Search results

Search for "enzyme" in Full Text gives 507 result(s) in Beilstein Journal of Organic Chemistry. Showing first 200.

α-Ketol and α-iminol rearrangements in synthetic organic and biosynthetic reactions

  • Scott Benz and
  • Andrew S. Murkin

Beilstein J. Org. Chem. 2021, 17, 2570–2584, doi:10.3762/bjoc.17.172

Graphical Abstract
  • eventually becomes isoleucine (Figure 14a). The enzyme catalyzes two consecutive reactions: an α-ketol rearrangement to generate a 3-hydroxy-2-ketoacid intermediate 61, followed by NADPH-dependent reduction to the dihydroxylated product 62 [18]. Interestingly, another reductoisomerase known as 1-deoxy-ᴅ
  • 64 (Figure 14b) [20][21]. The other enzyme believed to catalyze an α-ketol rearrangement is AuaG, which is a monooxygenase that uses FAD and molecular oxygen to convert aurachin C (66) to 69 (Figure 14c) [22]. Subsequent reduction and dehydration by AuaH produces aurachin B (71). While the above are
  • synthesis of (±)-securinine (54) and (±)-allosecurinine (55). Enzyme-catalyzed α-ketol rearrangements. a) Ketol-acid reductoisomerase (KAR) catalyzes the rearrangement of (2S)-acetolactate (65, R = Me) or (2S)-acetohydroxybutyrate (65, R = Et) to 66, followed by reduction by NADPH to 67. b) Despite the
PDF
Album
Review
Published 15 Oct 2021

Cryogels: recent applications in 3D-bioprinting, injectable cryogels, drug delivery, and wound healing

  • Luke O. Jones,
  • Leah Williams,
  • Tasmin Boam,
  • Martin Kalmet,
  • Chidubem Oguike and
  • Fiona L. Hatton

Beilstein J. Org. Chem. 2021, 17, 2553–2569, doi:10.3762/bjoc.17.171

Graphical Abstract
  • during degradation of cryogels, the walls of the cryogel decrease in thickness and are in some cases broken. This analysis was made for enzyme-degraded cryogels, so it is unclear whether the process is likely to occur for cryogels degraded by other mechanisms such as disulphide cleavage [30][31] and
PDF
Album
Review
Published 14 Oct 2021

Targeting active site residues and structural anchoring positions in terpene synthases

  • Anwei Hou and
  • Jeroen S. Dickschat

Beilstein J. Org. Chem. 2021, 17, 2441–2449, doi:10.3762/bjoc.17.161

Graphical Abstract
  • are otherwise highly conserved. Site-directed mutagenesis experiments for these residues are reported that showed different effects, resulting in some cases in an improved catalytic activity, but in other cases in a loss of enzyme function. For other enzyme variants a functional switch was observed
  • , turning SmTS1 from a sesterterpene into a diterpene synthase. This article gives rational explanations for these findings that may generally allow for protein engineering of other terpene synthases to improve their catalytic efficiency or to change their functions. Keywords: biosynthesis; enzyme
  • from Streptomyces mobaraensis (SmTS1) represents the first identified type I sesterterpene synthase (StTPS) from bacteria [16]. This enzyme converts GFPP into multiple products seven of which could be isolated and structurally characterised as sestermobaraenes A–F (1–6) and sestermobaraol (7) (Figure 2
PDF
Album
Supp Info
Letter
Published 17 Sep 2021

Strategies for the synthesis of brevipolides

  • Yudhi D. Kurniawan and
  • A'liyatur Rosyidah

Beilstein J. Org. Chem. 2021, 17, 2399–2416, doi:10.3762/bjoc.17.157

Graphical Abstract
  • , C5’S, and C6’S. Most brevipolide members exhibited cytotoxicity against various targets, including human colon, breast, laryngeal, cervix, prostate, and nasopharyngeal cancer cell lines with ED50 and IC50 values ranged in micromolar order [1][4][12]. One member showed activity in an enzyme-based
  • ]. These seven compounds, 1–7, were also evaluated for enzyme-based ELISA NF-κB and proteasome inhibition assays (Table 2, entries 1–7), but only brevipolide G (7) and brevipolide C (3) showed significant activities with ED50 values of 15.3 and 38.0 μM, respectively (Table 2, entries 7 and 3) [4]. Lastly
PDF
Album
Review
Published 14 Sep 2021

Isolation and characterization of new phenolic siderophores with antimicrobial properties from Pseudomonas sp. UIAU-6B

  • Emmanuel T. Oluwabusola,
  • Olusoji O. Adebisi,
  • Fernando Reyes,
  • Kojo S. Acquah,
  • Mercedes De La Cruz,
  • Larry L. Mweetwa,
  • Joy E. Rajakulendran,
  • Digby F. Warner,
  • Deng Hai,
  • Rainer Ebel and
  • Marcel Jaspars

Beilstein J. Org. Chem. 2021, 17, 2390–2398, doi:10.3762/bjoc.17.156

Graphical Abstract
  • , respectively (Figure 3). Biochemical studies show that histamine and phenethylamine moieties were produced from histidine and phenylalanine substrates by a decarboxylase enzyme [41][42][43]. Pseudomobactin A (4) was proposed logically to have formed through direct amination of the unstable salimethyloxazolinyl
PDF
Album
Supp Info
Full Research Paper
Published 13 Sep 2021

Halides as versatile anions in asymmetric anion-binding organocatalysis

  • Lukas Schifferer,
  • Martin Stinglhamer,
  • Kirandeep Kaur and
  • Olga García Macheño

Beilstein J. Org. Chem. 2021, 17, 2270–2286, doi:10.3762/bjoc.17.145

Graphical Abstract
  • examples, and the advance of anion-binding-catalyzed strategies involving more complex H-bonding networks clearly highlight that it is indeed possible to mimic enzyme-like structures with small-molecule catalysts for asymmetric synthesis. Conclusion In the past two decades, tremendous advances in the field
PDF
Album
Review
Published 01 Sep 2021

(Phenylamino)pyrimidine-1,2,3-triazole derivatives as analogs of imatinib: searching for novel compounds against chronic myeloid leukemia

  • Luiz Claudio Ferreira Pimentel,
  • Lucas Villas Boas Hoelz,
  • Henayle Fernandes Canzian,
  • Frederico Silva Castelo Branco,
  • Andressa Paula de Oliveira,
  • Vinicius Rangel Campos,
  • Floriano Paes Silva Júnior,
  • Rafael Ferreira Dantas,
  • Jackson Antônio Lamounier Camargos Resende,
  • Anna Claudia Cunha,
  • Nubia Boechat and
  • Mônica Macedo Bastos

Beilstein J. Org. Chem. 2021, 17, 2260–2269, doi:10.3762/bjoc.17.144

Graphical Abstract
  • 10.3762/bjoc.17.144 Abstract The enzyme tyrosine kinase BCR-Abl-1 is the main molecular target in the treatment of chronic myeloid leukemia and can be competitively inhibited by tyrosine kinase inhibitors such as imatinib. New potential competitive inhibitors were synthesized using the (phenylamino
  • -4 of the triazole nucleus. All compounds were evaluated for their inhibitory activities against a chronic myeloid leukemia cell line (K562) that expresses the enzyme tyrosine kinase BCR-Abl-1 and against healthy cells (WSS-1) to observe their selectivity. Three compounds showed promising results
  • the transduction of signals; these processes induce cell apoptosis [8][9]. As mutations in the BCR-Abl-1 enzyme domain can occur, cases of resistance have emerged in the treatment with TKIs, compromising its effectiveness [10][11]. In continuation of the work by our group to develop new imatinib
PDF
Album
Supp Info
Full Research Paper
Published 01 Sep 2021

Constrained thermoresponsive polymers – new insights into fundamentals and applications

  • Patricia Flemming,
  • Alexander S. Münch,
  • Andreas Fery and
  • Petra Uhlmann

Beilstein J. Org. Chem. 2021, 17, 2123–2163, doi:10.3762/bjoc.17.138

Graphical Abstract
PDF
Album
Review
Published 20 Aug 2021

Progress and challenges in the synthesis of sequence controlled polysaccharides

  • Giulio Fittolani,
  • Theodore Tyrikos-Ergas,
  • Denisa Vargová,
  • Manishkumar A. Chaube and
  • Martina Delbianco

Beilstein J. Org. Chem. 2021, 17, 1981–2025, doi:10.3762/bjoc.17.129

Graphical Abstract
  • (LG, e.g., phosphate, fluoride, nucleotide) are polymerized by the enzyme to form the desired polysaccharide (Figure 1A). Several classes of enzymes are available, including hydrolases, phosphorylases, sucrases, glycosyltransferases, and glycosynthases [19][20][21][22]. An excellent overview of the
  • enzymes available for polysaccharide synthesis and their mode of action was recently published [11]. Despite the numerous advantages of this approach, limited enzyme availability as well as their high specificity narrowed the substrate scope. Generally, the highly specific enzyme reactive site tolerates
  • polymerization of cellobiose fluoride 1 was achieved using a cellulase produced from Trichoderma viride (Scheme 1A). The DP of the acetylated product was shown to be at least 22. Using a purified version of this enzyme, it was possible to obtain a synthetic analogue of Cellulose I [64]. A rough control of DPs
PDF
Album
Review
Published 05 Aug 2021

On the application of 3d metals for C–H activation toward bioactive compounds: The key step for the synthesis of silver bullets

  • Renato L. Carvalho,
  • Amanda S. de Miranda,
  • Mateus P. Nunes,
  • Roberto S. Gomes,
  • Guilherme A. M. Jardim and
  • Eufrânio N. da Silva Júnior

Beilstein J. Org. Chem. 2021, 17, 1849–1938, doi:10.3762/bjoc.17.126

Graphical Abstract
  • in good yields (Scheme 39C). The authors used the same methodology to synthesize two 4H-benzo[d][1,3]oxazin-4-one derivatives that act as inhibitors of two enzymes (compounds 130 and 131 in Scheme 39D). The first one is the enzyme C1r serine protease, involved in both inflammation and renal scarring
  • [199], and the second one is the enzyme elastase, responsible for consuming elastine, leading to aging processes [200]. Beyond that, 4H-benzo[d][1,3]oxazin-4-one derivatives 126–129 have been studied as potential hypolipidemic drugs (Scheme 39A) [201]. Beyond the above-cited
PDF
Album
Review
Published 30 Jul 2021

Natural products in the predatory defence of the filamentous fungal pathogen Aspergillus fumigatus

  • Jana M. Boysen,
  • Nauman Saeed and
  • Falk Hillmann

Beilstein J. Org. Chem. 2021, 17, 1814–1827, doi:10.3762/bjoc.17.124

Graphical Abstract
  • methionine aminopeptidase type-2 (MetAP-2) enzyme [129]. MetAP-2 is involved in cell proliferation, translation and post-translational modifications of nascent polypeptides and is therefore essential for cell viability [130][131]. Additionally, fumagillin is also known to be overproduced upon caspofungin
  • with the prenylation of ʟ-tryptophan to dimethylallyltryptophan (DMAT). During several steps DMAT is converted to chanoclavine-I aldehyde, the last mutual intermediate. Branching into different pathways after this intermediate is mainly due to differences in the function of EasA, the enzyme catalysing
  • hydroxylated and methylated to tryprostatin A. Oxidative closure of the ringstructure then results in fumitremorgin C. Further modification of the structure leads to fumitremorgin B and verruculogen, which shares the same pathway [97][160][161][162]. Which enzyme is responsible for the conversion of
PDF
Album
Review
Published 28 Jul 2021

A systems-based framework to computationally describe putative transcription factors and signaling pathways regulating glycan biosynthesis

  • Theodore Groth,
  • Rudiyanto Gunawan and
  • Sriram Neelamegham

Beilstein J. Org. Chem. 2021, 17, 1712–1724, doi:10.3762/bjoc.17.119

Graphical Abstract
  • attached. In particular, such extensions may be initiated by members of the B4GALT family or B3GALNT2. Specific variants are noted on α-dystroglycans. 14) O-linked fucose: This pathway includes POFUT1, the enzyme responsible for the addition of fucose to Ser/Thr residues. MFNG, LFNG, and RFNG can attach
PDF
Album
Supp Info
Full Research Paper
Published 22 Jul 2021

Volatile emission and biosynthesis in endophytic fungi colonizing black poplar leaves

  • Christin Walther,
  • Pamela Baumann,
  • Katrin Luck,
  • Beate Rothe,
  • Peter H. W. Biedermann,
  • Jonathan Gershenzon,
  • Tobias G. Köllner and
  • Sybille B. Unsicker

Beilstein J. Org. Chem. 2021, 17, 1698–1711, doi:10.3762/bjoc.17.118

Graphical Abstract
  • Cladosporium sp. emitted (E)-β-caryophyllene (1) in culture (Table 2, Figure 1). As this sesquiterpene is also a characteristic VOC in the constitutive and herbivore-induced blends of black poplar [57][58][59], we wanted to identify and characterize the responsible fungal terpene synthase, as this enzyme could
  • sesquiterpene product was formed by each TPS: CxTPS1 produced (E,E)-α-farnesene (12) and CxTPS2 produced (E)-β-caryophyllene (1). With GGPP, no enzyme activity was recorded for CxTPS2, while CxTPS1 converted this substrate to (E,E)-β-springene (13) as the minor compound and major amounts of (E,E,E)-α-springene
  • ). CxTPS1 was a multifunctional enzyme in vitro and produced the monoterpenes myrcene (9) and (E)-β-ocimene (10) from GPP, the sesquiterpene (E,E)-α-farnesene (12) from FPP, and the diterpenes (E,E)-β-springene (13) and (E,E,E)-α-springene (14) from GGPP. CxTPS2, in contrast, showed a narrower substrate
PDF
Album
Supp Info
Full Research Paper
Published 22 Jul 2021

Double-headed nucleosides: Synthesis and applications

  • Vineet Verma,
  • Jyotirmoy Maity,
  • Vipin K. Maikhuri,
  • Ritika Sharma,
  • Himal K. Ganguly and
  • Ashok K. Prasad

Beilstein J. Org. Chem. 2021, 17, 1392–1439, doi:10.3762/bjoc.17.98

Graphical Abstract
PDF
Album
Review
Published 08 Jun 2021
Graphical Abstract
  • medicinally active as well as smart functional materials possessing the pyrrole as a fundamental subunit [28][29][30]. Additionally, 3,4-disubstituted pyrrole derivatives are versatile building blocks for the production of diverse bioactive molecules like co-enzyme, alkaloids, porphyrins and other related
PDF
Album
Supp Info
Full Research Paper
Published 02 Jun 2021

Antiviral therapy in shrimp through plant virus VLP containing VP28 dsRNA against WSSV

  • Santiago Ramos-Carreño,
  • Ivone Giffard-Mena,
  • Jose N. Zamudio-Ocadiz,
  • Alfredo Nuñez-Rivera,
  • Ricardo Valencia-Yañez,
  • Jaime Ruiz-Garcia,
  • Maria Teresa Viana and
  • Ruben D. Cadena-Nava

Beilstein J. Org. Chem. 2021, 17, 1360–1373, doi:10.3762/bjoc.17.95

Graphical Abstract
  • ]. Also, the CCMV VLPs are resistant to enzyme degradation through the digestive tract [32][33][34]. It is to be kept in mind that possibly the shrimp’s virus, in contrast to CCMV VLP’s, needs specific receptors to be internalized in the shrimp cells. For these reasons, CCMV VLPs show quite an advantage
PDF
Album
Supp Info
Full Research Paper
Published 01 Jun 2021

A comprehensive review of flow chemistry techniques tailored to the flavours and fragrances industries

  • Guido Gambacorta,
  • James S. Sharley and
  • Ian R. Baxendale

Beilstein J. Org. Chem. 2021, 17, 1181–1312, doi:10.3762/bjoc.17.90

Graphical Abstract
PDF
Album
Review
Published 18 May 2021

Kinetics of enzyme-catalysed desymmetrisation of prochiral substrates: product enantiomeric excess is not always constant

  • Peter J. Halling

Beilstein J. Org. Chem. 2021, 17, 873–884, doi:10.3762/bjoc.17.73

Graphical Abstract
  • -pong second (ketone amination, diol esterification, desymmetrisation in the second half reaction); ping-pong first (diol ester hydrolysis) and ping-pong both (prochiral diacids). For plausible values of enzyme kinetic parameters, the product enantiomeric excess (ee) can decline substantially as the
  • reaction proceeds to high conversion. For example, an ee of 0.95 at the start of the reaction can decline to less than 0.5 at 95% of equilibrium conversion, but for different enzyme properties it will remain almost unchanged. For most mechanisms a single function of multiple enzyme rate constants (which
  • study if and how the product ee declines at high conversion. Keywords: enantiomeric excess; enzyme; kinetic mechanisms; kinetic parameters; prochiral; Introduction There is great interest in using enzymatic catalysis in the synthesis of homochiral molecules. An early approach was to use
PDF
Album
Supp Info
Full Research Paper
Published 21 Apr 2021

Simulating the enzymes of ganglioside biosynthesis with Glycologue

  • Andrew G. McDonald and
  • Gavin P. Davey

Beilstein J. Org. Chem. 2021, 17, 739–748, doi:10.3762/bjoc.17.64

Graphical Abstract
  • produced by the actions of the 10 enzymes included in the model. The different ganglioside nomenclature systems in common use are compared and a systematic variant of the widely used Svennerholm nomenclature is described. Knockouts of specific enzyme activities are used to simulate congenital defects in
  • O-linked glycosylation, with a web-based application, O-Glycologue, that allows knockouts of enzymes of O-linked glycosylation and the assignment of custom “wild type” sets of enzyme activities to study the effects of differential knockouts on the resultant networks [15]. In this article, we
  • describe an extension of this method to gangliosides, and to the enzyme reactions associated with their biosynthesis. The formalism and the associated web application, now renamed Glycologue, provide a way to explore the effects of mutations that result in a loss of functionality, or promotion of disease
PDF
Album
Full Research Paper
Published 23 Mar 2021

Synthesis of dibenzosuberenone-based novel polycyclic π-conjugated dihydropyridazines, pyridazines and pyrroles

  • Ramazan Koçak and
  • Arif Daştan

Beilstein J. Org. Chem. 2021, 17, 719–729, doi:10.3762/bjoc.17.61

Graphical Abstract
  • commonly used for the synthesis of biologically active compounds having enzyme inhibition and antiviral activity [1][2], and are found in the structures of many commercially available antidepressant drugs [3][4][5][6][7][8][9][10][11][12]. In addition, dibenzosuberenone (1) and polyconjugated derivatives
PDF
Album
Supp Info
Full Research Paper
Published 15 Mar 2021

β-Lactamase inhibition profile of new amidine-substituted diazabicyclooctanes

  • Zafar Iqbal,
  • Lijuan Zhai,
  • Yuanyu Gao,
  • Dong Tang,
  • Xueqin Ma,
  • Jinbo Ji,
  • Jian Sun,
  • Jingwen Ji,
  • Yuanbai Liu,
  • Rui Jiang,
  • Yangxiu Mu,
  • Lili He,
  • Haikang Yang and
  • Zhixiang Yang

Beilstein J. Org. Chem. 2021, 17, 711–718, doi:10.3762/bjoc.17.60

Graphical Abstract
  • increased in the presence of avibactam (4 mg/L) in all bacterial strains under observation. The MIC values of MER without avibactam were observed to be in the range of 2 mg/L to 4 mg/L, whereas after the addition of avibactam the antibacterial activity changed to <0.125 mg/L–1 mg/L, indicating the enzyme
PDF
Album
Supp Info
Full Research Paper
Published 12 Mar 2021

[2 + 1] Cycloaddition reactions of fullerene C60 based on diazo compounds

  • Yuliya N. Biglova

Beilstein J. Org. Chem. 2021, 17, 630–670, doi:10.3762/bjoc.17.55

Graphical Abstract
  • diphenyldiazomethanes, available reagents carrying substituents on the phenyl rings. For example, covalent attachment of C60 to peptides is performed through a phenyl spacer, as it was demonstrated in a synthesis of fulleride 27 [89]. The latter compound was designed specifically for suppressing a HIV enzyme. The
PDF
Review
Published 05 Mar 2021

Designed whole-cell-catalysis-assisted synthesis of 9,11-secosterols

  • Marek Kõllo,
  • Marje Kasari,
  • Villu Kasari,
  • Tõnis Pehk,
  • Ivar Järving,
  • Margus Lopp,
  • Arvi Jõers and
  • Tõnis Kanger

Beilstein J. Org. Chem. 2021, 17, 581–588, doi:10.3762/bjoc.17.52

Graphical Abstract
  • microwave irradiation, a mixture of monoacylated and diacylated products 3 and 4 in 52% and 33% yield, respectively, was isolated [28]. Enzymatic hydroxylation 3-Ketosteroid 9α-hydroxylase (KSH) from R. rhodochrous has been shown to oxidize C9 in several steroids [29]. This enzyme consists of two
PDF
Album
Supp Info
Full Research Paper
Published 01 Mar 2021

Breakdown of 3-(allylsulfonio)propanoates in bacteria from the Roseobacter group yields garlic oil constituents

  • Anuj Kumar Chhalodia and
  • Jeroen S. Dickschat

Beilstein J. Org. Chem. 2021, 17, 569–580, doi:10.3762/bjoc.17.51

Graphical Abstract
  • -volatile precursor that is stored in garlic and related plants and only degraded into sulfur volatiles upon wounding by the pyridoxal phosphate (PLP) dependent alliinase (Scheme 1B) [7]. This initial enzyme-catalyzed reaction yields one equivalent of allylsulfenic acid (10), pyruvic acid (11), and ammonia
  • giving another example for the complex interactions between marine bacteria and algae. Known DMSP degradation pathways include its hydrolysis to dimethyl sulfide (DMS) and 3-hydroxypropanoic acid (15) by the enzyme DddD [19], or the lysis to DMS and acrylic acid (16) for which various enzymes including
  • DmdABCD is fully established in P. inhibens, while genes for DmdD are missing in D. shibae and O. indolifex, suggesting that another enzyme with a low sequence homology may substitute for DmdD, leading to allylthiol and several sulfur volatiles derived from it in all three strains. The DMSP hydrolase DddD
PDF
Album
Supp Info
Full Research Paper
Published 26 Feb 2021

Synthetic strategies of phosphonodepsipeptides

  • Jiaxi Xu

Beilstein J. Org. Chem. 2021, 17, 461–484, doi:10.3762/bjoc.17.41

Graphical Abstract
  • and phosphonate-linked analogues of naturally occurring peptides. They are more stable than phosphonopeptides and have been widely applied as enzyme inhibitors, haptens for the production of antibodies, biological agents, and prodrugs. The synthetic strategies towards phosphonodepsipeptides are
  • than the corresponding phosphonopeptides because the phosphonate bond is more inert than a phopshonamidate bond. Phosphonodepsipeptides are widely used as enzyme inhibitors [6][7][8][9][10], haptens for inducing catalytic antibodies [11][12], and produgs [8][9][13]. They have potential applications as
  • -diazoalkylphononates can be readily prepared from the corresponding 1-aminoalkylphosphonates via nitrosation with amyl nitrite. Conclusion Phosphonodepsipeptides are phosphorus analogues of depsipeptides. They are more stable than the corresponding phosphonopeptides and have been widely used as enzyme inhibitors
PDF
Album
Review
Published 16 Feb 2021
Other Beilstein-Institut Open Science Activities