Search results

Search for "catalysis" in Full Text gives 1229 result(s) in Beilstein Journal of Organic Chemistry. Showing first 200.

Copper catalysis: a constantly evolving field

  • Elena Fernández and
  • Jaesook Yun

Beilstein J. Org. Chem. 2025, 21, 1477–1479, doi:10.3762/bjoc.21.109

Graphical Abstract
  • Elena Fernandez Jaesook Yun Departament de Química Física i Inorgànica, University Rovira i Virgili, Tarragona, Spain Department of Chemistry, Sungkyunkwan University, Suwon 16419, Republic of Korea 10.3762/bjoc.21.109 Keywords: copper; copper catalysis; Copper catalysis continues to thrive as
  • papers (three Full Research Papers and two Letters) contributed by scientists from Asia and Europe. The breadth of topics and the geographical diversity of the authors reflect the global interest in copper catalysis today. The Review article by Yang and Fang focuses on copper-catalyzed yne–allylic
  • straightforward reactions. Complementarily, the Review article by Jang and Kim provides a deep understanding of recent advances in the combination of electrochemistry and copper catalysis for various organic transformations [3]. Their contribution elaborates various C–H functionalizations, olefin additions
PDF
Editorial
Published 17 Jul 2025

Microwave-enhanced additive-free C–H amination of benzoxazoles catalysed by supported copper

  • Andrei Paraschiv,
  • Valentina Maruzzo,
  • Filippo Pettazzi,
  • Stefano Magliocco,
  • Paolo Inaudi,
  • Daria Brambilla,
  • Gloria Berlier,
  • Giancarlo Cravotto and
  • Katia Martina

Beilstein J. Org. Chem. 2025, 21, 1462–1476, doi:10.3762/bjoc.21.108

Graphical Abstract
  • synthesis of various benzoxazole derivatives, demonstrating its versatility and practical applicability. Keywords: aerobic oxidation; copper; grafted silica; heterogeneous catalysis; microwave; Introduction 2-Aminoazoles are nitrogenous heterocyclic compounds of high relevance due to their biological and
  • , to the best of our knowledge, this study represents one of the few examples of a heterogeneous catalysed copper-mediated C–H amination of benzoxazole. The pursuit for greener methodologies in organic synthesis and transitioning from traditional homogeneous catalysis to the use of heterogeneous
  • catalysts for direct C–H amination processes could be a significant breakthrough in optimising these reactions. Despite recent progress in site-selective C–H functionalisation [49], most reactions have remained reliant on homogeneous catalysis due to its molecularly defined nature. By contrast, the
PDF
Album
Supp Info
Full Research Paper
Published 15 Jul 2025

Advances in nitrogen-containing helicenes: synthesis, chiroptical properties, and optoelectronic applications

  • Meng Qiu,
  • Jing Du,
  • Nai-Te Yao,
  • Xin-Yue Wang and
  • Han-Yuan Gong

Beilstein J. Org. Chem. 2025, 21, 1422–1453, doi:10.3762/bjoc.21.106

Graphical Abstract
  • , or selenium enables spectral tuning across the visible to near-infrared range, improved photostability, and dual-state emissive behavior. In parallel, significant progress in synthetic methodologies – including enantioselective catalysis, electrochemical cyclizations, and multicomponent reaction
  • applications in asymmetric catalysis [1][2], molecular recognition [3], and organic electronics [4][5]. In recent years, the incorporation of heteroatoms – particularly nitrogen – into the helicene backbone, giving rise to so-called "azahelicenes", has emerged as a powerful strategy to modulate electronic
  • ), pronounced chiroptical activity (|gabs| = 0.0054–0.0056), and substantial ΦF of 0.21–0.32 under both neutral and acidic conditions. This work exemplifies the power of transition-metal catalysis for constructing enantioenriched helicenes with tunable photophysical properties. These contributions from 2021
PDF
Album
Review
Published 11 Jul 2025

High-pressure activation for the solvent- and catalyst-free syntheses of heterocycles, pharmaceuticals and esters

  • Kelsey Plasse,
  • Valerie Wright,
  • Guoshu Xie,
  • R. Bernadett Vlocskó,
  • Alexander Lazarev and
  • Béla Török

Beilstein J. Org. Chem. 2025, 21, 1374–1387, doi:10.3762/bjoc.21.102

Graphical Abstract
  • the C–C double bond, that most commonly require some form of catalysis. Thus, developing catalyst-free processes presents significant challenges, although there are few successful examples in the literature [44]. Similar to the dihydrobenzimidazoles above, the investigations here also started with an
  • form of catalysis from simple acids to metal catalysts [46]. Similar to the previous examples, the first step was the optimization of the conditions using the esterification of benzyl alcohol (12a) with acetic anhydride (8) and acetic acid (13), respectively. The optimization data are summarized in
PDF
Album
Supp Info
Full Research Paper
Published 02 Jul 2025

Oxetanes: formation, reactivity and total syntheses of natural products

  • Peter Gabko,
  • Martin Kalník and
  • Maroš Bella

Beilstein J. Org. Chem. 2025, 21, 1324–1373, doi:10.3762/bjoc.21.101

Graphical Abstract
  • catalysis and proceed through a double addition mechanism. In 2011, Mikami et al. developed a catalytic asymmetric oxetane synthesis from silyl enol ethers 89 and trifluoropyruvate 90 using a chiral Cu(II) complex (Scheme 24) [67]. Besides excellent yields, they also observed very high cis/trans ratios and
  • amidine base catalysis (Scheme 25b) [69]. Although this methodology employs equimolar catalyst loadings, the products 100 are obtained with complete diastereoselectivity and mostly in moderate to good yields. As for the mechanism, it is assumed to be analogous to the NHC-variant. Four years later, Somappa
  • unprecedented Fe–Ni dual catalysis (Scheme 36) [86], which constitutes a more versatile alternative to Minisci or Friedel–Crafts alkylations. The reaction couples mono-, di- and trisubstituted olefins with (hetero)aryl halides, and it was used to prepare a relatively large library of 3-alkyl-3-(hetero
PDF
Album
Review
Published 27 Jun 2025

Recent advances in amidyl radical-mediated photocatalytic direct intermolecular hydrogen atom transfer

  • Hao-Sen Wang,
  • Lin Li,
  • Xin Chen,
  • Jian-Li Wu,
  • Kai Sun,
  • Xiao-Lan Chen,
  • Ling-Bo Qu and
  • Bing Yu

Beilstein J. Org. Chem. 2025, 21, 1306–1323, doi:10.3762/bjoc.21.100

Graphical Abstract
  • across diverse bond activation challenges, particularly in C(sp³)–H, C(sp²)–H, S–H, Ge–H, and B–H bond transformations. The proposed system architecture emphasizes synergistic reagent cooperation rather than isolated component performance, representing a paradigm shift in photoredox catalysis design
PDF
Album
Review
Published 27 Jun 2025

Recent advances in oxidative radical difunctionalization of N-arylacrylamides enabled by carbon radical reagents

  • Jiangfei Chen,
  • Yi-Lin Qu,
  • Ming Yuan,
  • Xiang-Mei Wu,
  • Heng-Pei Jiang,
  • Ying Fu and
  • Shengrong Guo

Beilstein J. Org. Chem. 2025, 21, 1207–1271, doi:10.3762/bjoc.21.98

Graphical Abstract
  • quinolinone products. Beyond electrochemical protocols, photochemical activation – particularly visible-light photoredox catalysis – has become a powerful and sustainable strategy for generating carbon radicals under mild conditions. In 2023, Fan’s group discovered a radical cyclization of N-arylacrylamides
  • with α-aminoalkyl radicals generated from tertiary arylamines using photoredox catalysis (Scheme 13) [9]. In this system, Ir[dF(CF3)ppy]2(dtbbpy)PF6 was used as a photosensitizer to trigger the α-C–H activation of N,N-dimethylaniline, generating an alkyl radical under 30 W blue LED (454 nm) irradiation
  • versatility of photoexcited palladium catalysis in radical transformations. Furthermore, the method utilizes the readily available Pd(PPh3)4 complex as the sole catalyst, making it operationally simple and cost-effective. In 2021, Wang’s group introduced a novel transition-metal-free, aldehyde-free strategy
PDF
Album
Review
Published 24 Jun 2025

Enhancing chemical synthesis planning: automated quantum mechanics-based regioselectivity prediction for C–H activation with directing groups

  • Julius Seumer,
  • Nicolai Ree and
  • Jan H. Jensen

Beilstein J. Org. Chem. 2025, 21, 1171–1182, doi:10.3762/bjoc.21.94

Graphical Abstract
  • bonds in organic chemicals. Therefore, their selective functionalization is essential for advancing the synthesis of complex molecules like pharmaceuticals, polymers, or agrochemicals [1][2][3]. Advancements in organometallic catalysis have facilitated significant progress in this area through C–H
PDF
Album
Supp Info
Full Research Paper
Published 16 Jun 2025

A multicomponent reaction-initiated synthesis of imidazopyridine-fused isoquinolinones

  • Ashutosh Nath,
  • John Mark Awad and
  • Wei Zhang

Beilstein J. Org. Chem. 2025, 21, 1161–1169, doi:10.3762/bjoc.21.92

Graphical Abstract
  • step is energetically favorable. Other than furfural, thiophene-2-carbaldehyde (2s) was used for the GBB and N-acylation reactions to make 6t (Scheme 4). The IMDA reaction of 6t was carried out under the catalysis of AlCl3 in dichlorobenzene at 180 °C for up to 24 h, but no compounds 7t and 8t could be
PDF
Album
Supp Info
Full Research Paper
Published 13 Jun 2025

Synthetic approach to borrelidin fragments: focus on key intermediates

  • Yudhi Dwi Kurniawan,
  • Zetryana Puteri Tachrim,
  • Teni Ernawati,
  • Faris Hermawan,
  • Ima Nurasiyah and
  • Muhammad Alfin Sulmantara

Beilstein J. Org. Chem. 2025, 21, 1135–1160, doi:10.3762/bjoc.21.91

Graphical Abstract
  • the significant role of asymmetric catalysis in their strategy, utilizing a copper-catalyzed asymmetric 1,4-addition and a ruthenium-catalyzed asymmetric ketone hydrogenation. Fragment 61 was synthesized in 15% overall yield across 19 steps, while fragment 62b was achieved in 32% yield over 11 steps
PDF
Album
Review
Published 12 Jun 2025

Salen–scandium(III) complex-catalyzed asymmetric (3 + 2) annulation of aziridines and aldehydes

  • Linqiang Wang and
  • Jiaxi Xu

Beilstein J. Org. Chem. 2025, 21, 1087–1094, doi:10.3762/bjoc.21.86

Graphical Abstract
  • of racemic and optically active functionalized cis-2,5-diaryloxazolidine derivatives [13][14][15][16]. Racemic cis-2,5-diaryloxazolidine derivatives were prepared under the catalysis of zinc triflate or nickel diperchlorate (Scheme 1a) [13][14]. Later, highly enantiomeric cis-2,5-diaryloxazolidine
  • derivatives were obtained under asymmetric catalysis with a Ni(II)–bisoxazoline complex [15] and a Nd(OTf)3/N,N'-dioxide/LiNTf2 delay catalytic system [16], respectively (Scheme 1b and c). However, further exploration for convenient asymmetric catalytic synthetic methods is still in demand because the former
  • -dicarboxylates from aldehydes and dialkyl 2-aryl-1-sulfonylaziridine-2,2-dicarboxylates under the catalysis of the readily available salen–Sc(OTf)3 complex (Scheme 1d). The salen ligand can be prepared in one step from enantiopure cyclohexane-1,2-diamines and substituted salicylaldehydes. Results and Discussion
PDF
Album
Supp Info
Full Research Paper
Published 28 May 2025

Recent advances in synthetic approaches for bioactive cinnamic acid derivatives

  • Betty A. Kustiana,
  • Galuh Widiyarti and
  • Teni Ernawati

Beilstein J. Org. Chem. 2025, 21, 1031–1086, doi:10.3762/bjoc.21.85

Graphical Abstract
  • release (82). Numerous cinnamic acid derivatives with electron-withdrawing and -donating groups were converted to the corresponding amides 76–81 in moderate to excellent yields (Scheme 24B) [60]. 2.1.2 Transition-metal catalysis: Several transition metals have been exploited to catalyze O/N-acylations of
  • cinnamic acid (7) to give amide 12 in excellent yield via Ti(IV)–O=C complex 102 (Scheme 31C) [69]. 2.1.3 Photocatalysis: Photoredox catalysis has gained much attention as a sustainable alternative approach to performing O/N-acylation by utilizing light as a renewable source. For example, Li and co-workers
  • compounds and N-acylbenzotriazole 97 (Scheme 36) [71]. In this work, the photoactive [FeCl4]− formed in situ triggered silyl radical 119 generation, leading to N-silylamine 120 as the active amine nucleophile. 2.1.4 Metal-free catalysis: Despite the wide applications of metal-based catalysts in developing O
PDF
Album
Review
Published 28 May 2025

Pd-Catalyzed asymmetric allylic amination with isatin using a P,olefin-type chiral ligand with C–N bond axial chirality

  • Natsume Akimoto,
  • Kaho Takaya,
  • Yoshio Kasashima,
  • Kohei Watanabe,
  • Yasushi Yoshida and
  • Takashi Mino

Beilstein J. Org. Chem. 2025, 21, 1018–1023, doi:10.3762/bjoc.21.83

Graphical Abstract
  • the resulting product (S)-13a in the presence of FeCl3 as the catalyst, the corresponding malononitrile derivative (S)-16 was obtained without any loss in optical purity. Keywords: asymmetric allylic amination; axial chirality; isatin; palladium catalysis; P,olefin-type chiral ligand; Introduction
PDF
Album
Supp Info
Full Research Paper
Published 23 May 2025

Synthesis of pyrrolo[3,2-d]pyrimidine-2,4(3H)-diones by domino C–N coupling/hydroamination reactions

  • Ruben Manuel Figueira de Abreu,
  • Robin Tiedemann,
  • Peter Ehlers and
  • Peter Langer

Beilstein J. Org. Chem. 2025, 21, 1010–1017, doi:10.3762/bjoc.21.82

Graphical Abstract
  • . Keywords: alkynes; catalysis; cyclizations; domino reactions; heterocycles; Introduction Pyrimidines and purines are one of the most important heterocyclic compounds with prevalent biological functions. Both are found in nucleosides and their corresponding polymeric DNA and RNA, and hence are vital for
PDF
Album
Supp Info
Full Research Paper
Published 22 May 2025

Recent total synthesis of natural products leveraging a strategy of enamide cyclization

  • Chun-Yu Mi,
  • Jia-Yuan Zhai and
  • Xiao-Ming Zhang

Beilstein J. Org. Chem. 2025, 21, 999–1009, doi:10.3762/bjoc.21.81

Graphical Abstract
  • column chromatography was required during this process, the synthetic route is highly practical. The enantioselective annulation of tertiary enamide 28 with enoldiazoacetate 29 was then explored under the catalysis of a chiral dirhodium catalyst. While Doyle and co-workers had previously reported an
  • alkaloids, though it features a truncated cyclopentane rather than the characteristic cyclohexane or cyclohexene. In their optimization studies, the authors found the sequential catalysis of a chiral binol–Ti complex and BF3·Et2O to be the most efficient, providing products 39 in high yields with excellent
  • -silyl substituted cyclopentanone 41, and acyl chloride 42 produced enamide 43. The polycyclization then took place under the catalysis of Cu(OTf)2/L3 and In(OTf)3, delivering tricyclic product 44 in high yield with excellent enantioselectivity. Despite formation of multiple diastereomers due to the
PDF
Album
Review
Published 22 May 2025

On the photoluminescence in triarylmethyl-centered mono-, di-, and multiradicals

  • Daniel Straub,
  • Markus Gross,
  • Mona E. Arnold,
  • Julia Zolg and
  • Alexander J. C. Kuehne

Beilstein J. Org. Chem. 2025, 21, 964–998, doi:10.3762/bjoc.21.80

Graphical Abstract
PDF
Album
Supp Info
Review
Published 21 May 2025

Study of tribenzo[b,d,f]azepine as donor in D–A photocatalysts

  • Katy Medrano-Uribe,
  • Jorge Humbrías-Martín and
  • Luca Dell’Amico

Beilstein J. Org. Chem. 2025, 21, 935–944, doi:10.3762/bjoc.21.76

Graphical Abstract
  • demonstrate that these simple D–A structures exhibit promising photocatalytic properties, comparable to those of more complex D–A–D systems. Keywords: donor–acceptor system; photocatalyst design; photoredox catalysis; organic photocatalyst; Introduction In recent years, photocatalysis has emerged as a
PDF
Album
Supp Info
Full Research Paper
Published 14 May 2025

Silver(I) triflate-catalyzed post-Ugi synthesis of pyrazolodiazepines

  • Muhammad Hasan,
  • Anatoly A. Peshkov,
  • Syed Anis Ali Shah,
  • Andrey Belyaev,
  • Chang-Keun Lim,
  • Shunyi Wang and
  • Vsevolod A. Peshkov

Beilstein J. Org. Chem. 2025, 21, 915–925, doi:10.3762/bjoc.21.74

Graphical Abstract
  • ; pyrazolodiazepines; silver catalysis; Ugi reaction; Introduction Synthetic chemists are continuously involved in the development of methodologies for accessing new heterocyclic scaffolds that resemble naturally occurring products and biologically active molecules [1][2]. Nitrogen heterocycles draw particular
  • ) [46]. In 2019, Li, Yang, Van der Eycken and co-workers reported a modification of this strategy relying on thermal activation instead of cationic gold catalysis [47]. The approach worked particularly well with substrates featuring terminal alkynes. Inspired by these developments and taking into
PDF
Album
Supp Info
Full Research Paper
Published 08 May 2025

Recent advances in controllable/divergent synthesis

  • Jilei Cao,
  • Leiyang Bai and
  • Xuefeng Jiang

Beilstein J. Org. Chem. 2025, 21, 890–914, doi:10.3762/bjoc.21.73

Graphical Abstract
  • increasingly attracted attention [5][7][8][9][10][11][12][13][14], for example, in 2024, Rana [15] and co-workers reported advances in solvent-controlled stereodivergent catalysis. Surprisingly, to our knowledge, there is currently no comprehensive review of studies on controllable/divergent synthesis. This
  • control The precise regulation of product selectivity represents a fundamental challenge in transition-metal-catalyzed organic transformations, with significant implications for complex molecule synthesis. In this context, ligand-modulated divergent catalysis has emerged as a paradigm-shifting strategy
  • L9, and reagents, delivering enantioenriched 2-/3-alkyl-substituted pyrrolidines with excellent regio- and enantioselectivity (up to 97% enantiomeric excess). Radical-clock experiments and deuterium-labeled silane studies revealed that cobalt catalysis proceeded via irreversible Co–H migratory
PDF
Album
Review
Published 07 May 2025

Cu–Bpin-mediated dimerization of 4,4-dichloro-2-butenoic acid derivatives enables the synthesis of densely functionalized cyclopropanes

  • Patricia Gómez-Roibás,
  • Andrea Chaves-Pouso and
  • Martín Fañanás-Mastral

Beilstein J. Org. Chem. 2025, 21, 877–883, doi:10.3762/bjoc.21.71

Graphical Abstract
  • are shown to undergo a rare dimerization process when reacted with bis(pinacolato)diboron under copper catalysis. The reaction provides densely functionalized products with excellent levels of chemo-, regio-, and diastereoselectivity. This high degree of functionalization makes these products
PDF
Album
Supp Info
Letter
Published 05 May 2025

Data accessibility in the chemical sciences: an analysis of recent practice in organic chemistry journals

  • Sally Bloodworth,
  • Cerys Willoughby and
  • Simon J. Coles

Beilstein J. Org. Chem. 2025, 21, 864–876, doi:10.3762/bjoc.21.70

Graphical Abstract
  • findings suggest about the impact of author guidelines upon researcher practice. Methods 12 Specialist journals with a broad scope around the central discipline of synthesis, catalysis, and methods development in organic chemistry were selected for analysis (Table 1). Criteria for journal selection are
PDF
Album
Supp Info
Full Research Paper
Published 02 May 2025

Light-enabled intramolecular [2 + 2] cycloaddition via photoactivation of simple alkenylboronic esters

  • Lewis McGhie,
  • Hannah M. Kortman,
  • Jenna Rumpf,
  • Peter H. Seeberger and
  • John J. Molloy

Beilstein J. Org. Chem. 2025, 21, 854–863, doi:10.3762/bjoc.21.69

Graphical Abstract
  • , Germany 10.3762/bjoc.21.69 Abstract The photoactivation of organic molecules via energy transfer (EnT) catalysis is often limited to conjugated systems that have low-energy triplet excited states, with simple alkenes remaining an intractable challenge. The ability to address this limitation, using high
  • , and control reactions support sensitization, enabling an intramolecular [2 + 2] cycloaddition to be realized accessing 3D bicyclic fragments containing a boron handle. Keywords: boron; catalysis; [2 + 2] cycloaddition; energy transfer; photochemistry; Introduction The strategic use of a photon to
  • prohibitively high in energy for selective reactivity [5]. The inception of energy transfer catalysis (EnT) has expedited discoveries concerning the photoactivation of organic molecules [15][16][17], enabling direct access to the triplet excited state through the use of a photocatalyst (Figure 1A, top
PDF
Album
Supp Info
Letter
Published 30 Apr 2025

Unraveling cooperative interactions between complexed ions in dual-host strategy for cesium salt separation

  • Zhihua Liu,
  • Ya-Zhi Chen,
  • Ji Wang,
  • Qingling Nie,
  • Wei Zhao and
  • Biao Wu

Beilstein J. Org. Chem. 2025, 21, 845–853, doi:10.3762/bjoc.21.68

Graphical Abstract
  • , is prevalent across various disciplines including biology, chemistry, materials science, and ion batteries [1][2][3]. Fundamental understanding of ion-pairing can help to regulate their roles and relevant applications in chemical catalysis, battery performance, and ion binding, transport and
PDF
Album
Supp Info
Full Research Paper
Published 29 Apr 2025

4-(1-Methylamino)ethylidene-1,5-disubstituted pyrrolidine-2,3-diones: synthesis, anti-inflammatory effect and in silico approaches

  • Nguyen Tran Nguyen,
  • Vo Viet Dai,
  • Luc Van Meervelt,
  • Do Thi Thao and
  • Nguyen Minh Thong

Beilstein J. Org. Chem. 2025, 21, 817–829, doi:10.3762/bjoc.21.65

Graphical Abstract
  • response, respiratory, vasodilation, apoptosis, tumor growth, and cardiovascular system [1][2]. Nitric oxide (NO) is released as product of the NADPH and oxygen-dependent oxidation of ʟ-arginine to ʟ-citrulline under the catalysis of the enzyme nitric oxide synthase (NOS) [3]. There are three distinct
PDF
Album
Supp Info
Full Research Paper
Published 24 Apr 2025

Synthesis and photoinduced switching properties of C7-heteroatom containing push–pull norbornadiene derivatives

  • Daniel Krappmann and
  • Andreas Hirsch

Beilstein J. Org. Chem. 2025, 21, 807–816, doi:10.3762/bjoc.21.64

Graphical Abstract
  • heat, catalysis, or an electrochemical input [4][5][6], the stored energy can be released converting the molecule back in the parent form (Figure 1). Typical MOST systems are azobenzenes (E/Z-isomerization) [7][8][9][10], the isomerization of dihydroazulenes/vinylheptafulvenes [11][12][13], conversion
PDF
Album
Supp Info
Full Research Paper
Published 22 Apr 2025
Other Beilstein-Institut Open Science Activities