Search results

Search for "catalysts" in Full Text gives 1292 result(s) in Beilstein Journal of Organic Chemistry. Showing first 200.

Ortho-ester-substituted diaryliodonium salts enabled regioselective arylocyclization of naphthols toward 3,4-benzocoumarins

  • Ke Jiang,
  • Cheng Pan,
  • Limin Wang,
  • Hao-Yang Wang and
  • Jianwei Han

Beilstein J. Org. Chem. 2024, 20, 841–851, doi:10.3762/bjoc.20.76

Graphical Abstract
  • -benzocoumarin skeletons in the presence of palladium catalysts (Scheme 1b). Furthermore, Olofsson and colleagues described an unprecedented reaction pathway using ortho-fluoro-substituted diaryliodonium salts bearing strong electron-withdrawing groups, leading to novel diarylations of N-, O-, and S-nucleophiles
  • solvents including dimethyl sulfoxide (DMSO), N,N-dimethylformamide (DMF), toluene, acetic acid (AcOH) and water (Table 1, entries 9–13) were carried out. However, polar solvents such as AcOH and H2O were proved to be unsuitable for this reaction. For catalysts, we found that Cu(OAc)2 gave the best results
PDF
Album
Supp Info
Letter
Published 18 Apr 2024

Skeletal rearrangement of 6,8-dioxabicyclo[3.2.1]octan-4-ols promoted by thionyl chloride or Appel conditions

  • Martyn Jevric,
  • Julian Klepp,
  • Johannes Puschnig,
  • Oscar Lamb,
  • Christopher J. Sumby and
  • Ben W. Greatrex

Beilstein J. Org. Chem. 2024, 20, 823–829, doi:10.3762/bjoc.20.74

Graphical Abstract
  • cyrene (2) allows for its use as a chiral solvent [4]. This product is emerging as a promising platform chemical for the construction of chiral small molecules for pharmaceuticals [5][6][7][8], as a building block for catalysts and auxiliaries [9][10][11], and in materials applications [12][13][14]. New
PDF
Album
Supp Info
Full Research Paper
Published 16 Apr 2024

Advancements in hydrochlorination of alkenes

  • Daniel S. Müller

Beilstein J. Org. Chem. 2024, 20, 787–814, doi:10.3762/bjoc.20.72

Graphical Abstract
  • DHB as a hydride donor and thus give the fully reduced product 142. However, when both DHB and TosCl were present, the reaction of the radical with TosCl was significantly faster leading to 143 in 92% yield. In 2012, Boger demonstrated the efficiency of iron(III) catalysts for the hydrochlorination of
PDF
Album
Review
Published 15 Apr 2024

SOMOphilic alkyne vs radical-polar crossover approaches: The full story of the azido-alkynylation of alkenes

  • Julien Borrel and
  • Jerome Waser

Beilstein J. Org. Chem. 2024, 20, 701–713, doi:10.3762/bjoc.20.64

Graphical Abstract
  • presence of transition metal catalysts [11][12][13][14]. Currently, this motif is synthesized by sequential introduction of the two functional groups [11][12][13]. Addition of a lithium acetylide to an epoxide affords the corresponding homopropargylic alcohol which can then undergo a sequence of mesylation
PDF
Album
Supp Info
Commentary
Published 03 Apr 2024

Evaluation of the enantioselectivity of new chiral ligands based on imidazolidin-4-one derivatives

  • Jan Bartáček,
  • Karel Chlumský,
  • Jan Mrkvička,
  • Lucie Paloušová,
  • Miloš Sedlák and
  • Pavel Drabina

Beilstein J. Org. Chem. 2024, 20, 684–691, doi:10.3762/bjoc.20.62

Graphical Abstract
  • based on derivatives of imidazolidin-4-one were synthesised and characterised. The catalytic activity and enantioselectivity of their corresponding copper(II) complexes were studied in asymmetric Henry reactions. It was found that the enantioselectivity of these catalysts is overall very high and
  • ; Introduction The application of chiral metal complexes as enantioselective catalysts is among the fundamental strategies for preparing compounds in non-racemic forms [1][2][3][4]. These complexes typically comprise a chelating chiral ligand capable of coordinating with a metal ion; otherwise, a metal atom
  • -(pyridin-2-yl)imidazolidin-4-one, differentiated by various substitutions at the imidazolidine ring [5][6][7]. Their copper(II) complexes were evaluated as efficient enantioselective catalysts, particularly in asymmetric Henry reactions (Scheme 1). Subsequent research has led to the development of various
PDF
Album
Supp Info
Full Research Paper
Published 02 Apr 2024

Regioselective quinazoline C2 modifications through the azide–tetrazole tautomeric equilibrium

  • Dāgs Dāvis Līpiņš,
  • Andris Jeminejs,
  • Una Ušacka,
  • Anatoly Mishnev,
  • Māris Turks and
  • Irina Novosjolova

Beilstein J. Org. Chem. 2024, 20, 675–683, doi:10.3762/bjoc.20.61

Graphical Abstract
  • position of quinazolines requires longer time, higher temperatures, and sometimes the use of expensive transition-metal catalysts [12]. A selective C2 modification can be achieved by using 2-chloroquinazolines IV, where the C4 position is blocked by an unreactive C–C or C–H bond (Scheme 1). Cyclization
PDF
Album
Supp Info
Full Research Paper
Published 28 Mar 2024

Palladium-catalyzed three-component radical-polar crossover carboamination of 1,3-dienes or allenes with diazo esters and amines

  • Geng-Xin Liu,
  • Xiao-Ting Jie,
  • Ge-Jun Niu,
  • Li-Sheng Yang,
  • Xing-Lin Li,
  • Jian Luo and
  • Wen-Hao Hu

Beilstein J. Org. Chem. 2024, 20, 661–671, doi:10.3762/bjoc.20.59

Graphical Abstract
  • (Table 1, entry 7), whereas only low yields of 4a were observed with Pd(0) catalysts Pd(PPh3)4 and Pd2(dba)3 (Table 1, entries 8 and 9). Moreover, adding potassium carbonate as additive failed to furnish 4a, demonstrating that the trace amount of acid from the Pd(II) catalyst may facilitate the formation
PDF
Album
Supp Info
Full Research Paper
Published 27 Mar 2024

HPW-Catalyzed environmentally benign approach to imidazo[1,2-a]pyridines

  • Luan A. Martinho and
  • Carlos Kleber Z. Andrade

Beilstein J. Org. Chem. 2024, 20, 628–637, doi:10.3762/bjoc.20.55

Graphical Abstract
  • activities. The most direct way of obtaining this nucleus is the Groebke–Blackburn–Bienaymé three-component reaction (GBB-3CR) between aminopyridines, aldehydes, and isocyanides under both Lewis and Brønsted acid catalysis. However, several catalysts for this reaction have major drawbacks such as being
  • 99%), with a low catalyst loading (2 mol %) in only 30 minutes, and allows the successful use of aliphatic aldehydes, substrates not so frequently explored with most usual catalysts for this reaction. Furthermore, the aforementioned advantages make this methodology very attractive and superior to the
  • reactivity of the imine formation [24]. The most common catalysts are those derived from triflate salts such as Sc(OTf)3 [25], Yb(OTf)3 [26], In(OTf)3 [27] and Gd(OTf)3 [28], and inorganic Brønsted or Lewis acids like HClO4 [29], ZrCl4 [30], InCl3 [31], BiCl3 [32], RuCl3 [33], NH4Cl [34], HCl [35], LaCl3
PDF
Album
Supp Info
Full Research Paper
Published 19 Mar 2024

Switchable molecular tweezers: design and applications

  • Pablo Msellem,
  • Maksym Dekthiarenko,
  • Nihal Hadj Seyd and
  • Guillaume Vives

Beilstein J. Org. Chem. 2024, 20, 504–539, doi:10.3762/bjoc.20.45

Graphical Abstract
  • , the incorporation of responsive functionalities into molecular tweezers not only provides significant benefits in catalysis for the development of switchable catalysts but also extends their utility to molecular magnetism, where magnetic switches exploit mechanical motion, and to molecular electronics
  • metalloporphyrin arms [83] or larger assemblies [78]. In particular, remarkable double tweezers (or triple-decker catalysts) 41 have been developed (Figure 22). These tweezers consist of two Rh(I) complexes, wherein a catalytically active metal Al(III)–salen arm is shared on the phosphine thioether ligand side
PDF
Album
Review
Published 01 Mar 2024

Ligand effects, solvent cooperation, and large kinetic solvent deuterium isotope effects in gold(I)-catalyzed intramolecular alkene hydroamination

  • Ruichen Lan,
  • Brock Yager,
  • Yoonsun Jee,
  • Cynthia S. Day and
  • Amanda C. Jones

Beilstein J. Org. Chem. 2024, 20, 479–496, doi:10.3762/bjoc.20.43

Graphical Abstract
  • out under a variety of conditions with cationic gold catalysts supported by phosphine ligands. The impact of ligand on gold, protecting group on nitrogen, and solvent and additive on reaction rates was determined. The most effective reactions utilized more Lewis basic ureas, and more electron
  • μL MeOH, the first order plots of alkene decay retained linearity up to 80% conversion, and separate 31P NMR experiments indicated significant decomposition at about 50% conversion. Independently prepared [L–Au–L]+ has been shown by others to be inactive catalysts (L = Ph3P) [41] and we confirmed
  • ), a supporting ligand that would be predicted to create more electrophilic gold due to its high π-acceptor properties, major decomposition was observed for the slower substrates (1b and 1c) and the fast urea (1a), indicating catalysts that are much more prone to decomposition, and preventing any
PDF
Album
Supp Info
Full Research Paper
Published 29 Feb 2024

Green and sustainable approaches for the Friedel–Crafts reaction between aldehydes and indoles

  • Periklis X. Kolagkis,
  • Eirini M. Galathri and
  • Christoforos G. Kokotos

Beilstein J. Org. Chem. 2024, 20, 379–426, doi:10.3762/bjoc.20.36

Graphical Abstract
  • or Lewis acids as catalysts. In 2010, Shiri published a review, where the majority of the acidic catalysts that have been employed for the synthesis of these compounds were presented [12]. Since then, various alternative acids have been applied including protic acids, such as silica-bonded S-sulfonic
  • . The difference between the two mechanistic pathways is the nature of activation of the carbonyl group. Protic acids induce the protonation of the carbonyl group of the aldehyde or ketone, enhancing its electrophilic character. Whereas, Lewis acid catalysts bind to the heteroatom of the carbonyl group
  • synthetic pathways in organic chemistry [32][33][34]. Common organic syntheses require the use of harmful chemicals, such as toxic solvents, hazardous reagents, catalysts and reaction conditions, which contribute to environmental pollution and soil degradation [35][36]. Wanting to enhance the sustainability
PDF
Album
Review
Published 22 Feb 2024

Mechanisms for radical reactions initiating from N-hydroxyphthalimide esters

  • Carlos R. Azpilcueta-Nicolas and
  • Jean-Philip Lumb

Beilstein J. Org. Chem. 2024, 20, 346–378, doi:10.3762/bjoc.20.35

Graphical Abstract
  • years and in the past, they were perceived as fleeting reaction intermediates. Recent progress in photoredox catalysis [6][7][8], electrochemistry [9][10], and the use of transition-metal (TM) catalysts in radical cross-coupling reactions [11] have dramatically expanded the use of radicals in synthesis
  • photoactive catalysts can be achieved by combining simple transition metal (TM) salts with suitable ligands. These TM catalysts are fundamentally distinct from traditional Ru- and Ir-based photoredox catalysts, as they play a dual role, by engaging in photoinduced electron transfer processes with the
  • desaturation of aliphatic carboxylic acids [83]. Initiation by metal catalysts and stoichiometric reductants The activation of NHPI esters under transition metal catalysis without the need of light is also feasible, and generally, two types of coupling reactions can be envisioned. On one hand, the
PDF
Album
Perspective
Published 21 Feb 2024

Nucleophilic functionalization of thianthrenium salts under basic conditions

  • Xinting Fan,
  • Duo Zhang,
  • Xiangchuan Xiu,
  • Bin Xu,
  • Yu Yuan,
  • Feng Chen and
  • Pan Gao

Beilstein J. Org. Chem. 2024, 20, 257–263, doi:10.3762/bjoc.20.26

Graphical Abstract
  • Abstract In recent years, S-(alkyl)thianthrenium salts have become an important means of functionalizing alcohol compounds. However, additional transition metal catalysts and/or visible light are required. Herein, a direct thioetherification/amination reaction of thianthrenium salts is realized under metal
  • ]. Recently, Ritter and co-workers reported that alkylthianthrenium salts can be employed to undergo reactions with N/O-nucleophiles under photocatalytic conditions [46]. Nevertheless, additional transition metal catalysts, visible light, or electrochemical devices are required for the reported works
PDF
Album
Supp Info
Full Research Paper
Published 08 Feb 2024

Substitution reactions in the acenaphthene analog of quino[7,8-h]quinoline and an unusual synthesis of the corresponding acenaphthylenes by tele-elimination

  • Ekaterina V. Kolupaeva,
  • Narek A. Dzhangiryan,
  • Alexander F. Pozharskii,
  • Oleg P. Demidov and
  • Valery A. Ozeryanskii

Beilstein J. Org. Chem. 2024, 20, 243–253, doi:10.3762/bjoc.20.24

Graphical Abstract
  • and used in medicine, food industry, catalysts, dyes, functional materials, oil refining, and electronics [1][2]. Quinoline and its derivatives have antibiotic, antimalarial, antitumor, anti-inflammatory, antihypertensive, and antiretroviral properties [3][4]. Therefore, at present, there is a need
PDF
Album
Supp Info
Full Research Paper
Published 08 Feb 2024

Copper-catalyzed multicomponent reaction of β-trifluoromethyl β-diazo esters enabling the synthesis of β-trifluoromethyl N,N-diacyl-β-amino esters

  • Youlong Du,
  • Haibo Mei,
  • Ata Makarem,
  • Ramin Javahershenas,
  • Vadim A. Soloshonok and
  • Jianlin Han

Beilstein J. Org. Chem. 2024, 20, 212–219, doi:10.3762/bjoc.20.21

Graphical Abstract
  • side reactions was carried out with benzyl 3-amino-4,4,4-trifluorobutanoate (1a) and benzoic acid (3a) as model substrates. The initial reaction of amine 1a and acid 3a in acetonitrile in the presence of diazotization reagent tert-butyl nitrite with CuI (10 mol %) as catalysts for 2.5 h at room
PDF
Album
Supp Info
Letter
Published 02 Feb 2024

Chiral phosphoric acid-catalyzed transfer hydrogenation of 3,3-difluoro-3H-indoles

  • Yumei Wang,
  • Guangzhu Wang,
  • Yanping Zhu and
  • Kaiwu Dong

Beilstein J. Org. Chem. 2024, 20, 205–211, doi:10.3762/bjoc.20.20

Graphical Abstract
  • obtained in 98% yield with 20% ee after 12 h (Table 1, entry 1). Then, the effect of steric hindrance of the CPA catalyst and solvents on the stereochemistry of this transfer hydrogenation were investigated in detail. Among various 3,3’-disubstituted CPA catalysts (Table 1, entries 2–6), chiral phosphoric
PDF
Album
Supp Info
Letter
Published 01 Feb 2024

Metal-catalyzed coupling/carbonylative cyclizations for accessing dibenzodiazepinones: an expedient route to clozapine and other drugs

  • Amina Moutayakine and
  • Anthony J. Burke

Beilstein J. Org. Chem. 2024, 20, 193–204, doi:10.3762/bjoc.20.19

Graphical Abstract
  • due to the energetically favorable dissociation of Mo(CO)n into Mo(CO)n−1 which was proven to be a highly exothermic reaction in the presence of metal catalysts especially after the dissociation of the first CO group [23]. It should be noted that the best overall yield for the synthesis of 4a using
PDF
Album
Supp Info
Full Research Paper
Published 31 Jan 2024

Copper-promoted C5-selective bromination of 8-aminoquinoline amides with alkyl bromides

  • Changdong Shao,
  • Chen Ma,
  • Li Li,
  • Jingyi Liu,
  • Yanan Shen,
  • Chen Chen,
  • Qionglin Yang,
  • Tianyi Xu,
  • Zhengsong Hu,
  • Yuhe Kan and
  • Tingting Zhang

Beilstein J. Org. Chem. 2024, 20, 155–161, doi:10.3762/bjoc.20.14

Graphical Abstract
  • quinoline ring of 1a in this reaction. Other competitive site-selective C–H bromination products and multiple brominated products were not observed. Subsequently, the bromination reaction was examined with various catalysts such as CoCl2·6H2O, Ni(OAc)2·4H2O, MnSO4·H2O, CuCl, CuBr, CuCl2, CuBr2, and Cu(OAc)2
PDF
Album
Supp Info
Full Research Paper
Published 23 Jan 2024
Graphical Abstract
  • wormlike nanoparticles. In rotaxanes, the utilization of metal–ligand bonding involving CuI is a common strategy for immobilizing a thread moiety within a macrocycle. However, the efficacy of such a bonding is compromised when catalysts are used in stoppering reactions, e.g., the copper-catalyzed azide
PDF
Album
Review
Published 22 Jan 2024

Visible-light-induced radical cascade cyclization: a catalyst-free synthetic approach to trifluoromethylated heterocycles

  • Chuan Yang,
  • Wei Shi,
  • Jian Tian,
  • Lin Guo,
  • Yating Zhao and
  • Wujiong Xia

Beilstein J. Org. Chem. 2024, 20, 118–124, doi:10.3762/bjoc.20.12

Graphical Abstract
  • radicals. This method allows the efficient synthesis of various indole derivatives without the need of photocatalysts or transition-metal catalysts. Mechanism experiments indicate that the process involves a radical chain process initiated by the homolysis of Umemoto's reagent. This straightforward method
  • ], Friedel–Crafts acylation [12], radical cascade reactions [2][13], and photoinduced radical cyclizations [14][15][16][17]. However, these methods often suffer from drawbacks such as harsh reaction conditions and the requirement of transition-metal catalysts. Although photocatalyzed cyclization reactions
  • usually occur under mild conditions, they typically require expensive metal-based photocatalysts or structurally complex organic dyes [18]. Therefore, the development of a photoinduced cascade reaction without the need of additional catalysts or additives remains highly desirable [19]. The introduction of
PDF
Album
Supp Info
Full Research Paper
Published 19 Jan 2024

Using the phospha-Michael reaction for making phosphonium phenolate zwitterions

  • Matthias R. Steiner,
  • Max Schmallegger,
  • Larissa Donner,
  • Johann A. Hlina,
  • Christoph Marschner,
  • Judith Baumgartner and
  • Christian Slugovc

Beilstein J. Org. Chem. 2024, 20, 41–51, doi:10.3762/bjoc.20.6

Graphical Abstract
  • powerful tool for performing organic reactions [1] and polymerizations [2]. In this context phosphines have proven to be potent Lewis-base catalysts [3][4] for a variety of reactions [5], including but not limited to Rauhut–Currier [6], Morita–Baylis–Hillman [7], and Michael reactions [8][9][10]. In all
  • this zwitterion formation is of great importance since it is the initiation step for the catalytic cycle in Michael reactions [8]. Generally, the conjugate addition is favored for strong nucleophiles, which is why electron-rich trialkylphosphines were among the first catalysts used in this type of
  • trifluoromethyl groups [20] and the cross-coupling of aryl halides [21]. Like phosphonium salts in general are used as catalysts [22][23], phosphonium salts based on ortho-hydroxy-substituted phosphines received particular attention because of their zwitterionic nature and have been used as catalysts in the
PDF
Album
Supp Info
Full Research Paper
Published 10 Jan 2024

Synthesis of N-acyl carbazoles, phenoxazines and acridines from cyclic diaryliodonium salts

  • Nils Clamor,
  • Mattis Damrath,
  • Thomas J. Kuczmera,
  • Daniel Duvinage and
  • Boris J. Nachtsheim

Beilstein J. Org. Chem. 2024, 20, 12–16, doi:10.3762/bjoc.20.2

Graphical Abstract
  • [33][34]. Results and Discussion Initially, we investigated the synthesis of N-acyl carbazole by treatment of diaryliodonium salt 1a with valeramide using Cu(I) catalysts [18]. The results are shown in Table 1. In the first experiments in p-xylene at 120 °C with DMEDA as N,N-ligand, only modest
PDF
Album
Supp Info
Letter
Published 04 Jan 2024

1-Butyl-3-methylimidazolium tetrafluoroborate as suitable solvent for BF3: the case of alkyne hydration. Chemistry vs electrochemistry

  • Marta David,
  • Elisa Galli,
  • Richard C. D. Brown,
  • Marta Feroci,
  • Fabrizio Vetica and
  • Martina Bortolami

Beilstein J. Org. Chem. 2023, 19, 1966–1981, doi:10.3762/bjoc.19.147

Graphical Abstract
  • , UK Department of Chemistry, Sapienza University of Rome, piazzale Aldo Moro, 5, 00185 Rome, Italy 10.3762/bjoc.19.147 Abstract In order to replace the expensive metal/ligand catalysts and classic toxic and volatile solvents, commonly used for the hydration of alkynes, the hydration reaction of
  • stimulated the search for alternative catalysts and conditions for the hydration of alkynes, in order to identify safer and more sustainable methods [11][12][13]. In particular, transition-metal catalysts containing Au(I) or (III) [14][15][16][17][18][19][20][21][22][23][24], Ru(II) [25][26][27][28][29][30
  • ], Pd(II) [31][32][33], Pt(II) [34][35], Fe(III) [36][37], Cu(I) [38][39][40][41], Co(III) [42][43][44], as well as other metals, have been widely studied. In addition, methods involving Brønsted acids, alone or in presence of Lewis acids as co-catalysts, have been developed [45][46][47][48][49][50][51
PDF
Album
Supp Info
Full Research Paper
Published 28 Dec 2023

Aldiminium and 1,2,3-triazolium dithiocarboxylate zwitterions derived from cyclic (alkyl)(amino) and mesoionic carbenes

  • Nedra Touj,
  • François Mazars,
  • Guillermo Zaragoza and
  • Lionel Delaude

Beilstein J. Org. Chem. 2023, 19, 1947–1956, doi:10.3762/bjoc.19.145

Graphical Abstract
  • heterocycles; zwitterions; Introduction Following the seminal discovery from the group of Arduengo, who isolated and fully characterized 1,3-di(1-adamantyl)imidazol-2-ylidene in 1991 [1], stable divalent carbon species have evolved from fleeting intermediates to ubiquitous catalysts, ligands, and reagents in
  • variety of small molecules and to bind strongly to metal centers, thereby affording very robust catalysts [9][10][11][12]. Another category of stable carbenes that has emerged in the new millennium is made of mesoionic compounds, for which no reasonable canonical resonance form can be drawn in the absence
PDF
Album
Supp Info
Full Research Paper
Published 20 Dec 2023

Beyond n-dopants for organic semiconductors: use of bibenzo[d]imidazoles in UV-promoted dehalogenation reactions of organic halides

  • Kan Tang,
  • Megan R. Brown,
  • Chad Risko,
  • Melissa K. Gish,
  • Garry Rumbles,
  • Phuc H. Pham,
  • Oana R. Luca,
  • Stephen Barlow and
  • Seth R. Marder

Beilstein J. Org. Chem. 2023, 19, 1912–1922, doi:10.3762/bjoc.19.142

Graphical Abstract
  • -containing catalysts [32]. We note that another all-organic reductive dimerization of benzyl halides using 2,3,5,6-tetrakis(tetramethylguanidino)pyridine has recently been reported [37]. The less readily reduced halides examined here (1d,e, and 2) are only sluggishly converted, even when using both (N-DMBI)2
PDF
Album
Supp Info
Full Research Paper
Published 14 Dec 2023
Other Beilstein-Institut Open Science Activities