives

  • Yi Liu,
  • Puying Luo,
  • Yang Fu,
  • Tianxin Hao,
  • Xuan Liu,
  • Qiuping Ding and
  • Yiyuan Peng

Beilstein J. Org. Chem. 2021, 17, 2462–2476, doi:10.3762/bjoc.17.163

Graphical Abstract
  • ]. Then, they also reported another CuH-catalyzed coupling reaction of 1,3-enynes 54 and nitrile to prepare polysubstituted pyrroles 55 (Scheme 21) [66]. The substrates 54 could be easily prepared by Sonogashira coupling of terminal alkynes and vinyl halides. It is worth mentioning that the addition of
PDF
Album
Review
Published 22 Sep 2021
Other Beilstein-Institut Open Science Activities