Search results

Search for "volume expansion" in Full Text gives 28 result(s) in Beilstein Journal of Nanotechnology.

Recognition mechanisms of hemoglobin particles by monocytes – CD163 may just be one

  • Jonathan-Gabriel Nimz,
  • Pichayut Rerkshanandana,
  • Chiraphat Kloypan,
  • Ulrich Kalus,
  • Saranya Chaiwaree,
  • Axel Pruß,
  • Radostina Georgieva,
  • Yu Xiong and
  • Hans Bäumler

Beilstein J. Nanotechnol. 2023, 14, 1028–1040, doi:10.3762/bjnano.14.85

Graphical Abstract
  • our HbMPs into monocytes, while there might be additional other mechanisms at play. The aim of this work is to contribute a further step towards the development of HbMPs as a complete, safe blood substitute for volume expansion and oxygen distribution. Materials and Methods Chemicals 0.9% sodium
PDF
Album
Supp Info
Full Research Paper
Published 19 Oct 2023

Isolation of cubic Si3P4 in the form of nanocrystals

  • Polina K. Nikiforova,
  • Sergei S. Bubenov,
  • Vadim B. Platonov,
  • Andrey S. Kumskov,
  • Nikolay N. Kononov,
  • Tatyana A. Kuznetsova and
  • Sergey G. Dorofeev

Beilstein J. Nanotechnol. 2023, 14, 971–979, doi:10.3762/bjnano.14.80

Graphical Abstract
  • batteries. For the practical application of the materials, however, the problems of low conductivity and dramatic volume expansion of Si after full lithiation must still be solved [15]. To this end, silicon phosphides are actively studied. Layered silicon phosphide and diphosphide, for example, provide
PDF
Album
Supp Info
Full Research Paper
Published 26 Sep 2023

Progress and innovation of nanostructured sulfur cathodes and metal-free anodes for room-temperature Na–S batteries

  • Marina Tabuyo-Martínez,
  • Bernd Wicklein and
  • Pilar Aranda

Beilstein J. Nanotechnol. 2021, 12, 995–1020, doi:10.3762/bjnano.12.75

Graphical Abstract
  • favorable environmental and economic perspectives. However, scientific and technological problems are still hindering a commercial breakthrough of these batteries. This review discusses strategies to remedy some of the current drawbacks such as the polysulfide shuttle effect, catastrophic volume expansion
  • performance and prevent their commercialization. The main drawbacks of these electrochemical devices are (1) the polysulfide shuttle effect, (2) the insulating nature of both sulfur and sodium sulfide, and (3) the large volume expansion of the cathode during the discharge process (Figure 2) [16]. Other
  • design a cathode material that improves the conductivity of the system [4][11]. Common approaches are based on the incorporation of conductive carbon nanomaterials [23]. The volume expansion of sulfur during the discharge process is caused by the formation of the discharge product Na2S. This expansion is
PDF
Album
Review
Published 09 Sep 2021

A review of defect engineering, ion implantation, and nanofabrication using the helium ion microscope

  • Frances I. Allen

Beilstein J. Nanotechnol. 2021, 12, 633–664, doi:10.3762/bjnano.12.52

Graphical Abstract
  • piezoelectricity has been patterned into multilayered MoTe2 [56]. In the case of helium ion irradiation of a bulk van der Waals layered ferroelectric semiconductor crystal (CuInP2S6), local volume expansion due to helium ion implantation was observed, forming a conical surface topography within which for
  • ]. Although in some cases subsurface swelling is specifically desired, as described further below. Nanofabrication using subsurface swelling The localized volume expansion observed for a range of crystalline materials upon helium ion irradiation at high dose has also been put to use for several
PDF
Album
Review
Published 02 Jul 2021

Solution combustion synthesis of a nanometer-scale Co3O4 anode material for Li-ion batteries

  • Monika Michalska,
  • Huajun Xu,
  • Qingmin Shan,
  • Shiqiang Zhang,
  • Yohan Dall'Agnese,
  • Yu Gao,
  • Amrita Jain and
  • Marcin Krajewski

Beilstein J. Nanotechnol. 2021, 12, 424–431, doi:10.3762/bjnano.12.34

Graphical Abstract
  • reversibility and rate capability. This can be associated with the specific arrangement of particles that provides effective electrolyte-accessible channels for ion transportation and shortens the distance for Li+ ion diffusion and conversion reaction. Moreover, this particular structure inhibits a volume
  • expansion during cycling, which leads to an elongation of the Co3O4 electrode life. Conclusion A novel inexpensive solution combustion synthesis yielding cobalt oxide (Co3O4) nanoscale powder was proposed in this work. The as-prepared material was characterized by several complementary experimental
PDF
Album
Supp Info
Full Research Paper
Published 10 May 2021

Out-of-plane surface patterning by subsurface processing of polymer substrates with focused ion beams

  • Serguei Chiriaev,
  • Luciana Tavares,
  • Vadzim Adashkevich,
  • Arkadiusz J. Goszczak and
  • Horst-Günter Rubahn

Beilstein J. Nanotechnol. 2020, 11, 1693–1703, doi:10.3762/bjnano.11.151

Graphical Abstract
  • level above which changes in the structural reconstruction processes are observed. This leads to the transition from a compacting to an expanding phase. We emphasize that such a transition is favorable from a thermodynamic point of view because the volume expansion provides relaxation of the tensile
PDF
Album
Supp Info
Full Research Paper
Published 06 Nov 2020

Structural and electronic properties of SnO2 doped with non-metal elements

  • Jianyuan Yu,
  • Yingeng Wang,
  • Yan Huang,
  • Xiuwen Wang,
  • Jing Guo,
  • Jingkai Yang and
  • Hongli Zhao

Beilstein J. Nanotechnol. 2020, 11, 1321–1328, doi:10.3762/bjnano.11.116

Graphical Abstract
  • one O atom in SnO2, the crystal structure is distorted and the volume expands. The atomic radius of S is much larger than that of the other doping atoms resulting in a volume expansion of 8.315%. The lattice expansion rate also decreases in the sequence B > C > N. However, the F-doped SnO2 has a
  • larger volume expansion. Therefore, it is necessary to analyze the bond formation before and after F atom doping, as shown in Table 2. The population value is usually used to present the bonding characteristics of crystals. In general, a strong covalent bond shows a high population value, while a strong
PDF
Album
Full Research Paper
Published 03 Sep 2020

Gas sorption porosimetry for the evaluation of hard carbons as anodes for Li- and Na-ion batteries

  • Yuko Matsukawa,
  • Fabian Linsenmann,
  • Maximilian A. Plass,
  • George Hasegawa,
  • Katsuro Hayashi and
  • Tim-Patrick Fellinger

Beilstein J. Nanotechnol. 2020, 11, 1217–1229, doi:10.3762/bjnano.11.106

Graphical Abstract
  • carried out to understand the storage mechanisms of both lithium and sodium ions inside many different carbons. Due to the progress in LIB research and the implementation of stoichiometric and highly reversible graphite anodes (forming LiC6), disordered carbons were considered less. Although the volume
  • expansion of HCs during lithium intercalation is lower than that of graphite, implying longer lifetimes, the relatively lower volumetric energy density due to their lower density and lower energy efficiency were detrimental for their commercial usage in the uprising market of portable devices. In 1997, the
PDF
Album
Supp Info
Full Research Paper
Published 14 Aug 2020

Comparison of fresh and aged lithium iron phosphate cathodes using a tailored electrochemical strain microscopy technique

  • Matthias Simolka,
  • Hanno Kaess and
  • Kaspar Andreas Friedrich

Beilstein J. Nanotechnol. 2020, 11, 583–596, doi:10.3762/bjnano.11.46

Graphical Abstract
  • to visualize volume expansion of the electrodes. These results were used to link the local volume expansion of the material to its local activity. Following this assumption, a decrease of the overall ESM signal with ageing would imply a decrease of the electrochemical activity of the Li-ions in the
  • might result from material stiffness or elasticity because these material properties influence the volume expansion. Harder materials are assumed to show a smaller surface displacement (and thus smaller volume expansion) than softer materials. Analysis of the elasticity of the cathode materials was
  • mechanisms are piezoelectricity, flexoelectricity and electrostriction. Further contributions are possible by deformation potential generation, electron–hole formation, coupling of electrons and phonons, electrochemical side reactions in the tip–sample junction, electrostatic interaction, and volume
PDF
Album
Supp Info
Full Research Paper
Published 07 Apr 2020

An efficient electrode material for high performance solid-state hybrid supercapacitors based on a Cu/CuO/porous carbon nanofiber/TiO2 hybrid composite

  • Mamta Sham Lal,
  • Thirugnanam Lavanya and
  • Sundara Ramaprabhu

Beilstein J. Nanotechnol. 2019, 10, 781–793, doi:10.3762/bjnano.10.78

Graphical Abstract
  • and effective strategy that can enhance the electrical conductivity and provide relatively high specific capacity (increased by 10–30%). However, the electrochemical performance of this material deteriorates due to the large volume expansion during cycling. This results in a gradual loss of
  • expected to reduce the charge transfer resistance. Additionally, TiO2 has less volume expansion compared to other pseudo-capacitive materials, which provides the good cycling stability behavior to the SSHSC. Moreover, TiO2 nanoparticles with highly electrochemical active anatase phase could be ascribed to
PDF
Album
Supp Info
Full Research Paper
Published 01 Apr 2019

A porous 3D-RGO@MWCNT hybrid material as Li–S battery cathode

  • Yongguang Zhang,
  • Jun Ren,
  • Yan Zhao,
  • Taizhe Tan,
  • Fuxing Yin and
  • Yichao Wang

Beilstein J. Nanotechnol. 2019, 10, 514–521, doi:10.3762/bjnano.10.52

Graphical Abstract
  • network and the porous spherical RGO. Moreover, such a 3D structure can buffer the volume expansion/shrinkage of the sulfur cathode during charge and discharge cycles. Lastly, the electrochemical performance of the resulting S-3D-RGO@MWCNT cathode was evaluated in Li–S batteries. Results and Discussion
  • the shuttle effect by acting as a lithium polysulfide reservoir, and iii) additional empty spaces to buffer the volume expansion/shrinkage in the charge and discharge processes enhancing the cycling performance of the battery. The electrochemical performance of the S-3D-RGO@MWCNT composite will be
PDF
Album
Supp Info
Full Research Paper
Published 21 Feb 2019

Controlling surface morphology and sensitivity of granular and porous silver films for surface-enhanced Raman scattering, SERS

  • Sherif Okeil and
  • Jörg J. Schneider

Beilstein J. Nanotechnol. 2018, 9, 2813–2831, doi:10.3762/bjnano.9.263

Graphical Abstract
  • of oxygen into the silver lattice leads to a volume expansion and a change in film morphology. The subsequent reduction of this silver oxide film with the hydrogen plasma results in a subsequent film shrinkage back to nearly half of its former value (159–232 nm; Figure 6d) [83][84]. Due to the volume
PDF
Album
Supp Info
Full Research Paper
Published 07 Nov 2018

Hydrothermal-derived carbon as a stabilizing matrix for improved cycling performance of silicon-based anodes for lithium-ion full cells

  • Mirco Ruttert,
  • Florian Holtstiege,
  • Jessica Hüsker,
  • Markus Börner,
  • Martin Winter and
  • Tobias Placke

Beilstein J. Nanotechnol. 2018, 9, 2381–2395, doi:10.3762/bjnano.9.223

Graphical Abstract
  • ) that cannot be found on the surface of the electrode in Figure 5a and 5b, showing the C:Si 90:10 composite. It can be concluded that the mechanical stress caused by the volume expansion of the Si during the lithiation/delithiation process cannot be completely buffered by the amorphous carbon matrix and
PDF
Album
Supp Info
Full Research Paper
Published 05 Sep 2018

Nitrogen-doped carbon nanotubes coated with zinc oxide nanoparticles as sulfur encapsulator for high-performance lithium/sulfur batteries

  • Yan Zhao,
  • Zhengjun Liu,
  • Liancheng Sun,
  • Yongguang Zhang,
  • Yuting Feng,
  • Xin Wang,
  • Indira Kurmanbayeva and
  • Zhumabay Bakenov

Beilstein J. Nanotechnol. 2018, 9, 1677–1685, doi:10.3762/bjnano.9.159

Graphical Abstract
  • the small size of ZnO nanoparticles (6.2 nm) in the composite, which both enhanced charge transfer and conductivity. Along with this, the NCNT network provides a large micro-scaffold in the S/ZnO@NCNT composite to accommodate S and Li ions, and, therefore, to buffer the volume expansion/shrinkage
  • conductivity of the composite, but also facilitates the modulation of S and Li ions, buffering the volume expansion/shrinkage caused by the fast Li insertion/deletion. Experimental Preparation of ZnO@NCNT composite The ZnO@NCNT composite was synthesized by sol–gel synthesis [13][34]. In a typical synthesis
PDF
Album
Full Research Paper
Published 06 Jun 2018

P3HT:PCBM blend films phase diagram on the base of variable-temperature spectroscopic ellipsometry

  • Barbara Hajduk,
  • Henryk Bednarski,
  • Bożena Jarząbek,
  • Henryk Janeczek and
  • Paweł Nitschke

Beilstein J. Nanotechnol. 2018, 9, 1108–1115, doi:10.3762/bjnano.9.102

Graphical Abstract
  • ≡ (n + ik)2 ≡ ε1 + iε2, as well as the film thickness d. Variable-temperature spectroscopic ellipsometry additionally explores dependence of these quantities on the temperature T. This technique is sensitive to phase transitions because they are accompanied by a change in the volume expansion
PDF
Album
Full Research Paper
Published 05 Apr 2018

Miniemulsion copolymerization of (meth)acrylates in the presence of functionalized multiwalled carbon nanotubes for reinforced coating applications

  • Bertha T. Pérez-Martínez,
  • Lorena Farías-Cepeda,
  • Víctor M. Ovando-Medina,
  • José M. Asua,
  • Lucero Rosales-Marines and
  • Radmila Tomovska

Beilstein J. Nanotechnol. 2017, 8, 1328–1337, doi:10.3762/bjnano.8.134

Graphical Abstract
  • the MWCNTs was reported. The resulting nanocomposites were foamed with supercritical CO2. The foams showed a decreased pore size, an increased cell density and higher volume expansion when the MWCNT concentration increased. Capek and Kocsisova [35] studied the effect of the type and concentration of
PDF
Album
Supp Info
Full Research Paper
Published 27 Jun 2017

Synthesis of graphene–transition metal oxide hybrid nanoparticles and their application in various fields

  • Arpita Jana,
  • Elke Scheer and
  • Sebastian Polarz

Beilstein J. Nanotechnol. 2017, 8, 688–714, doi:10.3762/bjnano.8.74

Graphical Abstract
  • electron–hole pairs. Additionally, the NPs result in a large volume expansion during the Li insertion–extraction process in LIB applications which hamper their use in applications such as energy storage, sensing, advanced catalysis, solar cells, diodes and also in biometrics. Thus, strongly coupled
  • NPs of transition metal (e.g., Co, Ni, Cu, Fe) oxides for LIB applications by using 2 µm cobalt oxide (CoO) particles, achieving an electrochemical capacity of 700 mAh·g−1 with 100% capacity retention for up to 100 cycles [26]. For metal oxide in LIB applications, volume expansion occurs during the Li
  • outstanding cycling stability and almost no volume expansion occurs when TiO2 is fully lithiated. As the electrical conductivity of TiO2 is low, it has a weak rate capability in electrical devices. The modification of TiO2 with conductive materials like graphene improves its electrical performance
PDF
Album
Review
Published 24 Mar 2017

The difference in the thermal conductivity of nanofluids measured by different methods and its rationalization

  • Aparna Zagabathuni,
  • Sudipto Ghosh and
  • Shyamal Kumar Pabi

Beilstein J. Nanotechnol. 2016, 7, 2037–2044, doi:10.3762/bjnano.7.194

Graphical Abstract
  • volume expansion coefficient of water, ∆T is the difference in temperature between the fluid and the nanoparticle, and g is the gravitational acceleration. According to the law of impact dynamics, the particle bounces back when it hits the heat source. By generating a linear expression from meso
PDF
Album
Full Research Paper
Published 20 Dec 2016

Improved lithium-ion battery anode capacity with a network of easily fabricated spindle-like carbon nanofibers

  • Mengting Liu,
  • Wenhe Xie,
  • Lili Gu,
  • Tianfeng Qin,
  • Xiaoyi Hou and
  • Deyan He

Beilstein J. Nanotechnol. 2016, 7, 1289–1295, doi:10.3762/bjnano.7.120

Graphical Abstract
  • MnO and carbon materials can effectively resolve problems such as the high conductivity of the carbon materials and allows a buffering for the volume expansion or contraction to some degree. Moreover, many studies have shown that N modification can improve the conductivity and Li+ storage performance
PDF
Album
Full Research Paper
Published 14 Sep 2016

Mesoporous hollow carbon spheres for lithium–sulfur batteries: distribution of sulfur and electrochemical performance

  • Anika C. Juhl,
  • Artur Schneider,
  • Boris Ufer,
  • Torsten Brezesinski,
  • Jürgen Janek and
  • Michael Fröba

Beilstein J. Nanotechnol. 2016, 7, 1229–1240, doi:10.3762/bjnano.7.114

Graphical Abstract
  • at the end of discharge. In consequence, the cell suffers from low Coulombic efficiency and short cycle life [8][10][11]. The third drawback is a volume expansion of about 80% during discharge, resulting from the lower density and thus higher molar volume of lithium sulfide (28.0 cm3·mol−1 compared
  • significant attention because sulfur and the resulting polysulfides can be confined in the shell while the large cavity offers room for sulfur storage and volume expansion during discharge [23][24][25][26][27][28][29][30][31]. However, there is an ongoing discussion on the location of sulfur in the hollow
PDF
Album
Supp Info
Full Research Paper
Published 30 Aug 2016

In situ characterization of hydrogen absorption in nanoporous palladium produced by dealloying

  • Eva-Maria Steyskal,
  • Christopher Wiednig,
  • Norbert Enzinger and
  • Roland Würschum

Beilstein J. Nanotechnol. 2016, 7, 1197–1201, doi:10.3762/bjnano.7.110

Graphical Abstract
  • for nanoporous gold, which is caused by alterations in the atomic bindings in superficial atomic layers [19]. In conclusion, resistometry and dilatometry represent two efficient, independent methods to characterize the hydrogen concentration in nanoporous palladium. The volume expansion of nanoporous
PDF
Album
Letter
Published 17 Aug 2016

Hydration of magnesia cubes: a helium ion microscopy study

  • Ruth Schwaiger,
  • Johannes Schneider,
  • Gilles R. Bourret and
  • Oliver Diwald

Beilstein J. Nanotechnol. 2016, 7, 302–309, doi:10.3762/bjnano.7.28

Graphical Abstract
  • water molecules from the indium substrate. As a result, thin magnesium hydroxide layers spontaneously grew, giving rise to characteristic volume expansion effects, which depended on the size of the particles. Rounding of the originally sharp cube edges leads to a significant loss of the morphological
  • ion microscopy; magnesia nanocubes; nanomaterials aging; oxide nanomaterials; surface hydroxylation; thin water films; volume expansion; Introduction Knowledge about the stability of engineered nanomaterials in aqueous systems is critical for predicting their functionality under environmental
  • significant volume expansion. For refractory materials, related phenomena can have desired [22] as well as undesired consequences for the macroscopic materials properties [23]. In the present study we employed this characteristic effect to trace the presence of spurious amounts of adsorbed water on the
PDF
Album
Supp Info
Full Research Paper
Published 29 Feb 2016

Metal hydrides: an innovative and challenging conversion reaction anode for lithium-ion batteries

  • Luc Aymard,
  • Yassine Oumellal and
  • Jean-Pierre Bonnet

Beilstein J. Nanotechnol. 2015, 6, 1821–1839, doi:10.3762/bjnano.6.186

Graphical Abstract
  • . For instance, theMg2CoH5 lattice parameters a and c rise until x = 1 (from 4.4940(3) to 4.517(2) Å and from 6.582(1) to 6.608(1) Å, respectively; a cell volume expansion of 1.44%), evoking a phase transformation. For Mg2NiH4 the lattice parameter c decreases from 6.538(1) to 6.477(2) Å, which is
PDF
Album
Review
Published 31 Aug 2015

From lithium to sodium: cell chemistry of room temperature sodium–air and sodium–sulfur batteries

  • Philipp Adelhelm,
  • Pascal Hartmann,
  • Conrad L. Bender,
  • Martin Busche,
  • Christine Eufinger and
  • Juergen Janek

Beilstein J. Nanotechnol. 2015, 6, 1016–1055, doi:10.3762/bjnano.6.105

Graphical Abstract
PDF
Album
Review
Published 23 Apr 2015

Influence of grain size and composition, topology and excess free volume on the deformation behavior of Cu–Zr nanoglasses

  • Daniel Şopu and
  • Karsten Albe

Beilstein J. Nanotechnol. 2015, 6, 537–545, doi:10.3762/bjnano.6.56

Graphical Abstract
  • case of Cu-rich metallic glass. In [17] it has been shown that the volume expansion inside the shear band is related to the creation of new FI clusters which show a lower packing density. The creation of these new less densely packed FI clusters fully compensate the destruction of the original
PDF
Album
Full Research Paper
Published 24 Feb 2015
Other Beilstein-Institut Open Science Activities