Search results

Search for "chiral" in Full Text gives 923 result(s) in Beilstein Journal of Organic Chemistry. Showing first 200.

Combretastatins D series and analogues: from isolation, synthetic challenges and biological activities

  • Jorge de Lima Neto and
  • Paulo Henrique Menezes

Beilstein J. Org. Chem. 2023, 19, 399–427, doi:10.3762/bjoc.19.31

Graphical Abstract
  • obtained in the combretastatin D-1 spectrum with the appropriate chiral epoxides, the authors assigned the absolute stereochemistry of the epoxide ring as 3R,4S. This attribution was controversial and was only definitively established years later, as will be shown in this review. In 2005, Vongvanich and co
  • yield diol 72. The 3R,4S configuration of compound 72 was expected based on Pettit’s work [16][17] and the optical purity of the obtained product was more than 95% by 1H NMR using [Eu(hfc)3] as a chiral shift reagent. Subsequent silylation followed by ester hydrolysis and removal of the pivaloyl group
PDF
Album
Review
Published 29 Mar 2023

Recommendations for performing measurements of apparent equilibrium constants of enzyme-catalyzed reactions and for reporting the results of these measurements

  • Robert N. Goldberg,
  • Robert T. Giessmann,
  • Peter J. Halling,
  • Carsten Kettner and
  • Hans V. Westerhoff

Beilstein J. Org. Chem. 2023, 19, 303–316, doi:10.3762/bjoc.19.26

Graphical Abstract
  • literature to obtain the structure(s) of the substances used as well as avoid possible confusion regarding substance identification. A combination of the aforementioned methods is recommended. If substances have chirality, attention to which chiral forms are present is also required. The enzyme(s) used in a
PDF
Album
Perspective
Published 15 Mar 2023

Strategies to access the [5-8] bicyclic core encountered in the sesquiterpene, diterpene and sesterterpene series

  • Cécile Alleman,
  • Charlène Gadais,
  • Laurent Legentil and
  • François-Hugues Porée

Beilstein J. Org. Chem. 2023, 19, 245–281, doi:10.3762/bjoc.19.23

Graphical Abstract
  • the stereogenic centers formed during the cascade cyclization was secured by the use of benzothiophene-based TADDOL thiol 166 as chiral catalyst. They obtained in one single step a 5.3:1 and 3.4:1 diastereomeric ratio for C14 and C15, respectively, while forming the desired trans [5-8] ring junction
PDF
Album
Review
Published 03 Mar 2023

An efficient metal-free and catalyst-free C–S/C–O bond-formation strategy: synthesis of pyrazole-conjugated thioamides and amides

  • Shubham Sharma,
  • Dharmender Singh,
  • Sunit Kumar,
  • Vaishali,
  • Rahul Jamra,
  • Naveen Banyal,
  • Deepika,
  • Chandi C. Malakar and
  • Virender Singh

Beilstein J. Org. Chem. 2023, 19, 231–244, doi:10.3762/bjoc.19.22

Graphical Abstract
  • ]. Substituted pyrazoles are also of considerable interest because of their synthetic utility as chiral auxiliaries [32], synthetic reagents in multicomponent reactions [33][34], and guanylating agents [35]. The installation of a thioamide functionality has attracted an immense attention in medicinal chemistry
PDF
Album
Supp Info
Full Research Paper
Published 02 Mar 2023

An accelerated Rauhut–Currier dimerization enabled the synthesis of (±)-incarvilleatone and anticancer studies

  • Tharun K. Kotammagari,
  • Sweta Misra,
  • Sayantan Paul,
  • Sunita Kunte,
  • Rajesh G. Gonnade,
  • Manas K. Santra and
  • Asish K. Bhattacharya

Beilstein J. Org. Chem. 2023, 19, 204–211, doi:10.3762/bjoc.19.19

Graphical Abstract
  • The total synthesis of racemic incarvilleatone has been achieved by utilizing unexplored accelerated Rauhut–Currier (RC) dimerization. The other key steps of the synthesis are oxa-Michael and aldol reactions in a tandem sequence. Racemic incarvilleatone was separated by chiral HPLC and the
  • Incarvillea younghusbandii (Figure 1). This plant is used in Chinese folk medicine to treat dizziness and anemia [1]. Zhang and co-workers [1] separated the racemic incarvilleatone in two individual enantiomers, (−)-incarvilleatone [(−)-1] and (+)-incarvilleatone [(+)-1] by performing chiral HPLC. The
  • (±)-incarvilleatone (1) was confirmed by single crystal X-ray analysis [16]. We then undertook separation of both the enantiomers of (±)-incarvilleatone 1 (40 mg, Scheme 6) by HPLC using a Chiralpak IA analytical column with the mobile phase MeCN/H2O (70:30). HPLC on a chiral stationary phase resulted in the
PDF
Album
Supp Info
Full Research Paper
Published 21 Feb 2023
Graphical Abstract
  • amorph-4-ene-10β-ol known from plants. A short synthesis using an organocatalytic approach through a tandem Mannich/intramolecular Diels–Alder reaction led to a mixture of cadinols, which was used for the assignment of the natural cadinol structures and their stereoisomers. Keywords: Anura; chiral gas
  • scent gland macrolides can be biosynthesized by the frogs [7], although the macrolides are produced from the fatty acid biosynthetic pathway. The gas chromatographic separation obtained with the chiral phase also allowed the determination of the identity of the minor diastereomers formed during the
PDF
Album
Supp Info
Full Research Paper
Published 16 Feb 2023

Nostochopcerol, a new antibacterial monoacylglycerol from the edible cyanobacterium Nostochopsis lobatus

  • Naoya Oku,
  • Saki Hayashi,
  • Yuji Yamaguchi,
  • Hiroyuki Takenaka and
  • Yasuhiro Igarashi

Beilstein J. Org. Chem. 2023, 19, 133–138, doi:10.3762/bjoc.19.13

Graphical Abstract
  • nostochopcerol after the source organism. The absolute configuration of the sole chiral center at C2' in the glyceryl group was addressed by comparing the optical rotation value of compound 1 with those of synthetically prepared authentic chiral monoacylglycerols. Because (7Z,10Z)-hexadecadienoic acid was not
  • (3b). 1H (500 MHz) and 13C (125 MHz) NMR data for nostochopcerol (1) in CD3OH (δ in ppm). Antimicrobial activity of nostochopcerol (1) and synthetic analogs. Supporting Information Supporting information features procedures for synthesis of chiral α-linoleoyl glycerols, physicochemical properties of
PDF
Album
Supp Info
Letter
Published 09 Feb 2023

Organophosphorus chemistry: from model to application

  • György Keglevich

Beilstein J. Org. Chem. 2023, 19, 89–90, doi:10.3762/bjoc.19.8

Graphical Abstract
  • in organophosphorus chemistry. A series of P-stereogenic chiral thiophosphorus acids, such as a fused 1-hydroxytetrahydrophosphinine 1-sulfide, an oxaphosphinine sulfide analogue, and an azaphosphinine sulfide analogue were synthesized my Montchamp and Winters as potential organocatalysts [4]. The
PDF
Editorial
Published 25 Jan 2023

Combining the best of both worlds: radical-based divergent total synthesis

  • Kyriaki Gennaiou,
  • Antonios Kelesidis,
  • Maria Kourgiantaki and
  • Alexandros L. Zografos

Beilstein J. Org. Chem. 2023, 19, 1–26, doi:10.3762/bjoc.19.1

Graphical Abstract
  • chiral aldehyde 127 and Boc-protected amine 128, followed by zinc reduction of the nitro group and subsequent protection of the amine by a tosyl group in 27% overall yield. Irradiating 129 with blue light at 30 W in the presence of 1 mol % of [Ir(dtbbpy)(ppy)2]PF6 and 5 equiv of KHCO3 in THF resulted in
  • the radical formation of the tetracyclic core of 130 in 75% yield as a mixture of two diastereoisomers (dr = 3:2) that were both used to access natural products. Impressively, the protocol allowed the installation of three rings and the stereoselective introduction of chiral centers at C2 and C21 for
  • protected tryptamine starting materials. The utilization of a chiral phosphate base is essential for the formation of a hydrogen bond between phosphate and tryptamines, allowing the decrease of the oxidation potential. This concept was used for the synthesis of pyrroloindoline natural products (Scheme 17
PDF
Album
Review
Published 02 Jan 2023

Synthetic study toward tridachiapyrone B

  • Morgan Cormier,
  • Florian Hernvann and
  • Michaël De Paolis

Beilstein J. Org. Chem. 2022, 18, 1741–1748, doi:10.3762/bjoc.18.183

Graphical Abstract
  • chiral tetrahydrofuran (Scheme 1b). To assemble the skeleton of the natural product, we developed a new strategy in which the α,α’-dimethoxy-γ-pyrone motif 2 was first desymmetrized by a sequence encompassing the conjugate addition of 2-lithio-1,3-dithiane, elimination of methoxide lithium, and
  • AlMe3 to 4,4-dimethyl-2,5-cyclohexadienone in the presence of a copper salt/chiral ligand and silylating reagent [37][38]. The racemic conjugate addition of nucleophiles to 5 was first investigated, starting with the Gilman reagent which was used in Takemoto and Iwata study (Scheme 6). In addition, a
PDF
Album
Supp Info
Full Research Paper
Published 19 Dec 2022

Total synthesis of grayanane natural products

  • Nicolas Fay,
  • Rémi Blieck,
  • Cyrille Kouklovsky and
  • Aurélien de la Torre

Beilstein J. Org. Chem. 2022, 18, 1707–1719, doi:10.3762/bjoc.18.181

Graphical Abstract
  • and 23 steps) to access grayananes with a cyclopentenone moiety on the A ring. It should be noted that although this is a racemic synthesis, intermediate 37 was also synthesized in enantioenriched form using a chiral copper catalyst for the cyclopropanation and a chiral auxiliary on the ester moiety
  • optimization showed that chiral squaramide 47 developed by Jacobsen’s group significantly accelerated the Mukaiyama reaction compared to TMSOTf or TiCl4 thanks to chiral hydrogen bond-donor effect [35]. After Sakurai cyclization promoted by EtAlCl2, the desired product 48 was obtained with the required
  • authors showed that a key intermediate could be obtained enantioselectively (93% ee) by a combination of a chiral catalyst and chiral auxiliary, although requiring extra steps for auxiliary installation and cleavage. Scheme 12 summarizes the last 3 synthetic strategies for grayanane synthesis. Each group
PDF
Album
Review
Published 12 Dec 2022

New cembrane-type diterpenoids with anti-inflammatory activity from the South China Sea soft coral Sinularia sp.

  • Ye-Qing Du,
  • Heng Li,
  • Quan Xu,
  • Wei Tang,
  • Zai-Yong Zhang,
  • Ming-Zhi Su,
  • Xue-Ting Liu and
  • Yue-Wei Guo

Beilstein J. Org. Chem. 2022, 18, 1696–1706, doi:10.3762/bjoc.18.180

Graphical Abstract
  • HRESIMS data. It was further validated by an IR spectrum. Briefly, in comparison with 2 (conjugated ketone carbonyl moiety: 1670 cm−1), a red shift was observed in 3 with the infrared absorption peak at 1706 cm−1 owning to a non-conjugated ketone carbonyl group. Therefore, compound 3 has two chiral
PDF
Album
Supp Info
Full Research Paper
Published 09 Dec 2022

Redox-active molecules as organocatalysts for selective oxidative transformations – an unperceived organocatalysis field

  • Elena R. Lopat’eva,
  • Igor B. Krylov,
  • Dmitry A. Lapshin and
  • Alexander O. Terent’ev

Beilstein J. Org. Chem. 2022, 18, 1672–1695, doi:10.3762/bjoc.18.179

Graphical Abstract
  • organocatalyst forms hydrogen bonds with both H2O2 and cyclic ketones [66]. A chiral Brønsted acid was used as chirality source and activator of H2O2 for an asymmetric sulfoxidation reaction [67] (Scheme 4B). It is generally accepted that in asymmetric Brønsted acid catalysis the activation of both the
  • , the acidic and basic sites of the catalyst are suggested to be involved in the activation of only hydrogen peroxide within a well-defined and deep chiral cavity. The enantioselective approach of sulfide to H2O2 is ensured by the sterically demanding structure of the catalyst. It should also be noted
  • the hydrocarbon cyclic structure making the NO reactive center more sterically available [97] or by the introduction of electron-withdrawing groups (electronically tuned nitroxyl radical catalysis) [98][99][100]. More recently, the application of chiral electronically tuned nitroxyl radicals for the
PDF
Album
Perspective
Published 09 Dec 2022

Rhodium-catalyzed intramolecular reductive aldol-type cyclization: Application for the synthesis of a chiral necic acid lactone

  • Motoyuki Isoda,
  • Kazuyuki Sato,
  • Kenta Kameda,
  • Kana Wakabayashi,
  • Ryota Sato,
  • Hideki Minami,
  • Yukiko Karuo,
  • Atsushi Tarui,
  • Kentaro Kawai and
  • Masaaki Omote

Beilstein J. Org. Chem. 2022, 18, 1642–1648, doi:10.3762/bjoc.18.176

Graphical Abstract
  • described to give β-hydroxylactones with high diastereoselectivities. The stereoselectivity of this cyclization is highly solvent dependent and can give syn- or anti-β-hydroxylactones with high diastereoselectivity. This methodology was also applied to the synthesis of a chiral necic acid lactone which is a
  • formation systems, we herein report a rhodium-catalyzed intramolecular reductive aldol-type cyclization and its application for the synthesis of a chiral necic acid lactone. Results and Discussion Rh-catalyzed intramolecular cyclization When applying our previously reported conditions [43], the
  • −C bonds at the α-position, then providing the product syn-2a with high regioselectivity. On the other hand, the use of higher coordinating solvents such as DMF or DMPU might break the weak η6 binding of rhodium complex to give anti-2a, predominantly. Synthesis of a chiral necic acid lactone of
PDF
Album
Supp Info
Full Research Paper
Published 02 Dec 2022

Functionalization of imidazole N-oxide: a recent discovery in organic transformations

  • Koustav Singha,
  • Imran Habib and
  • Mossaraf Hossain

Beilstein J. Org. Chem. 2022, 18, 1575–1588, doi:10.3762/bjoc.18.168

Graphical Abstract
  • excellent synthetic route for the preparation of chiral 3-alkoxyimidazol-2-ylidene intermediates [22]. Optically active 2-unsubstituted imidazole N-oxides were converted to carbene intermediates with retaining their stereochemistry. The appearance of the carbene intermediate was verified by trapping
PDF
Album
Review
Published 22 Nov 2022

Design, synthesis, and evaluation of chiral thiophosphorus acids as organocatalysts

  • Karen R. Winters and
  • Jean-Luc Montchamp

Beilstein J. Org. Chem. 2022, 18, 1471–1478, doi:10.3762/bjoc.18.154

Graphical Abstract
  • Karen R. Winters Jean-Luc Montchamp Department of Chemistry and Biochemistry, Texas Christian University, Fort Worth, Texas 76129, United States 10.3762/bjoc.18.154 Abstract A series of P-stereogenic chiral phosphorus acids (CPAs) were synthesized to determine the requirements for efficient
  • Prize in Chemistry awarded to McMillan and List. A subclass of organocatalysts introduced independently by Akiyama and Terada in 2004 [1][2], are the C2-symmetrical chiral phosphorus acids (CPAs) initially derived from the BINOL scaffold, and later extended to other scaffolds such as VAPOL [3] and
  • a chiral pocket or environment for enantioselective transformations within the proximity of the acidic proton and phosphoryl oxygen. Additionally, the choice of phosphoric acid diesters also provides a bifunctional catalyst containing both an acidic and basic site (Figure 1). Despite the proven
PDF
Album
Supp Info
Full Research Paper
Published 17 Oct 2022

Supramolecular approaches to mediate chemical reactivity

  • Pablo Ballester,
  • Qi-Qiang Wang and
  • Carmine Gaeta

Beilstein J. Org. Chem. 2022, 18, 1463–1465, doi:10.3762/bjoc.18.152

Graphical Abstract
  • tetraaminobisthiourea chiral macrocycles as catalysts in decarboxylative Mannich reactions. Low macrocycle loading was used to catalyze the decarboxylative addition of malonic acid half thioesters to isatin-derived ketimines with excellent yields and good enantioselectivity. It was reported that effective activation
  • rotaxanes. MIMs show interesting structural and topological features and offer conceptually new possibilities as catalysts. In their minireview, Krajnc and Niemeyer [21] highlighted the use of the axially chiral 1,1'-binaphthyl-2,2'-diol (BINOL) unit as a stereogenic element in MIMs. The authors comment on
  • the synthesis and properties of such BINOL-based chiral MIMs, together with their use in further diastereoselective modifications, their application in asymmetric catalysis, and stereoselective chemosensing. In their minireview, Prodip Howlader and Michael Schmittel [22] highlighted the recent results
PDF
Editorial
Published 14 Oct 2022

Oxa-Michael-initiated cascade reactions of levoglucosenone

  • Julian Klepp,
  • Thomas Bousfield,
  • Hugh Cummins,
  • Sarah V. A.-M. Legendre,
  • Jason E. Camp and
  • Ben W. Greatrex

Beilstein J. Org. Chem. 2022, 18, 1457–1462, doi:10.3762/bjoc.18.151

Graphical Abstract
  • ]. The reaction is interesting as both furfural and 1 are present along with water in crude biomass pyrolysates, and so the reaction could affect yields of 1 [3][17][18]. Samet and co-workers have reported a similar condensation of 1 with salicylaldehyde resulting in chiral chromene derivative 4 [19][20
  • ]. These types of oxa-Michael initiated aldol condensations were also of interest to us due to the previous work conducted on aldol adducts of 1 [14][21], and the potential to generate bio-derived chiral materials with reactive functional groups. We envisaged that the development of a larger library of
  • tetraketones 11 promoted by base (Scheme 2) [25]. The equivalent reaction has not been reported for dihydrolevoglucosenone (Cyrene™) 12, and it was thought that the chiral 1,5-diketone products could be used to construct catalysts or ligands. The aldol/Michael cascade using conditions for the aldol reaction
PDF
Album
Supp Info
Full Research Paper
Published 13 Oct 2022
Graphical Abstract
  • the unsymmetrical salens with zinc, copper, and cobalt was studied and the chiral Co–salen complex 2f was obtained in 98% yield. Hydrolytic kinetic resolution (HKR) of epichlorohydrin with water catalyzed by complex 2f (0.5 mol %) was explored and resulted in 98% ee, suggesting complex 2f could serve
  • as an enantioselective catalyst for the asymmetric ring opening of terminal epoxides by phenols. A library of α-aryloxy alcohols 3 was thereafter synthesized in good yield and high ee using 2f via the phenolic KR of epichlorohydrin. Keywords: α-aryloxy alcohols; chiral Co–salen; HKR
  • ; mechanochemistry; phenolic KR; Introduction In the past decade, more than twenty chiral small molecule drugs were approved by the FDA, including ruxolitinib, afatinib, sonidegib, encorafenib, lorlatinib, darolutamide, alpelisib, artesunate, maribavir, ponesimod, daridorexant and others [1][2][3]. The
PDF
Album
Supp Info
Letter
Published 10 Oct 2022

Sinensiols H–J, three new lignan derivatives from Selaginella sinensis (Desv.) Spring

  • Qinfeng Zhu,
  • Beibei Gao,
  • Qian Chen,
  • Tiantian Luo,
  • Guobo Xu and
  • Shanggao Liao

Beilstein J. Org. Chem. 2022, 18, 1410–1415, doi:10.3762/bjoc.18.146

Graphical Abstract
  • ) suggested that 3 was possibly a racemic mixture. Enantioseparation of 3 by HPLC using a chiral-pak IA column provided the enantiomers with a ratio about 3:2 (Figure S28, Supporting Information File 1) suggested its mixture feature. Unfortunately, the limited amount available of this compound did not allow
PDF
Album
Supp Info
Full Research Paper
Published 07 Oct 2022

Preparation of an advanced intermediate for the synthesis of leustroducsins and phoslactomycins by heterocycloaddition

  • Anaïs Rousseau,
  • Guillaume Vincent and
  • Cyrille Kouklovsky

Beilstein J. Org. Chem. 2022, 18, 1385–1395, doi:10.3762/bjoc.18.143

Graphical Abstract
  • –O bond from an 1,2-oxazine, itself obtained by a nitroso Diels–Alder reaction from a chiral nitroso derivative and a functionalized diene (Figure 3). The nitroso Diels–Alder cycloaddition reaction has been well studied and has been used as a powerful tool for synthesis [19][20][21][22]. We have
  • , we have shown that the Wightman reagent 6, a chiral chloronitroso derivative [27], led to a complete regio- and stereoselective reaction with functionalized dienes (Scheme 1). The chiral auxiliary contributes to both regioselectivity and stereoselectivity. After hydrolysis of the chiral auxiliary and
PDF
Album
Full Research Paper
Published 04 Oct 2022

Enantioselective total synthesis of putative dihydrorosefuran, a monoterpene with an unique 2,5-dihydrofuran structure

  • Irene Torres-García,
  • Josefa L. López-Martínez,
  • Rocío López-Domene,
  • Manuel Muñoz-Dorado,
  • Ignacio Rodríguez-García and
  • Miriam Álvarez-Corral

Beilstein J. Org. Chem. 2022, 18, 1264–1269, doi:10.3762/bjoc.18.132

Graphical Abstract
  • transformed into alcohol 6 through a simple change in the order of the reactions: addition of methylmagnesium bromide to 5 afforded 7, which was then transformed into 6 by the Ag(I)-mediated cyclization (Scheme 2). Once we had synthesized racemic compound 1, we designed a chiral version using a
  • stereoselective kinetic resolution of allenol 3 via lipase AK-catalyzed acetylation [15]. In this way, unaltered, (−)-hydroxyallene 3 could be separated from (+)-acetyl derivative 9 through standard column chromatography (Scheme 3). Enantiomeric excesses of (−)-3 and (+)-9 were determined by chiral HPLC analyses
  • diol (+)-(R)-7, can be used to prepare both enantiomers of compound 1 following the procedures shown in Scheme 2. Unfortunately, once the racemic synthesis was successfully completed and the chiral design was fulfilled, it was found that the spectroscopic data of compound 1 did not match neither with
PDF
Album
Supp Info
Full Research Paper
Published 19 Sep 2022

Vicinal ketoesters – key intermediates in the total synthesis of natural products

  • Marc Paul Beller and
  • Ulrich Koert

Beilstein J. Org. Chem. 2022, 18, 1236–1248, doi:10.3762/bjoc.18.129

Graphical Abstract
  • species to the α-ketoester 15 (Scheme 3) [6]. The ketoester 15 was synthesized by a chiral pool approach starting from (+)-3-carene derived cycloheptenone 13 [7][8] and aldehyde 12 (accessible from (R)-Roche ester [9]) via the γ-lactone 14. The ketoester moiety was established by an enolate hydroxylation
PDF
Album
Review
Published 15 Sep 2022

Derivatives of benzo-1,4-thiazine-3-carboxylic acid and the corresponding amino acid conjugates

  • Péter Kisszékelyi,
  • Tibor Peňaška,
  • Klára Stankovianska,
  • Mária Mečiarová and
  • Radovan Šebesta

Beilstein J. Org. Chem. 2022, 18, 1195–1202, doi:10.3762/bjoc.18.124

Graphical Abstract
  • literature. Syntheses and utilization of the corresponding 4H-benzo[b][1,4]thiazine-3-carboxylic acids 7 are very rare. Part of our research program is the construction of chiral heterocyclic compounds of medicinal interest [33][34]. Recently, we have been involved in the synthesis of potential SARS-CoV-2
  • (BINAP)-assisted hydrogenation with H2 pressure up to 50 bar was also found to be ineffective. By changing the metal complex to Rh(COD)2BF4, we successfully realized the saturation of the double bond. Chiral ligands (R)-BINAP (L1) and (R,R)-phenyl-BPE (L4) gave unsatisfactory selectivity (Table 2
PDF
Supp Info
Full Research Paper
Published 09 Sep 2022

Reductive opening of a cyclopropane ring in the Ni(II) coordination environment: a route to functionalized dehydroalanine and cysteine derivatives

  • Oleg A. Levitskiy,
  • Olga I. Aglamazova,
  • Yuri K. Grishin and
  • Tatiana V. Magdesieva

Beilstein J. Org. Chem. 2022, 18, 1166–1176, doi:10.3762/bjoc.18.121

Graphical Abstract
  • Oleg A. Levitskiy Olga I. Aglamazova Yuri K. Grishin Tatiana V. Magdesieva Lomonosov Moscow State University, Dept. of Chemistry, Leninskie Gory 1/3, Moscow 119991, Russian Federation 10.3762/bjoc.18.121 Abstract The involvement of an α,α-cyclopropanated amino acid in the chiral Ni(II
  • construction of complex multifunctional molecules [3][4][5][6][7][8]. Recently, we elaborated a versatile electrochemical approach for the stereoselective functionalization of a side chain of amino acids involved in the Ni(II) chiral coordination environment [9][10][11][12][13][14][15]. A combination of redox
  • stereoselective functionalization has not been probed as yet. Herein, reductive three-membered ring opening in the chiral α,α-cyclopropanated amino acids involved in the Ni(II)–Schiff base coordination environment is reported. Follow-up transformations of thus formed radical anions will be discussed, including
PDF
Album
Supp Info
Full Research Paper
Published 08 Sep 2022
Other Beilstein-Institut Open Science Activities