Search results

Search for "asymmetric" in Full Text gives 837 result(s) in Beilstein Journal of Organic Chemistry. Showing first 200.

Solvent-free synthesis of enantioenriched β-silyl nitroalkanes under organocatalytic conditions

  • Akhil K. Dubey and
  • Raghunath Chowdhury

Beilstein J. Org. Chem. 2021, 17, 2642–2649, doi:10.3762/bjoc.17.177

Graphical Abstract
  • our work, the same group disclosed an organocatalyzed conjugate addition of thiols to β-silyl enones for the synthesis of chiral α-mercaptosilanes (Scheme 1g) [36]. As a part of our ongoing program for the development of asymmetric catalytic approaches for the synthesis of enantioenriched
PDF
Album
Supp Info
Full Research Paper
Published 27 Oct 2021

N-Sulfinylpyrrolidine-containing ureas and thioureas as bifunctional organocatalysts

  • Viera Poláčková,
  • Dominika Krištofíková,
  • Boglárka Némethová,
  • Renata Górová,
  • Mária Mečiarová and
  • Radovan Šebesta

Beilstein J. Org. Chem. 2021, 17, 2629–2641, doi:10.3762/bjoc.17.176

Graphical Abstract
  • aldehydes and hydrogen-bond activation of nitroalkenes. Keywords: asymmetric organocatalysis; hydrogen bond; Michael addition; pyrrolidine; thiourea; urea; Introduction Asymmetric organocatalysis became one of the strategic ways for the efficient synthesis of chiral compounds [1]. Bifunctional catalysis
  • has proven to be a successful concept in asymmetric organocatalysis [2][3][4][5][6][7][8]. An amine unit with a hydrogen-bond donating skeleton is highly efficient from among various possible combinations of catalytic moieties within an organocatalyst. This idea has been inspired by proline catalysis
  • /mismatched combination of chirality, we employed both enantiomers of tert-butyl sulfinamide with the (S)-enantiomer of the pyrrolidine building block. The introduction of green chemistry principles into chemical transformations is an important goal toward sustainable production and manufacturing. Asymmetric
PDF
Album
Supp Info
Full Research Paper
Published 25 Oct 2021

Adjusting the length of supramolecular polymer bottlebrushes by top-down approaches

  • Tobias Klein,
  • Franka V. Gruschwitz,
  • Maren T. Kuchenbrod,
  • Ivo Nischang,
  • Stephanie Hoeppener and
  • Johannes C. Brendel

Beilstein J. Org. Chem. 2021, 17, 2621–2628, doi:10.3762/bjoc.17.175

Graphical Abstract
  • core of the fiber. A slow transition from different organic solvents to water leads first to the formation of µm-long fibers, which can subsequently be fragmented by ultrasonication or dual asymmetric centrifugation. The latter allows for a better adjustment of applied shear stresses, and thus enables
  • interest. While ultrasonication (US) represents a standard but rather harsh fragmentation technique, we additionally introduced dual asymmetric centrifugation (DAC) as an excellent alternative top-down method for effective, more controlled, and adaptable preparation of polymer nanostructures [24][25][26
  • –PEO and BTP–PEO fibers in water, which were prepared via bottom-up self-assembly, enabled us to apply two straightforward top-down approaches (US and dual asymmetric centrifugation) to tune the length distributions of the supramolecular fibers. Exposing the SPBs to US resulted in a rapid fragmentation
PDF
Album
Supp Info
Letter
Published 21 Oct 2021

Recent advances in organocatalytic asymmetric aza-Michael reactions of amines and amides

  • Pratibha Sharma,
  • Raakhi Gupta and
  • Raj K. Bansal

Beilstein J. Org. Chem. 2021, 17, 2585–2610, doi:10.3762/bjoc.17.173

Graphical Abstract
  • asymmetric aza-Michael reaction (aza-MR) alone or in tandem with other organic reaction(s) is an important synthetic tool to form new C–N bond(s) leading to developing new libraries of diverse types of bioactive nitrogen compounds. The synthesis and application of a variety of organocatalysts for
  • accomplishing highly useful organic syntheses without causing environmental pollution in compliance with ‘Green Chemistry” has been a landmark development in the recent past. Application of many of these organocatalysts has been extended to asymmetric aza-MR during the last two decades. The present article
  • overviews the literature published during the last 10 years concerning the asymmetric aza-MR of amines and amides catalysed by organocatalysts. Both types of the organocatalysts, i.e., those acting through non-covalent interactions and those working through covalent bond formation have been applied for the
PDF
Album
Review
Published 18 Oct 2021

α-Ketol and α-iminol rearrangements in synthetic organic and biosynthetic reactions

  • Scott Benz and
  • Andrew S. Murkin

Beilstein J. Org. Chem. 2021, 17, 2570–2584, doi:10.3762/bjoc.17.172

Graphical Abstract
  • features the 1,2-shift of an alkyl or aryl group. In the process, the hydroxy group is converted to a carbonyl and the aldehyde/ketone or imine is converted to an alcohol or amine. Such α-ketol/α-iminol rearrangements are used in a wide variety of synthetic applications including asymmetric synthesis
  • , tandem reactions, and the total synthesis and biosynthesis of natural products. This review explores the use of α-ketol rearrangements in these contexts over the past two decades. Keywords: acyloin rearrangement; asymmetric synthesis; iminol rearrangement; ketol rearrangement; tandem reactions
  • reactions through mid-2002 have been thoroughly discussed in a past review by Paquette [1]. The current review expands on that work by providing an updated account from mid-2002 through early 2021, including the following recently developed applications: asymmetric synthesis, total synthesis, tandem
PDF
Album
Review
Published 15 Oct 2021

Visible-light-mediated copper photocatalysis for organic syntheses

  • Yajing Zhang,
  • Qian Wang,
  • Zongsheng Yan,
  • Donglai Ma and
  • Yuguang Zheng

Beilstein J. Org. Chem. 2021, 17, 2520–2542, doi:10.3762/bjoc.17.169

Graphical Abstract
  • form the desired product 13 (Scheme 9). In 2019, the same group [56] applied this protocol to the asymmetric cyanofluoroalkylation of alkenes. Under visible-light irradiation, the Cu-based catalyst plays a dual role as both the photosensitizer for the SET and the catalyst for asymmetric control (Scheme
  • radical and the organocopper via SET with hydrogen atom abstraction from CH3CN. Subsequently, the benzyl radical was captured by the organocopper to generate the hydroamination products (Scheme 10). In 2020, the same group [60] reported the copper-catalyzed asymmetric dual carbofunctionalization of
  • the alkyl radical and underwent reductive elimination to deliver the desired product. Liu’s group [78] further applied this protocol to the asymmetric decarboxylative alkynylation of N-hydroxy 2,3-naphthalimide-derived ester 37 with terminal alkynes. Remarkably, the N-hydroxy 2,3-naphthalimide-derived
PDF
Album
Review
Published 12 Oct 2021

Direct C(sp3)–H allylation of 2-alkylpyridines with Morita–Baylis–Hillman carbonates via a tandem nucleophilic substitution/aza-Cope rearrangement

  • Siyu Wang,
  • Lianyou Zheng,
  • Shutao Wang,
  • Shulin Ning,
  • Zhuoqi Zhang and
  • Jinbao Xiang

Beilstein J. Org. Chem. 2021, 17, 2505–2510, doi:10.3762/bjoc.17.167

Graphical Abstract
  • was necessary to promote the reaction but only with low yield (30%) (Scheme 1c). Recently, electron-deficient 3,5-dimethyl-4-nitroisoxazole and 2-methyl-3-nitroindoles were also served as vinylogous pronucleophiles to proceed the asymmetric allylic alkylation with MBH carbonates [25][26]. Overall, the
PDF
Album
Supp Info
Letter
Published 01 Oct 2021

Copper-catalyzed monoselective C–H amination of ferrocenes with alkylamines

  • Zhen-Sheng Jia,
  • Qiang Yue,
  • Ya Li,
  • Xue-Tao Xu,
  • Kun Zhang and
  • Bing-Feng Shi

Beilstein J. Org. Chem. 2021, 17, 2488–2495, doi:10.3762/bjoc.17.165

Graphical Abstract
  • the directing group could be removed easily under basic conditions. Keywords: amination; C–H activation; copper; ferrocene; mono-selectivity; Introduction Ferrocene-based compounds have broad applications from asymmetric catalysis to medicinal discovery [1][2][3][4][5][6][7][8]. Therefore, the
  • in 2020, an enantioselective C–H annulation of ferrocenylformamides with alkynes was achieved by the Ye group enabled by Ni-Al bimetallic catalysis and a chiral secondary phosphine oxide (SPO) ligand [35]. Hou et al. also reported the asymmetric C−H alkenylation of quinoline- and pyridine-substituted
PDF
Album
Supp Info
Letter
Published 28 Sep 2021

Recent advances in the tandem annulation of 1,3-enynes to functionalized pyridine and pyrrole derivatives

  • Yi Liu,
  • Puying Luo,
  • Yang Fu,
  • Tianxin Hao,
  • Xuan Liu,
  • Qiuping Ding and
  • Yiyuan Peng

Beilstein J. Org. Chem. 2021, 17, 2462–2476, doi:10.3762/bjoc.17.163

Graphical Abstract
  • necessary for this transformation. Recently, copper hydride (CuH) catalysis has been a wonderful procedure for olefin hydrofunctionalization via the formation of nucleophilic alkylcopper intermediate. In 2016, Buchwald and co-workers described a CuH-catalyzed asymmetric addition of olefin to ketones [65
PDF
Album
Review
Published 22 Sep 2021

Synthesis and investigation on optical and electrochemical properties of 2,4-diaryl-9-chloro-5,6,7,8-tetrahydroacridines

  • Najeh Tka,
  • Mohamed Adnene Hadj Ayed,
  • Mourad Ben Braiek,
  • Mahjoub Jabli and
  • Peter Langer

Beilstein J. Org. Chem. 2021, 17, 2450–2461, doi:10.3762/bjoc.17.162

Graphical Abstract
  • Najeh Tka Mohamed Adnene Hadj Ayed Mourad Ben Braiek Mahjoub Jabli Peter Langer Laboratory of Asymmetric Synthesis and Molecular Engineering for Organic Electronic Materials (LR18ES19), Monastir University, Faculty of Sciences of Monastir, Environment street, 5019 Monastir, Tunisia Universität
PDF
Album
Supp Info
Full Research Paper
Published 20 Sep 2021

Enantioselective PCCP Brønsted acid-catalyzed aminalization of aldehydes

  • Martin Kamlar,
  • Robert Reiberger,
  • Martin Nigríni,
  • Ivana Císařová and
  • Jan Veselý

Beilstein J. Org. Chem. 2021, 17, 2433–2440, doi:10.3762/bjoc.17.160

Graphical Abstract
  • enantioselective synthetic strategies towards 2,3-dihydroquinazolinone derivatives has drawn the attention of organic chemists for a long time [14][15][16][17][18], even though the aminal stereocenter is sensitive to racemization [12]. The well-established and straightforward approach in the asymmetric
  • chiral Brønsted acids. In the scope of Brønsted acid catalysis, chiral phosphoric acids (CPA) are dominating as potent catalysts in various asymmetric transformations [19][20][21][22][23], although the synthesis of these catalysts is expensive and laborious [24]. One of the most frequent examples of CPAs
  • corresponding dihydroquinazolinones were obtained in high yields and with good enantiomeric purities. In 2013, Lin and co-workers published the application of a chiral SPINOL-phosphoric acid in the asymmetric aminalization reaction [27]. Tian´s research group developed the synthesis of dihydroquinazolinones
PDF
Album
Supp Info
Full Research Paper
Published 16 Sep 2021

Strategies for the synthesis of brevipolides

  • Yudhi D. Kurniawan and
  • A'liyatur Rosyidah

Beilstein J. Org. Chem. 2021, 17, 2399–2416, doi:10.3762/bjoc.17.157

Graphical Abstract
  • -carbon precursor for the synthesis. The forward synthesis transformed 2-acetylfuran (20) to its corresponding alcohol 21 through an asymmetric transfer hydrogenation catalyzed by a ruthenium complex (0.5 mol %) in 98% yield with 95% ee (Scheme 2). The azeotropic mixture of HCO2H/Et3N 5:2 was employed as
  • followed by addition of TBSOTf at low temperature successfully formed the (Z)-silyl enol ether 54. Application of the Sharpless asymmetric dihydroxylation, promoted by AD-mix-β, gave the expected β-(R)-hydroxy cyclopropyl product 55 in 84% yield with moderate diastereoselectivity (dr = 2). The formation of
  • ether 94 (90%) and the PMB ether was cleaved to liberate the primary alcohol. After being oxidized with IBX, the aldehyde 103 was isolated in 68% yield over two steps. Application of the asymmetric Brown’s allylation afforded 104 in 80% yield (dr 95:5) that was readily esterified to its cinnamate ester
PDF
Album
Review
Published 14 Sep 2021

Advances in mercury(II)-salt-mediated cyclization reactions of unsaturated bonds

  • Sumana Mandal,
  • Raju D. Chaudhari and
  • Goutam Biswas

Beilstein J. Org. Chem. 2021, 17, 2348–2376, doi:10.3762/bjoc.17.153

Graphical Abstract
  • corresponding bicyclic dihydropyrans 119 and 121, respectively (Scheme 36). Later, Namba et al. reported the synthesis of racemic vinylindoline derivatives 123 from N-tosylanilinoallylic alcohol derivative 122 by using 1–2 mol % of Hg(OTf)2 in CH2Cl2 at room temperature [90]. An asymmetric synthesis of
  • efficiently utilized for the synthesis of highly strained tricyclo[5.2.1.01,6]decene intermediate 214 containing a cyclobutane ring (Scheme 64). Compound 213 is an important precursor for the asymmetric total synthesis of solanoeclepin A. The formation of β-hydroxyketone 213 was achieved by Hg(TFA)2-mediated
PDF
Album
Review
Published 09 Sep 2021

Base-free enantioselective SN2 alkylation of 2-oxindoles via bifunctional phase-transfer catalysis

  • Mili Litvajova,
  • Emiliano Sorrentino,
  • Brendan Twamley and
  • Stephen J. Connon

Beilstein J. Org. Chem. 2021, 17, 2287–2294, doi:10.3762/bjoc.17.146

Graphical Abstract
  • charged intermediates, could be an excellent methodology for the enantioselective SN2 alkylation of enolates derived from the 2-oxindole core [13][14][15][16][17][18][19][20][21][22][23]. In recent years, several examples regarding the alkylation of 3-subsituted-2-oxindoles, via asymmetric phase-transfer
  • report we disclose the outcome of an investigation into the design of an efficient catalytic asymmetric system capable of manipulating this substrate and its application to the enantioselective synthesis of the potent CRTH2 receptor antagonist 6 [32] (Scheme 1C). Results and Discussion We began our
  • could be possible to develop an effective catalytic asymmetric protocol. To the best of our knowledge such base-free catalytic systems have never been applied to processes such as the alkylation of enolates generated in situ. These reactions would produce stoichiometric amounts of acid, which can
PDF
Album
Supp Info
Letter
Published 02 Sep 2021

Halides as versatile anions in asymmetric anion-binding organocatalysis

  • Lukas Schifferer,
  • Martin Stinglhamer,
  • Kirandeep Kaur and
  • Olga García Macheño

Beilstein J. Org. Chem. 2021, 17, 2270–2286, doi:10.3762/bjoc.17.145

Graphical Abstract
  • development of the research area of asymmetric anion-binding organocatalysis. Key early elucidation studies with chloride as counter-anion confirmed this type of alternative activation, which was then exploited in several processes and contributed to the advance and consolidation of anion-binding catalysis as
  • the cationic reactive species. Keywords: anion binding; asymmetric catalysis; halide anions; hydrogen donors; noncovalent interactions; Introduction Halogens and the respective anionic halides occupy an essential role in natural and chemical processes [1][2][3][4]. While in chemical syntheses
  • -workers reported in 2004 an asymmetric Pictet–Spengler reaction of tryptamine-derived imines 4 in the presence of acetyl chloride and 2,6-lutidine, where the chiral thiourea catalyst 6 was employed to enable good yields and enantioselectivities (Scheme 2a) [32]. The initial motivation of their first
PDF
Album
Review
Published 01 Sep 2021

(Phenylamino)pyrimidine-1,2,3-triazole derivatives as analogs of imatinib: searching for novel compounds against chronic myeloid leukemia

  • Luiz Claudio Ferreira Pimentel,
  • Lucas Villas Boas Hoelz,
  • Henayle Fernandes Canzian,
  • Frederico Silva Castelo Branco,
  • Andressa Paula de Oliveira,
  • Vinicius Rangel Campos,
  • Floriano Paes Silva Júnior,
  • Rafael Ferreira Dantas,
  • Jackson Antônio Lamounier Camargos Resende,
  • Anna Claudia Cunha,
  • Nubia Boechat and
  • Mônica Macedo Bastos

Beilstein J. Org. Chem. 2021, 17, 2260–2269, doi:10.3762/bjoc.17.144

Graphical Abstract
  • docking results were edited using the Visual Molecular Dynamics 1.9.3 (VMD) program (available for download at http://www.ks.uiuc.edu/Research/vmd/vmd-1.9.3/). Proposed structural modifications to obtain triazole derivatives 1a, b and 2a–j. Asymmetric unit representation of the 1,2,3-triazole derivative
PDF
Album
Supp Info
Full Research Paper
Published 01 Sep 2021

Towards new NIR dyes for free radical photopolymerization processes

  • Haifaa Mokbel,
  • Guillaume Noirbent,
  • Didier Gigmes,
  • Frédéric Dumur and
  • Jacques Lalevée

Beilstein J. Org. Chem. 2021, 17, 2067–2076, doi:10.3762/bjoc.17.133

Graphical Abstract
  • asymmetric substitution. Thus, in the first step, the Claisen–Schmidt condensation of 2-chloro-3-(hydroxymethylene)cyclohex-1-ene-1-carbaldehyde on 2-(3-cyano-4,5,5-trimethylfuran-2(5H)-ylidene)malononitrile (TCF) furnished the intermediate 2-(4-((E)-2-((E)-2-chloro-3-(ethoxymethylene)cyclohex-1-en-1-yl
PDF
Album
Supp Info
Full Research Paper
Published 16 Aug 2021

Recent advances in the syntheses of anthracene derivatives

  • Giovanni S. Baviera and
  • Paulo M. Donate

Beilstein J. Org. Chem. 2021, 17, 2028–2050, doi:10.3762/bjoc.17.131

Graphical Abstract
  • and asymmetric alkynes with heterocyclic compounds and obtained reasonable to satisfactory results (examples 12h–k) [35]. Cu(OAc)2 proved to be an essential oxidant for the success of both the Miura and the Bao methodologies [34][35]. In 2013, Ye and co-workers reported a concise method to synthesize
  • anthracene, tetracene, and naphtho[b]thiophene derivatives via ZnBr2-mediated regioselective annulation of asymmetric 1,2-diarylmethine dipivalates 83a (Scheme 20). On the basis of this methodology, they prepared 37 examples of different types of anthracene derivatives, such as compounds 84a–e, in very good
  • yields (89–94%) and mild reaction conditions [53]. In a related approach, in 2015, Mohanakrishnan and his group reported the synthesis of anthracene derivatives and other annulated products via the regioselective cyclization of asymmetric 1,2-diarylmethine diol 83b by using a HBr/AcOH system (Scheme 20
PDF
Album
Review
Published 10 Aug 2021

Asymmetric organocatalyzed synthesis of coumarin derivatives

  • Natália M. Moreira,
  • Lorena S. R. Martelli and
  • Arlene G. Corrêa

Beilstein J. Org. Chem. 2021, 17, 1952–1980, doi:10.3762/bjoc.17.128

Graphical Abstract
  • , the advances in asymmetric organocatalyzed synthesis of coumarin derivatives are discussed in this review, according to the mode of activation of the catalyst. Keywords: asymmetric synthesis; green chemistry; 2H-chromen-2-one; organocatalysis; Introduction Coumarins are important naturally occurring
  • a specific target, i.e., it gives access to a greater diversity of compounds to be explored [26]. In this work, a compilation of the enantioselective synthesis of coumarin derivatives using asymmetric organocatalysis is presented, highlighting the proposed mechanism pathways for the formation of the
  • ammonium salts derived from cinchona alkaloids [28]. Therefore, the asymmetric synthesis of coumarin derivatives is herein presented according to the activation mode, i.e., via covalent or non-covalent bonding. Furthermore, the use of bifunctional catalysts and multicatalysis are discussed as well
PDF
Album
Review
Published 03 Aug 2021

On the application of 3d metals for C–H activation toward bioactive compounds: The key step for the synthesis of silver bullets

  • Renato L. Carvalho,
  • Amanda S. de Miranda,
  • Mateus P. Nunes,
  • Roberto S. Gomes,
  • Guilherme A. M. Jardim and
  • Eufrânio N. da Silva Júnior

Beilstein J. Org. Chem. 2021, 17, 1849–1938, doi:10.3762/bjoc.17.126

Graphical Abstract
  • compounds to produce the corresponding biaryl products with high enantiopurity using vanadium chelated with chiral ligands, such as tridentate asymmetric imine ligands, have been reported. For instance, (S)-binol derivatives could be successfully prepared from 2-naphthols using a dimeric vanadium complex
  • molecules of substrate together. In addition, the high enantiopurity was ascribed to a chiral environment that presents three elements of asymmetry. Other examples of vanadium-mediated oxidative homocouplings of phenolic substrates include regioselective and asymmetric homocoupling of phenols and 2
  • -hydroxycarbazoles [103][104]. Notably, Kozlowsky and co-workers were the first who reported a method for the vanadium-based asymmetric coupling of phenols and 2-hydroxycarbazoles [105] that allowed the synthesis of a wide range of chiral biphenols and bicarbazoles. The use of a vanadium complex with less electron
PDF
Album
Review
Published 30 Jul 2021

Development of N-F fluorinating agents and their fluorinations: Historical perspective

  • Teruo Umemoto,
  • Yuhao Yang and
  • Gerald B. Hammond

Beilstein J. Org. Chem. 2021, 17, 1752–1813, doi:10.3762/bjoc.17.123

Graphical Abstract
  • -dichlorocamphorsultam) 17-2 [75] (Scheme 37). The maximum enantioselectivity of enolates of β-ketoesters with (−)-9-1 or (+)-9-2, first prepared by Lang in 1988 (see section 1-9), was 70% ee. The asymmetric fluorination with (+)- or (−)-17-2 afforded up to 75% ee as indicated in Scheme 38. The dichloro reagent 17-2
  • reagent 27-2 in good to high yields [90]. In addition, Takeuchi et al. reported that optically active N-fluorosultams, (R)- and (S)-N-fluoro-3-cyclohexyl-3-methyl-2,3-dihydrobenzo[1,2-d]isothiazole 1,1-dioxides 27-6 (Scheme 61) were efficient reagents for the asymmetric fluorination of enolates [91]. To
  • 'R)-isomer 28-7a and (2'S,3S,5'R)-isomer 28-7b in 81% and 44% yield, respectively. Figure 9 summarizes the outcomes of asymmetric fluorination reactions of enolates of aryl ketones using 28-7a and -7b. In the event isomer 28-7a yielded much better ees than 28-7b. Although 28-7a gave a maximum 70% ee
PDF
Album
Review
Published 27 Jul 2021

2,4-Bis(arylethynyl)-9-chloro-5,6,7,8-tetrahydroacridines: synthesis and photophysical properties

  • Najeh Tka,
  • Mohamed Adnene Hadj Ayed,
  • Mourad Ben Braiek,
  • Mahjoub Jabli,
  • Noureddine Chaaben,
  • Kamel Alimi,
  • Stefan Jopp and
  • Peter Langer

Beilstein J. Org. Chem. 2021, 17, 1629–1640, doi:10.3762/bjoc.17.115

Graphical Abstract
  • Najeh Tka Mohamed Adnene Hadj Ayed Mourad Ben Braiek Mahjoub Jabli Noureddine Chaaben Kamel Alimi Stefan Jopp Peter Langer Asymmetric Synthesis and Molecular Engineering Laboratory for Organic Electronic Materials, Faculty of sciences of Monastir, Monastir university, Environment street, 5019
PDF
Album
Supp Info
Full Research Paper
Published 16 Jul 2021

A recent overview on the synthesis of 1,4,5-trisubstituted 1,2,3-triazoles

  • Pezhman Shiri,
  • Ali Mohammad Amani and
  • Thomas Mayer-Gall

Beilstein J. Org. Chem. 2021, 17, 1600–1628, doi:10.3762/bjoc.17.114

Graphical Abstract
PDF
Album
Review
Published 13 Jul 2021

Methodologies for the synthesis of quaternary carbon centers via hydroalkylation of unactivated olefins: twenty years of advances

  • Thiago S. Silva and
  • Fernando Coelho

Beilstein J. Org. Chem. 2021, 17, 1565–1590, doi:10.3762/bjoc.17.112

Graphical Abstract
  • (Scheme 8B). An asymmetric version of this reaction was developed in 2014 by the Gandon group [42], who employed the chiral bis(phosphine)digold(I) complex 18 as a pre-catalyst in combination with silver triflate as an activator (Scheme 9). They obtained lactams 17 by cyclization of α-substituted N
PDF
Album
Review
Published 07 Jul 2021

Breaking paracyclophane: the unexpected formation of non-symmetric disubstituted nitro[2.2]metaparacyclophanes

  • Suraj Patel,
  • Tyson N. Dais,
  • Paul G. Plieger and
  • Gareth J. Rowlands

Beilstein J. Org. Chem. 2021, 17, 1518–1526, doi:10.3762/bjoc.17.109

Graphical Abstract
  • archetypal cyclophane, with a strong interaction between the two aromatic rings, but it is readily available, being a ‘dimer’ for the polymer parylene [6][7]. Over the last twenty years, there has been a resurgence in interest in this compound as a scaffold for the synthesis of asymmetric catalysts, energy
PDF
Album
Supp Info
Full Research Paper
Published 29 Jun 2021
Other Beilstein-Institut Open Science Activities