Search results

Search for "substrate" in Full Text gives 1377 result(s) in Beilstein Journal of Nanotechnology. Showing first 200.

Exploring internal structures and properties of terpolymer fibers via real-space characterizations

  • Michael R. Roenbeck and
  • Kenneth E. Strawhecker

Beilstein J. Nanotechnol. 2023, 14, 1004–1017, doi:10.3762/bjnano.14.83

Graphical Abstract
  • expect that these features resulted from the way this particular fiber split open after FIB notching. Likewise, the lone drop in stiffness makes sense, as the AFM probe experiences a local reduction in tip–substrate contact area. However, similar topography and stiffness jumps forming a compliant band
  • stiffness (or “stiffness”), quantified in [N/m], makes no assumptions about tip–substrate interactions such as tip size or shape. It is primarily useful for semi-quantitative mapping to show the relative fluctuations in stiffness within different regions. However, stiffness itself is not a material property
  • AFM tip was taken to be a cylindrical punch, and the tip radius was calibrated by scanning on polystyrene (ET,PS = 2.7 GPa, Bruker) as a control substrate before and after each scan on a fiber surface. ET quantifications from fiber maps were only kept when mean ET,PS values varied by less than 10
PDF
Album
Full Research Paper
Published 05 Oct 2023

Isolation of cubic Si3P4 in the form of nanocrystals

  • Polina K. Nikiforova,
  • Sergei S. Bubenov,
  • Vadim B. Platonov,
  • Andrey S. Kumskov,
  • Nikolay N. Kononov,
  • Tatyana A. Kuznetsova and
  • Sergey G. Dorofeev

Beilstein J. Nanotechnol. 2023, 14, 971–979, doi:10.3762/bjnano.14.80

Graphical Abstract
  • the case of alcoholysis passivation, degassed 1-dodecanol was introduced to the Si3P4 product powder without air contact. Si3P4 NPs samples were examined on a diffractometer DRON-4-07 (Cu Kα radiation) in the form of films on a polished quartz substrate; phase analysis was performed using the program
  • –1100 nm. The mass concentration of Si3P4 material in the sol (for the sake of attenuation coefficient calculation) was determined by drop casting 3.00 μL of the sol onto a sapphire substrate followed by an XRF study of the resultant film. DFT-GGA computations (structure optimization and calculation of
PDF
Album
Supp Info
Full Research Paper
Published 26 Sep 2023

Low temperature atomic layer deposition of cobalt using dicobalt hexacarbonyl-1-heptyne as precursor

  • Mathias Franz,
  • Mahnaz Safian Jouzdani,
  • Lysann Kaßner,
  • Marcus Daniel,
  • Frank Stahr and
  • Stefan E. Schulz

Beilstein J. Nanotechnol. 2023, 14, 951–963, doi:10.3762/bjnano.14.78

Graphical Abstract
  • contamination [16]. Thermal ALD processes operate usually at temperatures higher than 150 °C [17][18][19][20][21]. Characteristic for ALD processes, the growth rate is mainly independent of the substrate temperature in a specific temperature range, often denominated as ALD window. Within this range, the
  • angle of 70° towards the wafer normal. However, for measurements the inner reactor has to be opened and the substrate has to be moved to a defined measurement position. This was done after a subset of typically 100 ALD cycles. The film thickness after a series of depositions was determined ex situ using
  • sites of the substrate surface covered by the precursor will saturate with increasing duration of the precursor pulse resulting in an upper limit of the growth rate per cycle. This saturation follows an exponential decay curve [40]. Adapting Tuomo Suntola’s assumption of the surface occupation
PDF
Album
Supp Info
Full Research Paper
Published 15 Sep 2023

Ni, Co, Zn, and Cu metal-organic framework-based nanomaterials for electrochemical reduction of CO2: A review

  • Ha Huu Do and
  • Hai Bang Truong

Beilstein J. Nanotechnol. 2023, 14, 904–911, doi:10.3762/bjnano.14.74

Graphical Abstract
  • carbon pastes, which serve as cathodes for CO2RR. To illustrate, Kornienko et al. deposited a Co-based MOF material onto an FTO substrate as a working electrode for CO2 conversion [40]. This material exhibited good performance in CO generation, achieving a faradaic efficiency (FE) of 76% (at −0.7 V vs
  • converting individual MOFs into MOF-derived carbon-support nanomaterials. Another issue is the durability of the working electrodes. Many studies have employed drop casting and the use of binders to affix MOFs onto the substrate for electrode fabrication. This approach presents drawbacks such as reduced
  • accessibility to active sites and unstable MOFs/substrate interfaces. Therefore, further studies are required to develop binder-free electrodes by in situ synthesis of MOFs on conductive substrates, such as nickel foam, copper foil, and carbon cloth, to overcome the aforementioned limitations and advancing the
PDF
Album
Review
Published 31 Aug 2023

Two-dimensional molecular networks at the solid/liquid interface and the role of alkyl chains in their building blocks

  • Suyi Liu,
  • Yasuo Norikane and
  • Yoshihiro Kikkawa

Beilstein J. Nanotechnol. 2023, 14, 872–892, doi:10.3762/bjnano.14.72

Graphical Abstract
  • , namely molecule–molecule, molecule–substrate, and solvent–molecule interactions (Figure 1). The target molecules are dissolved in non-conductive solvents with low volatility, such as 1-phenyloctane, 1,2,4-trichlorobenzene (TCB), long-chain n-alkanes, and octanoic acid [35][36][37]. The physisorbed
  • , halogen bonding, and metal coordination, are often exploited for the formation of 2D structures. However, dispersion forces originating from the alkyl chains also play an important role in the adsorption onto the substrate, as well as in the in-plane intermolecular interactions at the solid/liquid
  • functionalized group have been reported to exhibit distorted adsorption on HOPG in some cases [44][58][59][60][61]. This review mainly focuses on the alkyl chain effects on the HOPG surface. However, it is important to note that the kinds of substrate have influence on the 2D molecular self-assemblies. 2D
PDF
Album
Review
Published 23 Aug 2023

N-Heterocyclic carbene-based gold etchants

  • Robert B. Chevalier,
  • Justin Pantano,
  • Matthew K. Kiesewetter and
  • Jason R. Dwyer

Beilstein J. Nanotechnol. 2023, 14, 865–871, doi:10.3762/bjnano.14.71

Graphical Abstract
  • the present work we show that one must carefully consider the particular NHC-related species, the solvent, the exposure time, and the concentration in order to avoid deleterious effects such as dissolution of the gold film or nanoparticle substrate. At the same time, we introduce a molecular etchant
PDF
Album
Supp Info
Full Research Paper
Published 21 Aug 2023

Silver-based SERS substrates fabricated using a 3D printed microfluidic device

  • Phommachith Sonexai,
  • Minh Van Nguyen,
  • Bui The Huy and
  • Yong-Ill Lee

Beilstein J. Nanotechnol. 2023, 14, 793–803, doi:10.3762/bjnano.14.65

Graphical Abstract
  • , resulting in Ag nanoparticles of uniform shape and size. The study investigates the effects of various synthesis conditions on the size distribution, dispersity, and localized surface plasmon resonance wavelength of the Ag nanoparticles. To create the SERS substrate, the as-synthesized Ag nanoparticles were
  • and 8.21 × 103, respectively, were obtained. The detection limits for rhodamine B and melamine were estimated to be 1.94 × 10−10 M and 2.8 × 10−8 M with relative standard deviation values of 3.4% and 4.6%, respectively. The developed SERS substrate exhibits exceptional analytical performance and has
  • the potential to be a valuable analytical tool for monitoring environmental contaminants. Keywords: 3D printing; microfluidic droplet; SERS substrate; silver nanoparticle; smartphone detection; Introduction Surface-enhanced Raman spectroscopy (SERS) has emerged as a powerful optical trace detection
PDF
Album
Supp Info
Full Research Paper
Published 21 Jul 2023

Control of morphology and crystallinity of CNTs in flame synthesis with one-dimensional reaction zone

  • Muhammad Hilmi Ibrahim,
  • Norikhwan Hamzah,
  • Mohd Zamri Mohd Yusop,
  • Ni Luh Wulan Septiani and
  • Mohd Fairus Mohd Yasin

Beilstein J. Nanotechnol. 2023, 14, 741–750, doi:10.3762/bjnano.14.61

Graphical Abstract
  • arrangement and grow vertically from the substrate [20]. Said growth model is similar to the mechanism proposed by Baker and co-workers [21][22][23]. At elevated temperatures, catalytic particles are formed on the substrate surface, and hydrocarbon molecules that undergo cracking in the flame diffuse to the
  • catalyst’s surface. Carbon atoms are adsorbed by the catalyst and deposited by diffusion to form nanotubes through continuous stacking. The weak interaction force between the catalyst particle and the substrate lifts the particles as the nanotubes grow, forming CNTs with catalyst particles at the tip. CNTs
  • are formed with catalyst particles at the bottom if the catalyst–substrate interaction force is more substantial [23]. Nevertheless, the rapid growth of CNTs was observed from the catalytic reaction within the flame environment. Because of the coupled energy and mass transfer phenomena, the
PDF
Album
Full Research Paper
Published 21 Jun 2023

Cross-sectional Kelvin probe force microscopy on III–V epitaxial multilayer stacks: challenges and perspectives

  • Mattia da Lisca,
  • José Alvarez,
  • James P. Connolly,
  • Nicolas Vaissiere,
  • Karim Mekhazni,
  • Jean Decobert and
  • Jean-Paul Kleider

Beilstein J. Nanotechnol. 2023, 14, 725–737, doi:10.3762/bjnano.14.59

Graphical Abstract
  • process in an AIXTRON “Close Coupled Showerhead” reactor (6″ × 2″) at three different surface temperatures (580/600/640 °C). The n-type AXT substrate doping was typically in the range of 3 × 1018 to 5 × 1018 cm−3 with a thickness of 500 μm. Trimethylindium (TMIn), trimethylgallium (TMGa), phosphine (PH3
  • , immediately after the chemical cleaning step. The topography and the associated VCPD image are reported in Figure 2a and Figure 2b, respectively. Note that the origin (0;0) is identified as a point in the InP substrate. Moving along the positive direction of the y axis, one will reach the end of the sample
  • qualitative analysis. KPFM successfully detects the n-InP substrate (from 0 to 0.46 μm), the InP:nid/GaInAs:nid region (from 0.46 to 1.12 μm), the InP:Zn region (from 1.12 to 2.87 μm), and the GaInAsP:Zn/GaInAs:Zn region (from 2.87 to 3.09 μm). KPFM demonstrated a strong sensitivity on the local doping
PDF
Album
Full Research Paper
Published 14 Jun 2023

The microstrain-accompanied structural phase transition from h-MoO3 to α-MoO3 investigated by in situ X-ray diffraction

  • Zeqian Zhang,
  • Honglong Shi,
  • Boxiang Zhuang,
  • Minting Luo and
  • Zhenfei Hu

Beilstein J. Nanotechnol. 2023, 14, 692–700, doi:10.3762/bjnano.14.55

Graphical Abstract
  • transition from h-MoO3 to α-MoO3 Anisotropic thermal expansion and first-order phase transition The coefficient of thermal expansion (CTE) is an important mechanical parameter for the application of MoO3 thin films, as it can increase the mismatch between thin films and the substrate, causing microdevices to
PDF
Album
Supp Info
Full Research Paper
Published 07 Jun 2023

Humidity-dependent electrical performance of CuO nanowire networks studied by electrochemical impedance spectroscopy

  • Jelena Kosmaca,
  • Juris Katkevics,
  • Jana Andzane,
  • Raitis Sondors,
  • Liga Jasulaneca,
  • Raimonds Meija,
  • Kiryl Niherysh,
  • Yelyzaveta Rublova and
  • Donats Erts

Beilstein J. Nanotechnol. 2023, 14, 683–691, doi:10.3762/bjnano.14.54

Graphical Abstract
  • frequencies in comparison with the Bode plots taken for RH 50% (Figure 2c,d), indicating an increase of thickness of the water layer. Finally, the porous structure of the CuO nanowire bundles promotes capillary condensation of vapour, which can reach the substrate surface and enhance the conductivity through
  • reached the substrate. Fitting of the impedance spectra across the examined range of RH was performed using equivalent electric circuits R1(CR2), R1(QR2) and R1(Q[R2W]) as mentioned above (Figure 2b). The capacitor impedance is ZC,Q = 1/[Y0(iω)n], where the angular frequency ω, the imaginary unit i, Y0
  • naturally. The substrates were submerged in pure isopropanol (IPA) and ultrasonicated for 3 s to release the CuO nanowires. These nanowires were assembled on arrays of Cr/Au (3/60 nm) microelectrodes lithographically pre-patterned on a commercially available Si/SiO2 wafer substrate (MTI Corporation) diced
PDF
Album
Full Research Paper
Published 05 Jun 2023

Investigations on the optical forces from three mainstream optical resonances in all-dielectric nanostructure arrays

  • Guangdong Wang and
  • Zhanghua Han

Beilstein J. Nanotechnol. 2023, 14, 674–682, doi:10.3762/bjnano.14.53

Graphical Abstract
  • top of the silicon disks represent the trapped PS spheres. The metasurface consists of a 225 nm thick array of silicon disks on a quartz substrate with elliptical slots etched perforating each disk. The number and positions of the slots depend on the specific mode to be excited, and may be different
  • optical capturing of nanoscale particles and may have broad applications in medicine and biology. (a) Schematic overview of the metasurface structure composed of a silicon slotted-disk array on a quartz substrate. The trapped nanoscale particles and the incident plane wave are also illustrated. (b) Top
PDF
Album
Full Research Paper
Published 02 Jun 2023

Transferability of interatomic potentials for silicene

  • Marcin Maździarz

Beilstein J. Nanotechnol. 2023, 14, 574–585, doi:10.3762/bjnano.14.48

Graphical Abstract
  • (TDS), honeycomb dumbbell (HDS), and large honeycomb dumbbell (LHDS) silicene [8]. There are still doubts about their dynamic stability. For example, for a flat phase, the negative ZO phonon mode could be removed by the selection of an appropriate substrate [3][9]. The ability of potentials for 3D
  • phase is mechanically stable, but can be dynamically unstable, that is, the optical ZO phonon mode has a negative frequency. Other authors have also observed similar FS phase behavior [4][13]. However, since silicene is not a free-standing structure in nature, the selection of a proper substrate may
PDF
Album
Supp Info
Full Research Paper
Published 08 May 2023

SERS performance of GaN/Ag substrates fabricated by Ag coating of GaN platforms

  • Magdalena A. Zając,
  • Bogusław Budner,
  • Malwina Liszewska,
  • Bartosz Bartosewicz,
  • Łukasz Gutowski,
  • Jan L. Weyher and
  • Bartłomiej J. Jankiewicz

Beilstein J. Nanotechnol. 2023, 14, 552–564, doi:10.3762/bjnano.14.46

Graphical Abstract
  • PLD-made GaN/Ag substrates, the estimated enhancement factors were higher than for MS-made substrates with a comparable thickness of the Ag layer. In the best case, the PLD-made GaN/Ag substrate exhibited an approximately 4.4 times higher enhancement factor than the best MS-made substrate. Keywords
  • view of SERS studies, the presence of peaks from the substrate in the spectrum is not desirable because it may hinder or prevent the correct interpretation of the spectra due to peak overlapping. Therefore, we did not study substrates with Ag layers thinner than 200 nm because the GaN material has an
  • , we assumed the same Ag layer thickness of 215 ± 7 nm for all samples, equivalent to the thickness of the Ag layer deposited on a flat Si substrate at room temperature. The given thickness corresponds to the amount of deposited Ag determined by the number of laser pulses and does not reflect changes
PDF
Album
Full Research Paper
Published 03 May 2023

Observation of multiple bulk bound states in the continuum modes in a photonic crystal cavity

  • Rui Chen,
  • Yi Zheng,
  • Xingyu Huang,
  • Qiaoling Lin,
  • Chaochao Ye,
  • Meng Xiong,
  • Martijn Wubs,
  • Yungui Ma,
  • Minhao Pu and
  • Sanshui Xiao

Beilstein J. Nanotechnol. 2023, 14, 544–551, doi:10.3762/bjnano.14.45

Graphical Abstract
  • -emitting devices [15][16][17][37], and nonlinear light generation [18][22][23][38][39][40]. In this paper, we propose a design of symmetry-protected BIC cavities consisting of aluminum gallium arsenide (AlGaAs) nanoblocks on a sapphire substrate. Motivated by the idea of in-plane leakage suppression by a
  • eigenwavelength, yielding higher Q factors to the resonances at longer wavelength. Fabry–Pérot resonances of the substrate (thickness d = 600 μm, refractive index n = 1.75), with wavelength intervals of (λ2/2nd) ≈ 1.1 nm lead to the oscillations with a period of about 1 nm in Figure 4. Discussion Excitation
  • cell. (a) Schematic of a unit cell consisting of an AlGaAs nanoblock on a sapphire substrate. The side length and the height of the nanoblock are w and h, respectively. The period of the unit is p. (b) Band diagram related to the MD BIC mode. The electric field distribution for the mode at the Г point
PDF
Album
Full Research Paper
Published 27 Apr 2023

Carbon nanotube-cellulose ink for rapid solvent identification

  • Tiago Amarante,
  • Thiago H. R. Cunha,
  • Claudio Laudares,
  • Ana P. M. Barboza,
  • Ana Carolina dos Santos,
  • Cíntia L. Pereira,
  • Vinicius Ornelas,
  • Bernardo R. A. Neves,
  • André S. Ferlauto and
  • Rodrigo G. Lacerda

Beilstein J. Nanotechnol. 2023, 14, 535–543, doi:10.3762/bjnano.14.44

Graphical Abstract
  • [39][40]. Besides, graphene films deposited on cellulose paper and a graphene/cellulose composite were also reported as a solvent sensor material [30][33]. However, most of these works rely on cellulose as a paper substrate or as a thick composite film that cannot be readily employed for large-scale
  • more information). Also, to compare our results with a simple conductive response to the pure liquids, we performed control experiments on a substrate without applying the ink. Our sensor film proved to be two orders of magnitude more sensitive than the bare substrates with only electrical contacts
PDF
Album
Supp Info
Full Research Paper
Published 26 Apr 2023

Nanoarchitectonics to entrap living cells in silica-based systems: encapsulations with yolk–shell and sepiolite nanomaterials

  • Celia Martín-Morales,
  • Jorge Fernández-Méndez,
  • Pilar Aranda and
  • Eduardo Ruiz-Hitzky

Beilstein J. Nanotechnol. 2023, 14, 522–534, doi:10.3762/bjnano.14.43

Graphical Abstract
  • conditions had been determined, the preparation of the G57-4 silica gel substrate was used to produce diverse biohybrid systems incorporating living cyanobacterial or yeast cells, as well as pre-synthesised yolk–shell bionanobybrids. In all cases, the microstructural features of the resulting biohybrid
  • morphology. This image focusses on a “hollow region” of yeast cells encapsulated into the silica gel substrate. In Figure 2B, pseudohyphal growth is clearly observed, yielding long filaments of associated cells that expand as a three-dimensional network within the matrix. In this hollow region within the
  • improved transport of nutrients and metabolites across the material. The FE-SEM images in Figure 2C and Figure 2D show the same microorganism cells but previously encapsulated in yolk–shell microstructures. They are arranged differently from those immobilized freely in the silica gel substrate. In the
PDF
Album
Supp Info
Full Research Paper
Published 25 Apr 2023

Microneedle patches – the future of drug delivery and vaccination?

  • Zahra Faraji Rad,
  • Philip D. Prewett and
  • Graham J. Davies

Beilstein J. Nanotechnol. 2023, 14, 494–495, doi:10.3762/bjnano.14.40

Graphical Abstract
  • diagnostics. Microneedles provide shallow transdermal access to the ISF and are an excellent match to these and other developments when integrated into arrays on a substrate to form a patch. The possibility of inexpensive mass-manufactured MN patches for drug delivery, vaccination, and diagnostic testing is a
PDF
Editorial
Published 14 Apr 2023

A mid-infrared focusing grating coupler with a single circular arc element based on germanium on silicon

  • Xiaojun Zhu,
  • Shuai Li,
  • Ang Sun,
  • Yongquan Pan,
  • Wen Liu,
  • Yue Wu,
  • Guoan Zhang and
  • Yuechun Shi

Beilstein J. Nanotechnol. 2023, 14, 478–484, doi:10.3762/bjnano.14.38

Graphical Abstract
  • cover the wavelength of 6–15 μm. Hence, it is a suitable material for biosensors applications in the MIR band [6]. In recent years, researchers have verified the feasibility of Ge MIR waveguides on various substrate materials, such as germanium on silicon (Ge-on-Si), germanium on silicon-on-insulator
  • (GOSI) [7], germanium on insulating substrate (GOI) [8][9], and germanium on silicon nitride substrate (GOSN) [10]. Among them, Ge-on-Si platforms have been widely applied in on-chip sensors, nonlinear optics, free space communication, and thermal imaging [1][6] because portable, cost-effective, and
  • waveguide with a focusing subwavelength grating MIR grating coupler, the difficulty of preparation has been considerably reduced. Principle and Design Figure 1a shows the tilted view of the proposed MIR FGC. The Ge waveguide layer is built onto the Si substrate forming the Ge-on-Si structure. The proposed
PDF
Album
Full Research Paper
Published 06 Apr 2023

Conjugated photothermal materials and structure design for solar steam generation

  • Chia-Yang Lin and
  • Tsuyoshi Michinobu

Beilstein J. Nanotechnol. 2023, 14, 454–466, doi:10.3762/bjnano.14.36

Graphical Abstract
  • formed by sequential polymerization on paper substrates, to enhance their light capturing capability (Figure 6a) [32]. Transmission and diffuse reflectance measurements of the PPy nanosheets confirmed that the multilayer PPy nanosheets on the paper substrate exhibited a distinct broadband absorption in
  • process of multilayer PPy nanosheets. (b)Transmittance and (c) diffuse reflectance spectra of the air-laid paper substrate coated with different layer numbers of PPy nanosheets. The inset figure in (b) is the enlarged view of the 500–1500 nm wavelength range. The solar spectral irradiance (AM1.5G) is
PDF
Album
Review
Published 04 Apr 2023

Molecular nanoarchitectonics: unification of nanotechnology and molecular/materials science

  • Katsuhiko Ariga

Beilstein J. Nanotechnol. 2023, 14, 434–453, doi:10.3762/bjnano.14.35

Graphical Abstract
  • solid substrate could be a key technology for building nanoscale electronic circuits. Nakayama and co-workers have succeeded in controlling the self-assembly and intermolecular chemical reactions of functional molecular components predeposited on a solid surface [112]. Specifically, they fabricated
  • molecule–polymer nanoconjugates consisting of C60 molecules and polydiacetylene nanowires at designated locations on a solid surface (Figure 2). First, diacetylene monomers were self-assembled on the solid substrate. Then, polydiacetylene nanowires were formed by chain polymerization between the monomer
  • multistep electrochemical epitaxial polymerization technique [113]. This technique consists of combining two electrochemical polymerization processes using different monomer solutions. First, a voltage pulse was applied to an iodine-covered Au(111) substrate in an electrolyte solution containing the first
PDF
Album
Review
Published 03 Apr 2023

Evaluation of electrosynthesized reduced graphene oxide–Ni/Fe/Co-based (oxy)hydroxide catalysts towards the oxygen evolution reaction

  • Karolina Cysewska,
  • Marcin Łapiński,
  • Marcin Zając,
  • Jakub Karczewski,
  • Piotr Jasiński and
  • Sebastian Molin

Beilstein J. Nanotechnol. 2023, 14, 420–433, doi:10.3762/bjnano.14.34

Graphical Abstract
  • CoNiFe-GO were fabricated without any additives directly on the nickel foam substrate. A significant improvement of the OER activity was observed after combining NiFe with GO (OER overpotential η(10 mA·cm−2): 210 mV) compared to NiFe (η: 235 mV) and GO (η: 320 mV) alone. A different OER activity was
  • electrode can also be improved by choosing a conductive and/or high surface area substrate, such as porous nickel foam [22][23]. In the literature, some research has been performed to evaluate the OER electrocatalytic performance of hybrid materials of Ni-, Fe- and/or Co-based oxides/(oxy)hydroxides and Gr
  • the surface of nickel foam. The chronoamperometric graph recorded during the deposition is presented in Figure 1a. Each synthesis (except that of GO) began with a fast increase of the cathodic current, which is associated with the formation of the new catalyst phase on the surface of the substrate [25
PDF
Album
Supp Info
Full Research Paper
Published 29 Mar 2023

Plasmonic nanotechnology for photothermal applications – an evaluation

  • A. R. Indhu,
  • L. Keerthana and
  • Gnanaprakash Dharmalingam

Beilstein J. Nanotechnol. 2023, 14, 380–419, doi:10.3762/bjnano.14.33

Graphical Abstract
  • nanoparticles induces dipoles in the substrate atoms in proximity of this polarization field, which in turn affects the nanoparticle resonance. This has been observed to induce higher-order resonances when the mismatch between the permittivity of the substrate and the surrounding of the nanoparticle increases
  • , as well as to (depending on the orientation of the applied field with respect to the induced fields in the nanoparticle and the substrate) increase or decrease in the absorption intensity [49][50][51]. It follows from the discussion that considerable effects to the plasmon resonance are affected by
PDF
Album
Review
Published 27 Mar 2023

The steep road to nonviral nanomedicines: Frequent challenges and culprits in designing nanoparticles for gene therapy

  • Yao Yao,
  • Yeongun Ko,
  • Grant Grasman,
  • Jeffery E. Raymond and
  • Joerg Lahann

Beilstein J. Nanotechnol. 2023, 14, 351–361, doi:10.3762/bjnano.14.30

Graphical Abstract
  • approach is that accounting for substrate contributions or proving the full availability of the NAT can be difficult and laborious. Alternatively, chromatographic and size-exclusion techniques, elemental analysis, or polymerase chain reaction (PCR) [60] mass spectrometry [61] can be effective if the
  • E2859-11 for AFM analysis, and ISO 21363:2020 for substrate-supported TEM analysis. When at all possible, obtaining the distribution of sizes from these methods with extension to obtain geometric properties (aspect ratio, minimum diameter, circularity, roundness, or sphericity) will allow for the
  • destruction of valuable media to fundamental changes to the payload. While several multimethod approaches may be capable of providing the ratio between mass of payload and mass of substrate, the mass of payload per unit volume, and the number of payload molecules per particle, there is no single commercial
PDF
Album
Supp Info
Perspective
Published 17 Mar 2023

Quasi-guided modes resulting from the band folding effect in a photonic crystal slab for enhanced interactions of matters with free-space radiations

  • Kaili Sun,
  • Yangjian Cai,
  • Uriel Levy and
  • Zhanghua Han

Beilstein J. Nanotechnol. 2023, 14, 322–328, doi:10.3762/bjnano.14.27

Graphical Abstract
  • index 1.45) substrate as an example to demonstrate that these modes can be switched to QGMs with ultrahigh Q-factors over a large operating bandwidth, as shown in Figure 1. When all air holes have the same radius, the whole structure represents a two-dimensional PCS structure with a square primitive
PDF
Album
Full Research Paper
Published 06 Mar 2023
Other Beilstein-Institut Open Science Activities