Search results

Search for "oxazolidinone" in Full Text gives 68 result(s) in Beilstein Journal of Organic Chemistry.

Ni-promoted reductive cyclization cascade enables a total synthesis of (+)-aglacin B

  • Si-Chen Yao,
  • Jing-Si Cao,
  • Jian Xiao,
  • Ya-Wen Wang and
  • Yu Peng

Beilstein J. Org. Chem. 2025, 21, 2548–2552, doi:10.3762/bjoc.21.197

Graphical Abstract
  • that the diarylmethine stereocenter at C7′ in 6 could be formed by an Evans’ auxiliary-induced asymmetric conjugate addition of α,β-unsaturated acyl oxazolidinone 7 with 3,4,5-trimethoxyphenylmagnesium bromide (8). Both of these two building blocks could be conveniently prepared from commercially
  • File 1). The generated ester 10 was then converted into the corresponding acyl chloride by saponification and subsequent reaction with pivaloyl chloride. The resulting acyl chloride was then trapped by (S)-4-phenyl-2-oxazolidinone (11) to produce the desired α,β-unsaturated amide 7. Next, the
  • asymmetric conjugate addition was carried out [20][21]. The in situ generated aryl–copper(I) species was obtained under the action of CuBr·Me2S with Grignard reagent 8, and then added to a THF solution of the α,β-unsaturated acyl oxazolidinone 7 at −48 °C. This reaction demonstrated an excellent
PDF
Album
Supp Info
Letter
Published 18 Nov 2025

Recent advances in Norrish–Yang cyclization and dicarbonyl photoredox reactions for natural product synthesis

  • Peng-Xi Luo,
  • Jin-Xuan Yang,
  • Shao-Min Fu and
  • Bo Liu

Beilstein J. Org. Chem. 2025, 21, 2315–2333, doi:10.3762/bjoc.21.177

Graphical Abstract
  • pyrrolidine-derived phenyl keto amide substrate 91 with blue LEDs produces the pyrrolidine-fused 4-oxazolidinone (N,O-acetal) 92, precluding preparation of the pyrrolidine analog of lycoplatyrine A (94) by this method. Compound 92 is presumably formed via either the radical mechanism [41] or possibly
PDF
Album
Review
Published 30 Oct 2025

Enantioselective radical chemistry: a bright future ahead

  • Anna C. Renner,
  • Sagar S. Thorat,
  • Hariharaputhiran Subramanian and
  • Mukund P. Sibi

Beilstein J. Org. Chem. 2025, 21, 2283–2296, doi:10.3762/bjoc.21.174

Graphical Abstract
  • ) [40]. The reactions were catalyzed by chiral Lewis acids and involved conjugate addition of a nucleophilic alkyl radical to an α,β-unsaturated substrate containing an oxazolidinone or pyrrolidinone template. The resulting α-radical was trapped with an allylstannane and the addition and trapping
PDF
Album
Perspective
Published 28 Oct 2025

C2 to C6 biobased carbonyl platforms for fine chemistry

  • Jingjing Jiang,
  • Muhammad Noman Haider Tariq,
  • Florence Popowycz,
  • Yanlong Gu and
  • Yves Queneau

Beilstein J. Org. Chem. 2025, 21, 2103–2172, doi:10.3762/bjoc.21.165

Graphical Abstract
PDF
Album
Review
Published 15 Oct 2025

Bioinspired total syntheses of natural products: a personal adventure

  • Zhengyi Qin,
  • Yuting Yang,
  • Nuran Yan,
  • Xinyu Liang,
  • Zhiyu Zhang,
  • Yaxuan Duan,
  • Huilin Li and
  • Xuegong She

Beilstein J. Org. Chem. 2025, 21, 2048–2061, doi:10.3762/bjoc.21.160

Graphical Abstract
  • divergent coupling approaches, and the stereocontrol with Evans oxazolidinone was always reliable to obtain an sole diastereomer (Scheme 6d). Bioinspired concise and scalable total synthesis sarglamides In 2023, Yue and co-workers investigated the ingredients of the Chinese folk medicine Sarcandra glabra
PDF
Album
Review
Published 09 Oct 2025

Enantioselective desymmetrization strategy of prochiral 1,3-diols in natural product synthesis

  • Lihua Wei,
  • Rui Yang,
  • Zhifeng Shi and
  • Zhiqiang Ma

Beilstein J. Org. Chem. 2025, 21, 1932–1963, doi:10.3762/bjoc.21.151

Graphical Abstract
  • , followed by reductive demercuration with LiBH4/Et3B to construct the pyrrolidine ring of compound 162. A three-step transformation of 162 yielded compound 163, which was subjected to base-mediated cyclization with concomitant debenzoylation to deliver oxazolidinone 164. Through a four-step sequence
  • , oxazolidinone 164 was then converted into triester 165, which was further transformed into (−)-kaitocephalin (166) as its diethylamine salt in three additional steps. In Kang’s synthesis of laidlomycin in 2016 (Scheme 23) [64], the BOX–CuCl2 complex 168 effectively catalyzed the desymmetrization of triol 167
PDF
Album
Review
Published 18 Sep 2025

N-Salicyl-amino acid derivatives with antiparasitic activity from Pseudomonas sp. UIAU-6B

  • Joy E. Rajakulendran,
  • Emmanuel Tope Oluwabusola,
  • Michela Cerone,
  • Terry K. Smith,
  • Olusoji O. Adebisi,
  • Adefolalu Adedotun,
  • Gagan Preet,
  • Sylvia Soldatou,
  • Hai Deng,
  • Rainer Ebel and
  • Marcel Jaspars

Beilstein J. Org. Chem. 2025, 21, 1388–1396, doi:10.3762/bjoc.21.103

Graphical Abstract
  • to C-16. Compound 2, trivially named pseudomonin E, was similar to the previously reported compound, pseudomonine except for the opening of the oxazolidinone ring of its threonine unit [22]. Compounds 1 and 2 have been synthetically produced in the reconstruction of the enzymatic pathway to explain
PDF
Album
Supp Info
Full Research Paper
Published 04 Jul 2025

Oxetanes: formation, reactivity and total syntheses of natural products

  • Peter Gabko,
  • Martin Kalník and
  • Maroš Bella

Beilstein J. Org. Chem. 2025, 21, 1324–1373, doi:10.3762/bjoc.21.101

Graphical Abstract
PDF
Album
Review
Published 27 Jun 2025

Synthetic approach to borrelidin fragments: focus on key intermediates

  • Yudhi Dwi Kurniawan,
  • Zetryana Puteri Tachrim,
  • Teni Ernawati,
  • Faris Hermawan,
  • Ima Nurasiyah and
  • Muhammad Alfin Sulmantara

Beilstein J. Org. Chem. 2025, 21, 1135–1160, doi:10.3762/bjoc.21.91

Graphical Abstract
  • in 96% yield. Hydrolysis of the acetate group in 69 with potassium carbonate followed by treatment with TBDMSCl and imidazole converted it into silyl ether 70. The ester group in 70 was then hydrolyzed using lithium hydroxide, and the resulting acid was coupled with Evans’ chiral oxazolidinone in the
PDF
Album
Review
Published 12 Jun 2025

Hypervalent iodine-mediated intramolecular alkene halocyclisation

  • Charu Bansal,
  • Oliver Ruggles,
  • Albert C. Rowett and
  • Alastair J. J. Lennox

Beilstein J. Org. Chem. 2024, 20, 3113–3133, doi:10.3762/bjoc.20.258

Graphical Abstract
  • investigated, which were successfully cyclised to brominated 5- or 6-membered rings in good yields. The intramolecular bromocyclisation of N-oxyureas was also reported by Cariou and co-workers in 2019 (Scheme 34) [53]. From the same starting material, the authors reported the synthesis of both oxazolidinone
  • oximes 63 and N-hydroxylated ureas 64 depending on the reagent system used. Formation of oxazolidinone oximes 63 occurred using PhI(OCOCF3)2 (PIFA) as an oxidant with pyridine·HBr and the MgO additive. The oxybromocyclisation of a range of unsaturated N-alkoxyureas 62 occurred rapidly in 10 minutes at
  • required and poorer yields afforded. The rationale for the difference in mechanism was attributed to the oxycyclisation to yield oxazolidinone oximes 63 occurring through an ionic mechanism, whereas the aminocyclisation takes place through a radical manifold, a difference that is triggered by the
PDF
Album
Review
Published 28 Nov 2024

Methyltransferases from RiPP pathways: shaping the landscape of natural product chemistry

  • Maria-Paula Schröder,
  • Isabel P.-M. Pfeiffer and
  • Silja Mordhorst

Beilstein J. Org. Chem. 2024, 20, 1652–1670, doi:10.3762/bjoc.20.147

Graphical Abstract
  • intermediate is then reduced with H2 [37]. When synthesising via a reductive ring opening, typically, an N-Fmoc-protected amino acid is condensed with formaldehyde in the presence of p-toluic acid in refluxing toluene to yield the 5-oxazolidinone. Reductive ring opening can be achieved by using an excess of
PDF
Album
Review
Published 18 Jul 2024

Synthesis of cyclic β-1,6-oligosaccharides from glucosamine monomers by electrochemical polyglycosylation

  • Md Azadur Rahman,
  • Hirofumi Endo,
  • Takashi Yamamoto,
  • Shoma Okushiba,
  • Norihiko Sasaki and
  • Toshiki Nokami

Beilstein J. Org. Chem. 2024, 20, 1421–1427, doi:10.3762/bjoc.20.124

Graphical Abstract
  • , Tottori University, 4-101 Koyamacho-minami, Tottori city, 680-8552 Tottori, Japan 10.3762/bjoc.20.124 Abstract The synthesis of protected precursors of cyclic β-1,6-oligoglucosamines from thioglycosides as monomers is performed by electrochemical polyglycosylation. The monomer with a 2,3-oxazolidinone
  • . Therefore, prevention of the conformational change might be necessary to synthesize larger cyclic oligosaccharides. Electrochemical polyglycosylation of 2,3-oxazolidinone-substituted thioglycoside monomer To avoid formation of 1,6-anhydrosugar, we introduced an N-acetyl-2,3-oxazolidinone protecting group to
  • disaccharide 16 was obtained as an exclusive product. The optimized structure of 15 calculated by DFT (B3LYP/6-31G(d)) suggested that the pyran ring preferred the boat conformation because the chair conformation of the pyran ring was controlled by the introduction of the 2,3-oxazolidinone protecting group (see
PDF
Album
Supp Info
Full Research Paper
Published 26 Jun 2024

Three-component N-alkenylation of azoles with alkynes and iodine(III) electrophile: synthesis of multisubstituted N-vinylazoles

  • Jun Kikuchi,
  • Roi Nakajima and
  • Naohiko Yoshikai

Beilstein J. Org. Chem. 2024, 20, 891–897, doi:10.3762/bjoc.20.79

Graphical Abstract
  • oxazolidinone-substituted ynamide also proved to undergo iodo(III)azolation in a regio- and stereoselective fashion to give the product 4ai in a moderate yield. Note that terminal alkynes such as phenylacetylene also took part in the reaction, albeit in a much-diminished yield (7% by 1H NMR; data not shown
PDF
Album
Supp Info
Full Research Paper
Published 22 Apr 2024

Controlling the reactivity of La@C82 by reduction: reaction of the La@C82 anion with alkyl halide with high regioselectivity

  • Yutaka Maeda,
  • Saeka Akita,
  • Mitsuaki Suzuki,
  • Michio Yamada,
  • Takeshi Akasaka,
  • Kaoru Kobayashi and
  • Shigeru Nagase

Beilstein J. Org. Chem. 2023, 19, 1858–1866, doi:10.3762/bjoc.19.138

Graphical Abstract
  • more localized on the inside of the cluster for [Sc3N@Ih-C80]2−. A previous study reported that thermal treatment of La@C2v-C82 in the presence of 3-triphenylmethyl-5-oxazolidinone in toluene afforded four different benzylated La@C2v-C82 isomers [19]. Benzyl radicals may have been generated due to the
PDF
Album
Supp Info
Full Research Paper
Published 11 Dec 2023

Transition-metal-catalyzed domino reactions of strained bicyclic alkenes

  • Austin Pounder,
  • Eric Neufeld,
  • Peter Myler and
  • William Tam

Beilstein J. Org. Chem. 2023, 19, 487–540, doi:10.3762/bjoc.19.38

Graphical Abstract
  • be envisioned for the carbonannulation of diazabicyclic alkenes with 2-formylphenylboronic acid up to the last step which likely operates through a β-hydride elimination of the Rh(I) alkoxide, furnishing the final carbonyl-containing product. In 2013, Lautens reported the synthesis of oxazolidinone
  • then nucleophillically attacks the alkene in an SN2’ fashion producing the trans-isocyanate 149. Subsequently, insertion of the Rh–O bond into the isocyanate results in 150. Finally, protonolysis produces the oxazolidinone product 147e as well as regenerates the active Rh(I) catalyst. In 2013, the
PDF
Album
Review
Published 24 Apr 2023

Strategies to access the [5-8] bicyclic core encountered in the sesquiterpene, diterpene and sesterterpene series

  • Cécile Alleman,
  • Charlène Gadais,
  • Laurent Legentil and
  • François-Hugues Porée

Beilstein J. Org. Chem. 2023, 19, 245–281, doi:10.3762/bjoc.19.23

Graphical Abstract
  • 31 and oxazolidinone 32 (Scheme 5) [26]. Subsequently, compound 33 was converted in four steps into aldehyde 34 which was engaged in a coupling reaction with bromoketone 35 according to Utimoto conditions to furnish the A-C-D adduct 36 as a single stereoisomer in high yield. Of note, the Utimoto
PDF
Album
Review
Published 03 Mar 2023

Vicinal ketoesters – key intermediates in the total synthesis of natural products

  • Marc Paul Beller and
  • Ulrich Koert

Beilstein J. Org. Chem. 2022, 18, 1236–1248, doi:10.3762/bjoc.18.129

Graphical Abstract
  • was synthesized by a Horner–Wadsworth–Emmons reaction of phosphonate 48 with aldehyde 47. Enantiopure aldehyde 47 was easily accessible from oxazolidinone 46 via Evans-aldol chemistry [23]. Heating of the α-ketoester 49 led to the highly substituted cyclopentanol 50 in a good dr of ≈5:1 (minor
PDF
Album
Review
Published 15 Sep 2022

Iron-catalyzed domino coupling reactions of π-systems

  • Austin Pounder and
  • William Tam

Beilstein J. Org. Chem. 2021, 17, 2848–2893, doi:10.3762/bjoc.17.196

Graphical Abstract
PDF
Album
Review
Published 07 Dec 2021

A comprehensive review of flow chemistry techniques tailored to the flavours and fragrances industries

  • Guido Gambacorta,
  • James S. Sharley and
  • Ian R. Baxendale

Beilstein J. Org. Chem. 2021, 17, 1181–1312, doi:10.3762/bjoc.17.90

Graphical Abstract
  • auxiliary yielded superior results in flow [89]. Alkylation of oxazolidinone 19 with benzyl bromide (20) in batch gave only a combined 31% yield of the benzylated products 21, with a 70% diastereomeric excess (de), accompanied by 10% decomposition to the N-benzyl derivative 22. In flow, however
PDF
Album
Review
Published 18 May 2021

Stereoselective synthesis and transformation of pinane-based 2-amino-1,3-diols

  • Ákos Bajtel,
  • Mounir Raji,
  • Matti Haukka,
  • Ferenc Fülöp and
  • Zsolt Szakonyi

Beilstein J. Org. Chem. 2021, 17, 983–990, doi:10.3762/bjoc.17.80

Graphical Abstract
  • (Figure 2). To synthesize the regioisomeric spiro-oxazolidinone derivative 12, (1R)-(−)-myrtenol (10) was chosen as starting material (Scheme 2). The synthetic method was similar to that mentioned above for (−)-isopinocarveol. In the first step, carbamate 11 was prepared [37], then the aminohydroxylation
  • ). The LAH reduction of oxazolidine 17 gave N-benzyl-N-methyl analogue 18 which, alternatively, was prepared directly from 2-oxazolidinone 9 via N-benzylation followed by LAH reduction in 2 steps. When compound 13 was reacted with phenylisothiocyanate, thiourea 20 was obtained, which underwent a
PDF
Album
Supp Info
Full Research Paper
Published 03 May 2021

Recent developments in enantioselective photocatalysis

  • Callum Prentice,
  • James Morrisson,
  • Andrew D. Smith and
  • Eli Zysman-Colman

Beilstein J. Org. Chem. 2020, 16, 2363–2441, doi:10.3762/bjoc.16.197

Graphical Abstract
PDF
Album
Review
Published 29 Sep 2020

A complementary approach to conjugated N-acyliminium formation through photoredox-catalyzed intermolecular radical addition to allenamides and allencarbamates

  • Olusesan K. Koleoso,
  • Matthew Turner,
  • Felix Plasser and
  • Marc C. Kimber

Beilstein J. Org. Chem. 2020, 16, 1983–1990, doi:10.3762/bjoc.16.165

Graphical Abstract
  • the γ-position [37][39][40]. An examination of the allenamide unit under these conditions is shown in Scheme 4, and the six allenylamides/sulfonamides (15, 21–25) were prepared using known conditions [52][53]. The allenamides derived from pyrrolidinone (21), piperidinone (22) and oxazolidinone (15
PDF
Album
Supp Info
Letter
Published 12 Aug 2020

One-pot synthesis of oxazolidinones and five-membered cyclic carbonates from epoxides and chlorosulfonyl isocyanate: theoretical evidence for an asynchronous concerted pathway

  • Esra Demir,
  • Ozlem Sari,
  • Yasin Çetinkaya,
  • Ufuk Atmaca,
  • Safiye Sağ Erdem and
  • Murat Çelik

Beilstein J. Org. Chem. 2020, 16, 1805–1819, doi:10.3762/bjoc.16.148

Graphical Abstract
  • obtained in dichloromethane (DCM). Together with 16 known compounds, two novel oxazolidinone derivatives and two novel cyclic carbonates were synthesized with an efficient and straightforward method. Compared to the existing methods, the synthetic approach presented here provides the following distinct
  • isocyanate; computational modeling; cyclic carbonates; density functional theory; oxazolidinone; Introduction Oxazolidinones (1), five-membered heterocyclic rings containing an ester group adjacent to a nitrogen atom, are important compounds in synthetic and pharmaceutical chemistry because of their
  • considerable use as antibiotics [1], immunomodulators [2], antibacterials [3], as well as synthetic intermediates and chiral auxiliaries for various organic conversions [4][5][6][7]. Linezolid [1][2][3] (3) and cytoxazone [8][9] (4) are oxazolidinone derivatives having significant biological activities
PDF
Album
Supp Info
Full Research Paper
Published 21 Jul 2020

Fluorinated phenylalanines: synthesis and pharmaceutical applications

  • Laila F. Awad and
  • Mohammed Salah Ayoup

Beilstein J. Org. Chem. 2020, 16, 1022–1050, doi:10.3762/bjoc.16.91

Graphical Abstract
  • formation [64]. 2.2. Stereoselective benzylic fluorination of N-(2-phenylacetyl)oxazolidin-2-one using NFSI Treatment of oxazolidinone 122 with N-fluorobenzenesulfonimide (NFSI) in the presence of NaHMDS afforded the fluorinated oxazolidinone derivative 123. The reductive removal of the chiral auxiliary
  • -difluorophenylalanine 115. Synthesis of β-fluorophenylalanine via 2-amino-1,3-diol derivatives. Synthesis of β-fluorophenylalanine derivatives via the oxazolidinone chiral auxiliary 122. Synthesis of β-fluorophenylalanine from pyruvate hemiketal 130. Synthesis of β-fluorophenylalanine (136) via fluorination of β
PDF
Album
Review
Published 15 May 2020

Pd-catalyzed asymmetric Suzuki–Miyaura coupling reactions for the synthesis of chiral biaryl compounds with a large steric substituent at the 2-position

  • Yongsu Li,
  • Bendu Pan,
  • Xuefeng He,
  • Wang Xia,
  • Yaqi Zhang,
  • Hao Liang,
  • Chitreddy V. Subba Reddy,
  • Rihui Cao and
  • Liqin Qiu

Beilstein J. Org. Chem. 2020, 16, 966–973, doi:10.3762/bjoc.16.85

Graphical Abstract
  • 3d). The yield and ee value of an oxazolidinone amide were slightly lower than those of tetrahydropyrrolamide (3e, 3f). Various aromatic substituted amides were investigated. The results show that electron-rich or electron-deficient substituents on the phenyl ring have no significant influence on the
PDF
Album
Supp Info
Full Research Paper
Published 11 May 2020
Other Beilstein-Institut Open Science Activities