Search results

Search for "Cleavage" in Full Text gives 874 result(s) in Beilstein Journal of Organic Chemistry. Showing first 200.

Iron-catalyzed domino coupling reactions of π-systems

  • Austin Pounder and
  • William Tam

Beilstein J. Org. Chem. 2021, 17, 2848–2893, doi:10.3762/bjoc.17.196

Graphical Abstract
  • the 1,6-enyne 35 followed by reductive elimination of the carbon nucleophile 38. Interestingly, this reaction proceeds via the cleavage of heteroelements and activated C–C bonds prior to reductive elimination of the metallacyclic ate-complex, resulting in the net formation of two new C–C bonds
  • products in appreciable yield. Alkenyl fluoride, chloride, and bromide substrates 51/52 were found to be amenable to the reaction although with varying degrees of success, likely due to the competing base-promoted 1,2-elimination. With the cyclopropylidene-functionalized substrates 50a, ring-cleavage led
  • isotope studies revealed the cleavage of the C(sp3)–H bond may be involved in the rate-determining step of this transformation. Mechanistically, prototypical homolysis of the peroxide in the presence of the Fe(II) catalyst will generate the alkyl radical 78 formed via hydrogen abstraction. The
PDF
Album
Review
Published 07 Dec 2021

Selective sulfonylation and isonitrilation of para-quinone methides employing TosMIC as a source of sulfonyl group or isonitrile group

  • Chuanhua Qu,
  • Run Huang,
  • Yong Li,
  • Tong Liu,
  • Yuan Chen and
  • Guiting Song

Beilstein J. Org. Chem. 2021, 17, 2822–2831, doi:10.3762/bjoc.17.193

Graphical Abstract
  • standard conditions, the desired products 3b or 4b were obtained with yields of 92% and 88%, respectively. Second, the sulfonylated diarylmethane 3b obtained through the C–S bond-cleavage sulfonylation reaction is a versatile building block for preparing diarylmethane derivatives through a nucleophilic
  • acids via a triphenylphosphine-mediated deoxygenation process, followed by reaction with sulfonylated diarylmethane 3b to obtain diarylmethane ketone derivatives 6 and 7 [53]. To gain mechanistic insight into this C–S-bond cleavage sulfonylation reaction, some control experiments were conducted (Scheme
  • is exemplified in Scheme 6C. The sulfonylation reaction starts with ZnI2/base system mediated C–S-bond cleavage of TosMIC derivative 2c to yield Ts anion II, in which 2c acts as the sulfonyl source. Finally, the sulfonylated diarylmethane 3a is formed by a sequential addition/aromatization process
PDF
Album
Supp Info
Full Research Paper
Published 02 Dec 2021

Highly stereocontrolled total synthesis of racemic codonopsinol B through isoxazolidine-4,5-diol vinylation

  • Lukáš Ďurina,
  • Anna Ďurinová,
  • František Trejtnar,
  • Ľuboš Janotka,
  • Lucia Messingerová,
  • Jana Doháňošová,
  • Ján Moncol and
  • Róbert Fischer

Beilstein J. Org. Chem. 2021, 17, 2781–2786, doi:10.3762/bjoc.17.188

Graphical Abstract
  • the expected high syn diol diastereoselectivity (Scheme 1). The obtained anti,syn-(hydroxyamino)alkenol 4 will be then subjected to reductive cleavage of the N–O bond. Next, a key intermediate epoxide 5 with the desired syn (threo) configuration between the hydroxy group and the epoxide oxygen could
PDF
Album
Supp Info
Full Research Paper
Published 24 Nov 2021

Synthesis of new pyrazolo[1,2,3]triazines by cyclative cleavage of pyrazolyltriazenes

  • Nicolai Wippert,
  • Martin Nieger,
  • Claudine Herlan,
  • Nicole Jung and
  • Stefan Bräse

Beilstein J. Org. Chem. 2021, 17, 2773–2780, doi:10.3762/bjoc.17.187

Graphical Abstract
  • accessible 3,6-substituted-4,6-dihydro-3H-pyrazolo[3,4-d][1,2,3]triazines as nitrogen-rich heterocycles. The target compounds were obtained in five steps, including an amidation and a cyclative cleavage reaction as key reaction steps. The introduction of two side chains allowed a variation of the pyrazolo
  • transformations without decomposition [37][38][39]. In the herein presented study, we apply the cyclative cleavage reaction to pyrazolyltriazenes instead of aryltriazenes, which results in the synthesis of diverse pyrazolo[3,4-d][1,2,3]-3H-triazine derivatives 5. Results and Discussion According to the literature
  • have a major influence on the outcome of the reaction: (1) the addition of side chains R1 to the core pyrazole ring system, which can occur in position N-6 or N-7, and (2) the cyclative cleavage of the triazene group of compounds 9 and 10 which should lead to the target compounds 5 and 6. To carry out
PDF
Album
Supp Info
Full Research Paper
Published 22 Nov 2021

Recent advances in the asymmetric phosphoric acid-catalyzed synthesis of axially chiral compounds

  • Alemayehu Gashaw Woldegiorgis and
  • Xufeng Lin

Beilstein J. Org. Chem. 2021, 17, 2729–2764, doi:10.3762/bjoc.17.185

Graphical Abstract
  • ]. Organocatalytic aryl C–H activation via a nonradical process represents an enormous challenge in organic synthesis, although the nucleophilic aromatic substitution with cleavage of the electrophilic aryl C–H bond has only recently been developed by transition-metal-catalyzed aryl C–H activation [57]. In the
  • presence of a chiral phosphoric acid, the azo group has recently been revealed to be a useful moiety that may efficiently activate an aromatic ring for formal nucleophilic aromatic substitution, resulting in the cleavage of the aryl C–H bond and direct arylation of the nucleophile [58]. In 2018, Tan and co
  • chiral N-arylbenzimidazoles involving a carbon–carbon bond cleavage under optimal reaction conditions. In the presence of CPA 2, N1-(aryl)benzene-1,2-diamines 66 were used in the reaction with multicarbonyl compounds 67 and 68 and afforded the corresponding products, axially chiral N-arylbenzimidazoles
PDF
Album
Review
Published 15 Nov 2021

The ethoxycarbonyl group as both activating and protective group in N-acyl-Pictet–Spengler reactions using methoxystyrenes. A short approach to racemic 1-benzyltetrahydroisoquinoline alkaloids

  • Marco Keller,
  • Karl Sauvageot-Witzku,
  • Franz Geisslinger,
  • Nicole Urban,
  • Michael Schaefer,
  • Karin Bartel and
  • Franz Bracher

Beilstein J. Org. Chem. 2021, 17, 2716–2725, doi:10.3762/bjoc.17.183

Graphical Abstract
  • should lead to an N-methyl group and to reductive cleavage of the carbonate-protected phenol(s); route B is based on treatment with an alkyllithium compound [26], which should remove all ethoxycarbonyl groups and provide N-nor analogues of the products obtained in route A (Figure 3). The required
PDF
Album
Supp Info
Full Research Paper
Published 05 Nov 2021

Synthetic strategies toward 1,3-oxathiolane nucleoside analogues

  • Umesh P. Aher,
  • Dhananjai Srivastava,
  • Girij P. Singh and
  • Jayashree B. S

Beilstein J. Org. Chem. 2021, 17, 2680–2715, doi:10.3762/bjoc.17.182

Graphical Abstract
  • -butyldiphenylsilyl chloride (TBDPSCl) for selective protection. The compound was further debenzoylated by ammonolysis, which gave compound 16. Compound 16 underwent oxidative cleavage using lead tetraacetate, and the intermediate aldehyde was oxidized to the carboxylic acid using sodium chlorite, which afforded acid
  • ). Sodium periodate was used for oxidative cleavage of cis-diol 3d. The subsequent aldehyde was then converted to a vicinal diol by reduction with sodium borohydride. Further, it was protected by 2,2-dimethoxypropane to give the 1,3-oxathiolane derivative 21. The benzoylated compound 22 was obtained by
PDF
Album
Review
Published 04 Nov 2021

α-Ketol and α-iminol rearrangements in synthetic organic and biosynthetic reactions

  • Scott Benz and
  • Andrew S. Murkin

Beilstein J. Org. Chem. 2021, 17, 2570–2584, doi:10.3762/bjoc.17.172

Graphical Abstract
  • intermediate 117. C–O bond cleavage produces an α-iminol intermediate 118, which proceeds to rearrange by ring expansion to ultimately yield 119 (Figure 21a). Using the benzoate ester of 118 (R = Ph; X = CH2) as the substrate and N-methylindole as the heteroarene, optimal reaction conditions (95% yield) were
PDF
Album
Review
Published 15 Oct 2021

Cryogels: recent applications in 3D-bioprinting, injectable cryogels, drug delivery, and wound healing

  • Luke O. Jones,
  • Leah Williams,
  • Tasmin Boam,
  • Martin Kalmet,
  • Chidubem Oguike and
  • Fiona L. Hatton

Beilstein J. Org. Chem. 2021, 17, 2553–2569, doi:10.3762/bjoc.17.171

Graphical Abstract
  • during degradation of cryogels, the walls of the cryogel decrease in thickness and are in some cases broken. This analysis was made for enzyme-degraded cryogels, so it is unclear whether the process is likely to occur for cryogels degraded by other mechanisms such as disulphide cleavage [30][31] and
PDF
Album
Review
Published 14 Oct 2021

Visible-light-mediated copper photocatalysis for organic syntheses

  • Yajing Zhang,
  • Qian Wang,
  • Zongsheng Yan,
  • Donglai Ma and
  • Yuguang Zheng

Beilstein J. Org. Chem. 2021, 17, 2520–2542, doi:10.3762/bjoc.17.169

Graphical Abstract
  • [28][50], Cu(dap)Cl2 acted as a potential precatalyst in this photoreaction. Upon irradiation, the CuII complex undergoes homolytic cleavage of a Cu–Cl bond forming CuI as the catalytically active species; thus, the CuII complex is the precatalyst and provides a more efficient transformation than CuI
  • mechanistic study, CuII serves as the catalytically active species that undergoes homolytic cleavage to form a CuI species and an azide radical. The latter adds to the alkene to form an alkyl radical, which is then trapped by oxygen to form the desired product. The homolytic cleavage of the active species
  • alkyne (Scheme 18). Under visible-light irradiation, disulfides are easy transformed to thiyl radicals via the homolytic cleavage of the S–S bond [79]. In 2020, Anandhan and co-workers [80] explored the C(sp)–S coupling of terminal alkynes with 2-aminothiophenol dimer 38 as a radical precursor. Under
PDF
Album
Review
Published 12 Oct 2021

Copper-catalyzed monoselective C–H amination of ferrocenes with alkylamines

  • Zhen-Sheng Jia,
  • Qiang Yue,
  • Ya Li,
  • Xue-Tao Xu,
  • Kun Zhang and
  • Bing-Feng Shi

Beilstein J. Org. Chem. 2021, 17, 2488–2495, doi:10.3762/bjoc.17.165

Graphical Abstract
  • exchange was observed at the ortho-position of 1a with 3.0 equivalents of CD3CO2D under standard conditions (Scheme 5a). Furthermore, a larger value of kinetic isotope effect (KIE = 2.4) was detected (Scheme 5b). These results indicated that the cleavage of C–H bond was most likely involved in the rate
PDF
Album
Supp Info
Letter
Published 28 Sep 2021

Synthesis of phenanthridines via a novel photochemically-mediated cyclization and application to the synthesis of triphaeridine

  • Songeziwe Ntsimango,
  • Kennedy J. Ngwira,
  • Moira L. Bode and
  • Charles B. de Koning

Beilstein J. Org. Chem. 2021, 17, 2340–2347, doi:10.3762/bjoc.17.152

Graphical Abstract
  • hypothesized that oxime 7 undergoes a homolytic cleavage of the N–O bond giving the iminyl radical 11 [14] followed by an intramolecular cyclization with concomitant expulsion of the ortho-methoxy group, liberating phenanthridine 9. To the best of our knowledge, such a reaction in which the aromatic methoxy
PDF
Album
Supp Info
Full Research Paper
Published 08 Sep 2021

Synthesis of O6-alkylated preQ1 derivatives

  • Laurin Flemmich,
  • Sarah Moreno and
  • Ronald Micura

Beilstein J. Org. Chem. 2021, 17, 2295–2301, doi:10.3762/bjoc.17.147

Graphical Abstract
  • -deazaguanine failed in our hands. The 6-chloro atom of compound 3 was substituted using sodium methoxide under concomitant cleavage of the pivaloyl group to yield the desired O6-methylated compound 1, m6preQ0 (Scheme 4). After dissolving this compound under strong silylating conditions in the presence of N,O
PDF
Album
Supp Info
Full Research Paper
Published 02 Sep 2021

Base-free enantioselective SN2 alkylation of 2-oxindoles via bifunctional phase-transfer catalysis

  • Mili Litvajova,
  • Emiliano Sorrentino,
  • Brendan Twamley and
  • Stephen J. Connon

Beilstein J. Org. Chem. 2021, 17, 2287–2294, doi:10.3762/bjoc.17.146

Graphical Abstract
  • -alkylated with bromo ester 13. The formed product (i.e., 14) was first amidated and then cyclised using benzylamine 11 to generate spirooxindole 15 in 54% yield and 94% ee. Chlorination with NCS, followed by tert-butyl ester cleavage in TFA/CH2Cl2 provided the final bioactive compound 6 in 93% ee
PDF
Album
Supp Info
Letter
Published 02 Sep 2021

Halides as versatile anions in asymmetric anion-binding organocatalysis

  • Lukas Schifferer,
  • Martin Stinglhamer,
  • Kirandeep Kaur and
  • Olga García Macheño

Beilstein J. Org. Chem. 2021, 17, 2270–2286, doi:10.3762/bjoc.17.145

Graphical Abstract
  • participates in the ionization step by an anion abstraction-type process (Figure 2b). In the latter approach, the C–X bond cleavage can then either follow a SN1 or SN2 pathway. For enantioselective purposes, solvation of the ion pair is crucial for obtaining high stereoinduction. While more polar solvents give
  • example utilizing this strategy was provided by Jacobsen and co-workers for the desymmetrization of meso-aziridines 29. In their work, the bifunctional phosphinothiourea catalyst 31 promoted the C–N bond cleavage by hydrochloric acid upon initial protonation (Scheme 7) [55]. Subsequently, the catalyst
  • heterolytic cleavage of HCl as displayed in Scheme 7 [55]. Moreover, other catalysts with amine functional groups were found more efficient in the enantioselective α-alkylation of aldehydes (Scheme 10b) [48] or in the asymmetric Mannich synthesis of α-amino esters using Takemoto’s bifunctional catalyst 44 [67
PDF
Album
Review
Published 01 Sep 2021

Photoredox catalysis in nickel-catalyzed C–H functionalization

  • Lusina Mantry,
  • Rajaram Maayuri,
  • Vikash Kumar and
  • Parthasarathy Gandeepan

Beilstein J. Org. Chem. 2021, 17, 2209–2259, doi:10.3762/bjoc.17.143

Graphical Abstract
  • similar reaction conditions with moderate to good yields. Based on their detailed mechanistic studies, the authors proposed a possible catalytic cycle involving a C–H cleavage via a HAT process between the triplet excited ketone photocatalyst 24 and the C(sp3)–H substrates (Figure 8) [66]. Thus, the
  • yields were observed for carboxylic acid substrates 81 with different steric properties. Similarly, amine substrates 80 with diverse substitution patterns and functional groups were well tolerated to provide the desired products in optimal yields. The proposed mechanism involves the cleavage of the C(sp3
  • high yields. Based on the detailed computational and experimental mechanistic studies, the authors proposed a catalytic cycle which involves the C–H cleavage prior to the oxidative addition of N-acylsuccinimide (Figure 19) [125]. The acylation of benzylic C‒H bonds with acid chlorides 45 by means of
PDF
Album
Review
Published 31 Aug 2021

Progress and challenges in the synthesis of sequence controlled polysaccharides

  • Giulio Fittolani,
  • Theodore Tyrikos-Ergas,
  • Denisa Vargová,
  • Manishkumar A. Chaube and
  • Martina Delbianco

Beilstein J. Org. Chem. 2021, 17, 1981–2025, doi:10.3762/bjoc.17.129

Graphical Abstract
PDF
Album
Review
Published 05 Aug 2021

On the application of 3d metals for C–H activation toward bioactive compounds: The key step for the synthesis of silver bullets

  • Renato L. Carvalho,
  • Amanda S. de Miranda,
  • Mateus P. Nunes,
  • Roberto S. Gomes,
  • Guilherme A. M. Jardim and
  • Eufrânio N. da Silva Júnior

Beilstein J. Org. Chem. 2021, 17, 1849–1938, doi:10.3762/bjoc.17.126

Graphical Abstract
  • were found to be unreactive, probably due to steric hindrance. The one-pot difunctionalization of arenes involving a sequential C–O cleavage and C(sp2)–H activation mediated by chromium was recently reported by Luo and Zeng [124]. The reaction allows an ortho-directed diarylation of o
  • action of Meerwein’s salt (Me3OBF4) and a mild base (proton sponge) to afford a methoxy cedrene derivative. Next, oxidative cleavage of the double bond using NaIO4/RuCl3·xH2O enabled a ring opening, followed by lactonization promoted by CuBr2 via an intramolecular acyloxylation. The 5,5-fused ring system
PDF
Album
Review
Published 30 Jul 2021

Cationic oligonucleotide derivatives and conjugates: A favorable approach for enhanced DNA and RNA targeting oligonucleotides

  • Mathias B. Danielsen and
  • Jesper Wengel

Beilstein J. Org. Chem. 2021, 17, 1828–1848, doi:10.3762/bjoc.17.125

Graphical Abstract
  • latter strategy can be divided into the conjugation of amine groups onto ONs still attached to the solid support, or onto ONs in solution after cleavage from the solid support. The C-5 position of the pyrimidine ring has in general been the most used attachment point since it is not involved in hydrogen
  •  3A) [57]. The G-clamp modification was later observed to have antisense inhibition activity involving RNase H cleavage with a single incorporation into a PS-ON [58]. Afterwards, a guanidino-G-clamp (modification 24) was synthesized to increase the number of hydrogen bonds that could be established
  • simultaneously with cleavage from the solid support [66]. It was found that the modified ON gave an improved duplex stability relative to the unmodified ON by 15 °C at 150 mM NaCl [66]. Later, improved syntheses of the phosphoramidite derivatives of guanine analogues have been developed [67]. Thus, many studies
PDF
Album
Review
Published 29 Jul 2021

Development of N-F fluorinating agents and their fluorinations: Historical perspective

  • Teruo Umemoto,
  • Yuhao Yang and
  • Gerald B. Hammond

Beilstein J. Org. Chem. 2021, 17, 1752–1813, doi:10.3762/bjoc.17.123

Graphical Abstract
  • cleavage reactions with F2. This method, using the dilute F2, was inefficient for their production due to long reaction times. N-Fluoro-N-alkyl-p-toluenesulfonamides 4-1b,c,f proved to be efficient fluorinating agents in the fluorination of carbanions (Scheme 7). The yields of reactions with sodium
PDF
Album
Review
Published 27 Jul 2021

Sustainable manganese catalysis for late-stage C–H functionalization of bioactive structural motifs

  • Jongwoo Son

Beilstein J. Org. Chem. 2021, 17, 1733–1751, doi:10.3762/bjoc.17.122

Graphical Abstract
  • , metallonitrene intermediate 18A is formed from the reaction of catalyst 18 with iminoiodinane, which is subsequently transformed to Mn–imido complex 18B via conversion of substrate 17 into a temporary benzylic radical species, wherein C–H bond cleavage is proposed to be the rate-determining step (inter- and
  • intramolecular KIEs of C–H cleavage are 2.5 and 3.0, respectively). Next, the benzylic radical is trapped by the Mn–imido complex to afford aminated product 19. Based on additional mechanistic experiments, it was suggested that the MnIII(ClPc) (18)-catalyzed C–H amination process is regioselective for the more
PDF
Album
Review
Published 26 Jul 2021

Cerium-photocatalyzed aerobic oxidation of benzylic alcohols to aldehydes and ketones

  • Girish Suresh Yedase,
  • Sumit Kumar,
  • Jessica Stahl,
  • Burkhard König and
  • Veera Reddy Yatham

Beilstein J. Org. Chem. 2021, 17, 1727–1732, doi:10.3762/bjoc.17.121

Graphical Abstract
  • indicates a photoinduced CeIV–OBn homolytic cleavage to generate a CeIII complex and a benzyloxy radical. Although the exact catalytic cycle of our reaction remains to be elucidated, we propose a plausible reaction mechanism based on our observations and known literature precedents (Figure 1B) [57][59][66
PDF
Album
Supp Info
Letter
Published 23 Jul 2021

Chemical approaches to discover the full potential of peptide nucleic acids in biomedical applications

  • Nikita Brodyagin,
  • Martins Katkevics,
  • Venubabu Kotikam,
  • Christopher A. Ryan and
  • Eriks Rozners

Beilstein J. Org. Chem. 2021, 17, 1641–1688, doi:10.3762/bjoc.17.116

Graphical Abstract
PDF
Album
Review
Published 19 Jul 2021

A recent overview on the synthesis of 1,4,5-trisubstituted 1,2,3-triazoles

  • Pezhman Shiri,
  • Ali Mohammad Amani and
  • Thomas Mayer-Gall

Beilstein J. Org. Chem. 2021, 17, 1600–1628, doi:10.3762/bjoc.17.114

Graphical Abstract
  • -butynoate successfully generated the metal-bound heterocyclic complexes. The alkylation reaction of 171a led to the bond cleavage between ruthenium and nitrogen to produce several 1-alkylated 4,5-bis(ethoxycarbonyl)-1,2,3-triazoles 172 [66]. Herein, the sodium azide initially reacts with [Ru]–Cl 168 to
  • produce [Ru]–N3 169. Then, the resulting intermediate cyclizes with ynoate ester 170 to form metal-bound heterocyclic complex 171. This metal-bound heterocyclic complex 171 reacts with alkyl halide to produce final product 172 via a bond cleavage between ruthenium and nitrogen (Scheme 45) [66]. Cu/Ru
PDF
Album
Review
Published 13 Jul 2021

Copper-mediated oxidative C−H/N−H activations with alkynes by removable hydrazides

  • Feng Xiong,
  • Bo Li,
  • Chenrui Yang,
  • Liang Zou,
  • Wenbo Ma,
  • Linghui Gu,
  • Ruhuai Mei and
  • Lutz Ackermann

Beilstein J. Org. Chem. 2021, 17, 1591–1599, doi:10.3762/bjoc.17.113

Graphical Abstract
  • -pyridylhydrazide allowed for domino C–H/N–H functionalization. The approach featured remarkable functional group compatibility and ample substrate scope. Thereby, highly functionalized aromatic and heteroaromatic isoindolin-1-ones were accessed with high efficacy with rate-limiting C–H cleavage. Keywords
  • also proved to be a viable substrate. Thus, the corresponding isoindolone 3aa was assembled via a tandem decarboxylative C−H/C−C sequence (Scheme 3a). The practical relevance of our approach was reflected by the cleavage of the N-2-pyridylhydrazide group, yielding S-3aa (Scheme 3b). Inspired by the
  • -position of the reisolated benzhydrazide 1c and product 3ca when the reaction was conducted with the isotopically labeled D2O as cosolvent (Scheme 4c). This observation indicated that the C−H cleavage is irreversible. In accordance with this finding, a kinetic isotope effect (KIE) of kH/kD ≈ 6.1 was
PDF
Album
Supp Info
Full Research Paper
Published 08 Jul 2021
Other Beilstein-Institut Open Science Activities