Search results

Search for "oxidation" in Full Text gives 1278 result(s) in Beilstein Journal of Organic Chemistry. Showing first 200.

Synthetic strategies toward 1,3-oxathiolane nucleoside analogues

  • Umesh P. Aher,
  • Dhananjai Srivastava,
  • Girij P. Singh and
  • Jayashree B. S

Beilstein J. Org. Chem. 2021, 17, 2680–2715, doi:10.3762/bjoc.17.182

Graphical Abstract
  • acetate in hexanes. Chu and colleagues [44] constructed a synthetic approach to access (−)-BCH-189 (1) from ʟ-gulose derivative 3f (Scheme 6). Compound 26 was obtained by oxidation, reduction, and protection of the primary hydroxy group from 3f. Further, lead tetraacetate directly cleaved diol 27 at room
  • temperature, and oxidation with a mild oxidizing agent, PDC, provided 28. Using the reaction of lead tetraacetate with 28 via oxidative decarboxylation afforded oxathiolane acetate derivative 20a. The synthesis of a 1,3-oxathiolane precursor required for the preparation of 3TC (1) in four steps was reported
  • condensation of the sodium salt of methyl 2-mercaptoacetate (3j) with bromoacetaldehyde diethyl acetal (36) in DMF solvent and further oxidation of the sulfide using m-CPBA, followed by Pummerer rearrangement using Ac2O and sodium acetate at 90 °C, which provides compound 37 (Scheme 9). α-Acetoxy sulfide
PDF
Album
Review
Published 04 Nov 2021

Synthesis of highly substituted fluorenones via metal-free TBHP-promoted oxidative cyclization of 2-(aminomethyl)biphenyls. Application to the total synthesis of nobilone

  • Ilya A. P. Jourjine,
  • Lukas Zeisel,
  • Jürgen Krauß and
  • Franz Bracher

Beilstein J. Org. Chem. 2021, 17, 2668–2679, doi:10.3762/bjoc.17.181

Graphical Abstract
  • ], CBr4 [22], or peroxides like tert-butyl hydroperoxide (TBHP) [35]. Other oxidative cyclizations have been developed starting from biarylglyoxylic acids (using Na2S2O8) [36], and even 2-methylbiphenyls and 2-(hydroxymethyl)biphenyls can be converted into fluorenones by means of TBHP oxidation [37]. In
  • . Benzylamines and derivatives thereof have been described in literature to be susceptible to oxidation by diverse reagents (tritylium ion [40], silver [38] and cerium salts [41], peroxides [42][43][44] and persulfates [45], nitroxyls [46], hypervalent iodine compounds [39][47], or tetrahalomethanes [48]) to
  • give imines, iminium salts, aldehydes and other, in some cases dimeric products [49]. Here, oxidation of the benzylic amino moiety should lead either to iminium ions (or N-acyl iminium ions) 4a as strong electrophiles or to stabilized radicals 4b which could undergo cyclization to give the fluorenone
PDF
Album
Supp Info
Correction
Full Research Paper
Published 02 Nov 2021

Electrocatalytic C(sp3)–H/C(sp)–H cross-coupling in continuous flow through TEMPO/copper relay catalysis

  • Bin Guo and
  • Hai-Chao Xu

Beilstein J. Org. Chem. 2021, 17, 2650–2656, doi:10.3762/bjoc.17.178

Graphical Abstract
  • the oxidation of the tetrahydroisoquinoline to an iminium intermediate with various chemical oxidants such as peroxides and DDQ followed by reaction with the copper acetylide species to deliver the 2-substituted tetrahydroisoquinoline product (Scheme 1A). These methods usually require elevated
  • alkyne 22 afforded 1.05 g (61%) of product 14 in 13 h (Scheme 3). The productivity could be increased if multiple reactors were employed in parallel [43]. A mechanism for the electrochemical synthesis was proposed based on reported studies (Scheme 4) [3][10]. Anodic oxidation of TEMPO generates the
PDF
Album
Supp Info
Letter
Published 28 Oct 2021

Solvent-free synthesis of enantioenriched β-silyl nitroalkanes under organocatalytic conditions

  • Akhil K. Dubey and
  • Raghunath Chowdhury

Beilstein J. Org. Chem. 2021, 17, 2642–2649, doi:10.3762/bjoc.17.177

Graphical Abstract
  • ]. In addition, the C–Si bond can be oxidized to a hydroxy group by Tamao–Fleming oxidation [3][4] or to an alkene unit via protodesilylation [5][6]. Many complex natural products, bioactive molecules, and drug molecules have been synthesized on exploitation of the above-mentioned properties of
PDF
Album
Supp Info
Full Research Paper
Published 27 Oct 2021

Synthesis of new bile acid-fused tetrazoles using the Schmidt reaction

  • Dušan Đ. Škorić,
  • Olivera R. Klisurić,
  • Dimitar S. Jakimov,
  • Marija N. Sakač and
  • János J. Csanádi

Beilstein J. Org. Chem. 2021, 17, 2611–2620, doi:10.3762/bjoc.17.174

Graphical Abstract
  • acid (9) were selectively esterified in refluxing ethyl acetate with a catalytic amount of p-toluenesulfonic acid (pTsOH) [42]. Subsequent oxidation of the free OH groups afforded compounds 3 and 11 in high yields. Similarly, compound 7 was prepared in good overall yield from ethyl cholate (5) by
  • selective acetylation [43], followed by oxidation. Enones 4 and 8 were prepared by dehydrogenation of corresponding ketones with SeO2 in refluxing acetic acid [44]. Microwave-assisted heating of the reaction mixture in a closed vessel (150 °C) helped in decreasing the reaction time for dehydrogenation
PDF
Album
Supp Info
Full Research Paper
Published 20 Oct 2021

α-Ketol and α-iminol rearrangements in synthetic organic and biosynthetic reactions

  • Scott Benz and
  • Andrew S. Murkin

Beilstein J. Org. Chem. 2021, 17, 2570–2584, doi:10.3762/bjoc.17.172

Graphical Abstract
  • a biosynthetic pathway for the novel steroid asperflotone (72), it was suggested that its source was asperfloroid (73), a similar steroid isolated from the same source fungus, Aspergillus flocculosus [23]. First, reduction of the C8–C9 double bond and oxidation at C15 would provide α-ketol 74
  • elodeoidins, from the herb Hypericum elodeoides [28]. The authors proposed that these molecules derived from common acylfilicinic acid precursors 87 through two distinct pathways based on the regiochemistry of an oxidation–α-ketol rearrangement sequence (Figure 17). If oxidation occurs at C3, then a
  • subsequent ring-contracting α-ketol rearrangement would form 89. From here, a series of oxidation, cyclization, methylation, and/or reduction steps yield 92 and 93 (each representing two isolated products, one with R = Me and the other with R = Et). Oxidation at C1 and α-ketol rearrangement to 91, on the
PDF
Album
Review
Published 15 Oct 2021

Visible-light-mediated copper photocatalysis for organic syntheses

  • Yajing Zhang,
  • Qian Wang,
  • Zongsheng Yan,
  • Donglai Ma and
  • Yuguang Zheng

Beilstein J. Org. Chem. 2021, 17, 2520–2542, doi:10.3762/bjoc.17.169

Graphical Abstract
  • product Nu–R can be obtained through an inner-sphere pathway between [LnCuIINu]X and the radical R• [41][42] (Scheme 5A). Alternatively, a photosensitizer generated a radical via reduction or oxidation, and is not engaged in the key bond construction. [LCuI] is photoexcited to generate LnCuI*, which
  • arenes (Scheme 13). In this transformation, the azide anion is oxidized to its radical, and this process requires a high reduction potential that cannot be achieved by iridium and ruthenium-based catalysts. In contrast, [Cu(dap)2]Cl and [Cu(dap)Cl2] were found suitable for the oxidation. Based on a
  • photophysical properties (Scheme 16). In 2019, Vlla’s group [76] explored the copper-catalyzed alkynylation of dihydroquinoxalin-2-ones 34 with terminal alkynes under irradiation. 4-Benzyl-3,4-dihydroquinoxalin-2(1H)-one 35 was subjected to an oxidation process with a CuII salt to generate a nitrogen radical
PDF
Album
Review
Published 12 Oct 2021

Recent advances in the tandem annulation of 1,3-enynes to functionalized pyridine and pyrrole derivatives

  • Yi Liu,
  • Puying Luo,
  • Yang Fu,
  • Tianxin Hao,
  • Xuan Liu,
  • Qiuping Ding and
  • Yiyuan Peng

Beilstein J. Org. Chem. 2021, 17, 2462–2476, doi:10.3762/bjoc.17.163

Graphical Abstract
  • standard conditions. The proposed catalytic cycle included aza-Michael addition of arylamines, Lewis acid copper(II)-catalyzed intramolecular 5-endo-dig cyclization, protonation, and oxidation to provide the final products, tetrasubstituted pyrroles 39. The introduction of a trifluoromethyl group into
PDF
Album
Review
Published 22 Sep 2021

Synthesis and investigation on optical and electrochemical properties of 2,4-diaryl-9-chloro-5,6,7,8-tetrahydroacridines

  • Najeh Tka,
  • Mohamed Adnene Hadj Ayed,
  • Mourad Ben Braiek,
  • Mahjoub Jabli and
  • Peter Langer

Beilstein J. Org. Chem. 2021, 17, 2450–2461, doi:10.3762/bjoc.17.162

Graphical Abstract
  • cyclic voltammetry (CV) in dry acetonitrile. The obtained voltammogram, recorded at a scanning rate of 50 mV/s, is given in Figure 11. The HOMO and LUMO energy levels were deduced from the onset potentials of the oxidation and reduction waves, respectively. The potential of the saturated Ag/AgCl
  • /Fc+ with respect to zero vacuum level. The onset potentials for the oxidation and reduction of 3c were 1.50 eV and −1.36 eV, respectively. Thus, their LUMO and the HOMO energies were found to be −2.92 eV and −5.78 eV, respectively, giving rise to an electrochemical band gap of 2.86 eV. We noticed a
PDF
Album
Supp Info
Full Research Paper
Published 20 Sep 2021

Efficient synthesis of polyfunctionalized carbazoles and pyrrolo[3,4-c]carbazoles via domino Diels–Alder reaction

  • Ren-Jie Fang,
  • Chen Yan,
  • Jing Sun,
  • Ying Han and
  • Chao-Guo Yan

Beilstein J. Org. Chem. 2021, 17, 2425–2432, doi:10.3762/bjoc.17.159

Graphical Abstract
  • diastereoisomers of tetrahydropyrrolo[3,4-c]carbazoles, which can be dehydrogenated by DDQ oxidation in acetonitrile at room temperature to give the aromatized pyrrolo[3,4-c]carbazoles in high yields. On the other hand, the one-pot reaction of 3-(indol-3-yl)-1,3-diphenylpropan-1-ones with chalcones or
  • pointed out that the Diels–Alder reaction resulted in a complex mixture comprising four diastereoisomers of the tetrahydrocarbazoles, which was very difficult to separate. After oxidation with DDQ, the aromatized carbazole derivatives 6a–n were easily obtained as single products in good yields. The
  • mixture of several possible diastereoisomers because it has four substituents on the cyclohexenyl ring. After a further DDQ oxidation, the aromatized carbazole 6 is successfully produced as the final product. Conclusion In summary, we have investigated the domino Diels–Alder reaction of 3-(indol-3-yl
PDF
Album
Supp Info
Full Research Paper
Published 16 Sep 2021

Strategies for the synthesis of brevipolides

  • Yudhi D. Kurniawan and
  • A'liyatur Rosyidah

Beilstein J. Org. Chem. 2021, 17, 2399–2416, doi:10.3762/bjoc.17.157

Graphical Abstract
  • the hydrogen source. Following protection of the alcohol moiety with PMBCl, ether 22 was realized in 93% yield. Afterwards, this species was transformed into the γ-keto α,β-unsaturated aldehyde 23 through an NBS-assisted furan oxidation procedure in moderate yield (65%). The keto functionality was
  • . Oxidation of the secondary alcohol of this intermediate to its keto derivative was problematic and gave no desired product 42 after considerable experimentations. Eventually, the isolation of 43 marked the end of the synthetic study after treatment of 41 with HF·pyridine, which is the reduced form of 6’-epi
  • vinylmagnesium bromide. The allylic alcohol products 71 and 72 were obtained as a diastereomeric mixture in 86% yield with poor stereoselectivity. To gain more of the desired diastereomer 71, the mixture of 71 and 72 was subjected to a two-step procedure involving a Dess–Martin oxidation followed by
PDF
Album
Review
Published 14 Sep 2021

Advances in mercury(II)-salt-mediated cyclization reactions of unsaturated bonds

  • Sumana Mandal,
  • Raju D. Chaudhari and
  • Goutam Biswas

Beilstein J. Org. Chem. 2021, 17, 2348–2376, doi:10.3762/bjoc.17.153

Graphical Abstract
  • insertion and then oxidation (Scheme 54). This methodology was later successfully utilized for the total synthesis of raloxifene and benzo[b]thiophene derivatives [115]. Cyclization involving allenes (>C=C=C<) Hg(II) triflate salts had also been successfully employed for the arylallene 181 cyclization by
PDF
Album
Review
Published 09 Sep 2021

Synthesis of phenanthridines via a novel photochemically-mediated cyclization and application to the synthesis of triphaeridine

  • Songeziwe Ntsimango,
  • Kennedy J. Ngwira,
  • Moira L. Bode and
  • Charles B. de Koning

Beilstein J. Org. Chem. 2021, 17, 2340–2347, doi:10.3762/bjoc.17.152

Graphical Abstract
  • the desired phenanthridine 16d. As the aromatic substrates 14a–d contain an electron-rich aromatic ring, the second possibility is the reaction proceeds via the oxidation of the methoxy-containing aromatic ring to afford intermediate 18a. The reaction could then proceed to afford intermediate 18b
PDF
Album
Supp Info
Full Research Paper
Published 08 Sep 2021

Phenolic constituents from twigs of Aleurites fordii and their biological activities

  • Kyoung Jin Park,
  • Won Se Suh,
  • Da Hye Yoon,
  • Chung Sub Kim,
  • Sun Yeou Kim and
  • Kang Ro Lee

Beilstein J. Org. Chem. 2021, 17, 2329–2339, doi:10.3762/bjoc.17.151

Graphical Abstract
  • stimulated with LPS (100 ng/mL) and incubated for 24 h. The level of nitrite (NO2, a soluble oxidation product of NO) in the culture medium was measured using the Griess reagent (0.1% N-1-naphthylethylenediamine dihydrochloride and 1% sulfanilamide in 5% phosphoric acid). The supernatant (50 μL) in each well
PDF
Album
Supp Info
Full Research Paper
Published 07 Sep 2021

(Phenylamino)pyrimidine-1,2,3-triazole derivatives as analogs of imatinib: searching for novel compounds against chronic myeloid leukemia

  • Luiz Claudio Ferreira Pimentel,
  • Lucas Villas Boas Hoelz,
  • Henayle Fernandes Canzian,
  • Frederico Silva Castelo Branco,
  • Andressa Paula de Oliveira,
  • Vinicius Rangel Campos,
  • Floriano Paes Silva Júnior,
  • Rafael Ferreira Dantas,
  • Jackson Antônio Lamounier Camargos Resende,
  • Anna Claudia Cunha,
  • Nubia Boechat and
  • Mônica Macedo Bastos

Beilstein J. Org. Chem. 2021, 17, 2260–2269, doi:10.3762/bjoc.17.144

Graphical Abstract
  • the 1,2,3-triazole core strategically in the design of new compounds [18][19]. The explanation for this interest is associated with its resistance towards oxidation, reduction, and acidic or basic hydrolysis reactions that occur in phase I of human metabolism [20][21]. The application of this core
PDF
Album
Supp Info
Full Research Paper
Published 01 Sep 2021

Photoredox catalysis in nickel-catalyzed C–H functionalization

  • Lusina Mantry,
  • Rajaram Maayuri,
  • Vikash Kumar and
  • Parthasarathy Gandeepan

Beilstein J. Org. Chem. 2021, 17, 2209–2259, doi:10.3762/bjoc.17.143

Graphical Abstract
  • were found to be suitable to achieve the transformation in satisfactory yields under visible light irradiation (Scheme 2). The authors hypothesized that the key α-nitrogen carbon-centered radical 5 could be generated via a photoredox-driven N-phenyl oxidation and α-C–H deprotonation sequence from
  • oxidation of 4-V by the photoexcited iridium(III) photocatalyst 4-II results in the nickel(III) species 4-VI. Photolysis of 4-VI generates a chloride radical, which rapidly abstracts the α-oxy C(sp3)−H of the ether to provide the alkyl radical species. The alkyl radical rebound to 4-VIII produces the nickel
PDF
Album
Review
Published 31 Aug 2021

Transition-metal-free intramolecular Friedel–Crafts reaction by alkene activation: A method for the synthesis of some novel xanthene derivatives

  • Tülay Yıldız,
  • İrem Baştaş and
  • Hatice Başpınar Küçük

Beilstein J. Org. Chem. 2021, 17, 2203–2208, doi:10.3762/bjoc.17.142

Graphical Abstract
  • under mild reaction conditions and have widened the substrate scope of alkenes to those containing varied electronic and steric properties. Results and Discussion Our starting alkenes 4a–l are original and were synthesized in four steps involving coupling, Grignard, oxidation, and Wittig reactions. We
  • phenyl bromide to 2-phenoxybenzaldehyde. As a result, phenoxy secondary alcohol 2a containing three aromatic rings was obtained. In the third step, 2a was oxidized and the ketone derivative 3a was obtained in high yield. The oxidation reaction was carried out using PCC in DCM at room temperature. In the
  • synthesized by Grignard reaction of 1a–l and aryl(or alkyl)magnesium bromides. Then 3a–l were prepared by oxidation of 2a–l using PCC. The final alkene compounds 4a–l were obtained by Wittig reaction using Me(Ph)3PBr, t-BuOK, and NaH. All substrates were purified by crystallization or column chromatography
PDF
Album
Supp Info
Full Research Paper
Published 30 Aug 2021

Chemical syntheses and salient features of azulene-containing homo- and copolymers

  • Vijayendra S. Shetti

Beilstein J. Org. Chem. 2021, 17, 2164–2185, doi:10.3762/bjoc.17.139

Graphical Abstract
  • forms of monomer 24, dimer 29, and polyazulene 31 were further red-shifted and their respective energy gaps were also reduced compared to their neutral forms. The oxidation potential for the neutral (−0.23 V) and protonated forms of polyaminoazulene 31 (0.70 V) was significantly different unlike the
  • and larger cathodic shift of the oxidation potential in these polymers compared to their metal-free counterparts. In 2012, Hawker and co-workers [22], along with 17–20, also synthesized a polymer 45 which had azulene and thiophene units connected via the 4,7-positions of azulene. The reaction of 4,7
  • –144 containing azulene-carbazole-benzothiadiazole, with varying composition of N-alkyl carbazole and benzothiadiazole units by a Suzuki protocol (Scheme 24). These polymers exhibited Mn in the range 4200–7200 Da with PDI 1.14–1.38. The oxidation potential of the benzothiadiazole-containing polymers
PDF
Album
Review
Published 24 Aug 2021

Catalyzed and uncatalyzed procedures for the syntheses of isomeric covalent multi-indolyl hetero non-metallides: an account

  • Ranadeep Talukdar

Beilstein J. Org. Chem. 2021, 17, 2102–2122, doi:10.3762/bjoc.17.137

Graphical Abstract
  • only, thus stating the requirement of acid for this Fischer indole synthesis. Elemental sulfur has also been utilized in preparing bis(indol-3-yl)sulfides under transition-metal compound catalyzed spontaneous oxidation of the central chalcogen atom. Such reactions were carried out by Shibahara (2014
  • the desired product 101 in 49% yield [82]. Other copper catalysts such as CuCl or CuBr gave low yields, even when used with 2,2’-bipyridyl as the ligand. First, oxidation of copper(I) takes place, which interacts with elemental sulfur to “activate” it. A nucleophilic attack from N-methylindole (1) to
  • )indole (111). As the sulfur in 111 is methyl-protected, no dimerization occurs. Oxidation of sulfur by oxone followed by repetition of the previous steps afford the diindol-3-ylsulfonium salt 114, which in the presence of a base gives product 105a. Li et al. used 2-(fluorosulfonyl)difluoroacetic acid
PDF
Album
Review
Published 19 Aug 2021

Recent advances in the syntheses of anthracene derivatives

  • Giovanni S. Baviera and
  • Paulo M. Donate

Beilstein J. Org. Chem. 2021, 17, 2028–2050, doi:10.3762/bjoc.17.131

Graphical Abstract
  • corresponding cyclotrimerization products 18 or 19 (Scheme 4). The subsequent DDQ oxidation step yielded anthracenes 20 or azaanthracenes 21 in good yields (see the representative examples 20a–d and 21a–d) [38]. Recently, in a related approach, Bunz, Freudenberg, and co-workers described a useful route to
  • products 24. Next, the key step was introducing chlorine, bromine, or iodine substituents by halodesilylation of 24. With the halogenated products 25 in hands, the authors employed DDQ in the oxidation/aromatization step, to obtain the di- and tetrahaloanthracenes 26 in good yields (61–85%) [39]. This
  • , the authors added previously prepared triarylmethanes 52 to the reaction mixture under air atmosphere, and then under oxygen atmosphere. Therefore, an efficient Bi(OTf)3/O2 system promoted the oxidation/aromatization step, providing the 9,10-disubstituted 2,3,6,7-tetraalkoxyanthracenes 53 in good
PDF
Album
Review
Published 10 Aug 2021

Progress and challenges in the synthesis of sequence controlled polysaccharides

  • Giulio Fittolani,
  • Theodore Tyrikos-Ergas,
  • Denisa Vargová,
  • Manishkumar A. Chaube and
  • Martina Delbianco

Beilstein J. Org. Chem. 2021, 17, 1981–2025, doi:10.3762/bjoc.17.129

Graphical Abstract
PDF
Album
Review
Published 05 Aug 2021

Asymmetric organocatalyzed synthesis of coumarin derivatives

  • Natália M. Moreira,
  • Lorena S. R. Martelli and
  • Arlene G. Corrêa

Beilstein J. Org. Chem. 2021, 17, 1952–1980, doi:10.3762/bjoc.17.128

Graphical Abstract
  • -hydroxycoumarin 1 with α,β-unsaturated ketones 2 catalyzed by a chiral primary amino amide 32. Catalytic asymmetric β-C–H functionalization of ketones via enamine oxidation. Enantioselective synthesis of polycyclic coumarin derivatives 37 catalyzed by an primary amine-imine catalyst 38. Allylic alkylation
PDF
Album
Review
Published 03 Aug 2021

On the application of 3d metals for C–H activation toward bioactive compounds: The key step for the synthesis of silver bullets

  • Renato L. Carvalho,
  • Amanda S. de Miranda,
  • Mateus P. Nunes,
  • Roberto S. Gomes,
  • Guilherme A. M. Jardim and
  • Eufrânio N. da Silva Júnior

Beilstein J. Org. Chem. 2021, 17, 1849–1938, doi:10.3762/bjoc.17.126

Graphical Abstract
  • twentieth most abundant element and the sixth most abundant transition metal in Earth’s crust. Rarely encountered in its metallic form, vanadium exists in oxidation states ranging from +5 to −3, including the four adjacent states +2 to +5 in aqueous solutions, and usually presents 4, 5 or 6 coordination
  • numbers. The V(II) and V(V) species are reducing and oxidizing agents, respectively, whereas V(IV) is often encountered, mainly in the form of dioxovanadium ion VO2+ center [76]. Vanadium-based compounds have been reported to mediate the oxidation of alkanes to alcohols and ketones [76]. The reactions are
  • have been used as additives in these reactions and are suggested to act as ligands, assist proton transfer and promote the formation of oligovanadates by decreasing the pH value of the solution. The mechanisms of some vanadium-mediated oxidation reactions of alkanes have been studied, most of them
PDF
Album
Review
Published 30 Jul 2021

Natural products in the predatory defence of the filamentous fungal pathogen Aspergillus fumigatus

  • Jana M. Boysen,
  • Nauman Saeed and
  • Falk Hillmann

Beilstein J. Org. Chem. 2021, 17, 1814–1827, doi:10.3762/bjoc.17.124

Graphical Abstract
  • ][116] (Figure 3). Whereas GliT (a gliotoxin oxidoreductase) catalyses the oxidation of reactive dithiol gliotoxin (6) to gliotoxin and a distantly localized S-adenosylmethionine-dependent gliotoxin bisthiomethyltransferase (GtmA) is responsible for the formation of bis(methyl)gliotoxin (7) to maintain
PDF
Album
Review
Published 28 Jul 2021

Sustainable manganese catalysis for late-stage C–H functionalization of bioactive structural motifs

  • Jongwoo Son

Beilstein J. Org. Chem. 2021, 17, 1733–1751, doi:10.3762/bjoc.17.122

Graphical Abstract
  • natural abundance, cost-effectiveness, and low toxicity. In addition, it presents variable oxidation states (−3 to +7), which enable diverse catalytically active manganese complexes, providing characteristic reaction profiles. Since the first pioneering manganese-mediated reaction for accessing
  • . Initially, resting Mn(TMP)F undergoes oxidation, generating oxomanganese(V) complex O=Mn(TMP)F (5A), followed by H-abstraction of the substrate 1 or 3, providing HO–Mn(TMP)F (5B) and a C-centered radical. The trans-difluoro-substituted Mn(TMP) intermediate 5C, generated by an excess of the fluoride source
  • bonds in less sterically congested environments. A mixture of diastereomers (1:1 ratio) resulted from the azidation of estrone acetate (14e), strongly supporting a radical reaction pathway. Based on their additional mechanistic experiments, the authors suggested that the oxidation of the Mn(III) species
PDF
Album
Review
Published 26 Jul 2021
Other Beilstein-Institut Open Science Activities