Search results

Search for "density of states" in Full Text gives 179 result(s) in Beilstein Journal of Nanotechnology.

Charge-transfer interactions between fullerenes and a mesoporous tetrathiafulvalene-based metal–organic framework

  • Manuel Souto,
  • Joaquín Calbo,
  • Samuel Mañas-Valero,
  • Aron Walsh and
  • Guillermo Mínguez Espallargas

Beilstein J. Nanotechnol. 2019, 10, 1883–1893, doi:10.3762/bjnano.10.183

Graphical Abstract
  • a small bandgap calculated to be 0.90 eV in spin-up or α-channel, and 0.72 eV in spin-down or β-channel (Figure 6), slightly smaller than that predicted for pristine MUV-2 (0.86 eV in β-channel) [53]. Analysis of the projected density of states (PDoS) indicates that the valence band maximum (VBM) in
  • −20.01 and −23.74 kcal/mol are calculated for C60@TTFTB in conformer A and B, respectively. Fullerene C60 is coloured in blue for better viewing. a) Projected density of states (PDoS) for the host–guest C60@MUV-2 system, with contributions from the TTF core, the secondary building unit (SBU), and the
PDF
Album
Supp Info
Full Research Paper
Published 18 Sep 2019

Giant magnetoresistance ratio in a current-perpendicular-to-plane spin valve based on an inverse Heusler alloy Ti2NiAl

  • Yu Feng,
  • Zhou Cui,
  • Bo Wu,
  • Jianwei Li,
  • Hongkuan Yuan and
  • Hong Chen

Beilstein J. Nanotechnol. 2019, 10, 1658–1665, doi:10.3762/bjnano.10.161

Graphical Abstract
  • states [27][28]. As for interfaces containing Ti and Ni atoms, spin up and spin down density of states at the Fermi level in the TiNiT-terminated structure are close to those in the TiNiB-terminated structure, and the spin up density of states at the Fermi level are higher than spin down density of
  • states at the Fermi level. As for interfaces containing Ti and Al atoms, spin up and spin down density of states at the Fermi level in both TiAlT and TiAlB terminated structures are much lower than in TiNiT and TiNiB terminated structures, and the spin up density of states at the Fermi level are
  • comparable to spin down density of states at the Fermi level. The ISP can be defined as ISP = (N↑ − N↓)/(N↑ + N↓), where N↑ and N↓ represent the spin up and spin down contributions to the total density of states (DOS) at the Fermi level, respectively. Table 1 shows that the calculated ISP of the TiAlB
PDF
Album
Full Research Paper
Published 08 Aug 2019

Gas sensing properties of individual SnO2 nanowires and SnO2 sol–gel nanocomposites

  • Alexey V. Shaposhnik,
  • Dmitry A. Shaposhnik,
  • Sergey Yu. Turishchev,
  • Olga A. Chuvenkova,
  • Stanislav V. Ryabtsev,
  • Alexey A. Vasiliev,
  • Xavier Vilanova,
  • Francisco Hernandez-Ramirez and
  • Joan R. Morante

Beilstein J. Nanotechnol. 2019, 10, 1380–1390, doi:10.3762/bjnano.10.136

Graphical Abstract
  • structure density of states is typical of native SnO2-x oxide covering the surface of pure metallic tin foils [37][38] and was confirmed for SnO2 powder samples by the presence of noticeable amounts of oxygen vacancies (Figure 7). XANES oxygen lines near K-edge spectra are presented in Figure 8. The fine
PDF
Album
Full Research Paper
Published 08 Jul 2019

Imaging the surface potential at the steps on the rutile TiO2(110) surface by Kelvin probe force microscopy

  • Masato Miyazaki,
  • Huan Fei Wen,
  • Quanzhen Zhang,
  • Yuuki Adachi,
  • Jan Brndiar,
  • Ivan Štich,
  • Yan Jun Li and
  • Yasuhiro Sugawara

Beilstein J. Nanotechnol. 2019, 10, 1228–1236, doi:10.3762/bjnano.10.122

Graphical Abstract
  • ]. Hence, we discuss a possible effect of orbit splitting. In STM studies, the local density of states (LDOS) of the orbit splitting has a large influence on the dipole moment of atomic species at the step edges. Although the orbit splitting has a big influence on the tunneling current, the influence on
PDF
Album
Supp Info
Full Research Paper
Published 13 Jun 2019

Pure and mixed ordered monolayers of tetracyano-2,6-naphthoquinodimethane and hexathiapentacene on the Ag(100) surface

  • Robert Harbers,
  • Timo Heepenstrick,
  • Dmitrii F. Perepichka and
  • Moritz Sokolowski

Beilstein J. Nanotechnol. 2019, 10, 1188–1199, doi:10.3762/bjnano.10.118

Graphical Abstract
  • density of states is present. Their arrangement reveals that the orientation of the molecules is very close to the direction of the long diagonal of the unit cell. The hard-sphere model in Figure 2b, derived from LEED, indicates an included angle of about 1.5°. The alignment of the diagonal of the unit
  • transfer is mediated by the electrons of the substrate, and, consequently both interacting orbitals exhibit at least some density of states at the Fermi edge. For the interpretation of the tunnel contrast and the assignment of the molecules, we use information from the mixed phase of TTT and TNAP on the Au
  • mixed structure of TTT and TNAP on Au(111) the brighter molecules could be assigned to the donor type TTT molecules, while the TNAP molecules appeared darker. Hence, we propose that for HTPEN/TNAP the high density of states leading to the bright rows in the STM images at negative bias voltages is also
PDF
Album
Supp Info
Full Research Paper
Published 06 Jun 2019

Synthesis and characterization of quaternary La(Sr)S–TaS2 misfit-layered nanotubes

  • Marco Serra,
  • Erumpukuthickal Ashokkumar Anumol,
  • Dalit Stolovas,
  • Iddo Pinkas,
  • Ernesto Joselevich,
  • Reshef Tenne,
  • Andrey Enyashin and
  • Francis Leonard Deepak

Beilstein J. Nanotechnol. 2019, 10, 1112–1124, doi:10.3762/bjnano.10.111

Graphical Abstract
  • , and hence the lattice is compressed upon substitution of La by Sr atom. Any further Sr insertion leads to electron deficiency within the SrxLa1−xS–TaS2 misfits and to the weakening of cohesion between LaS and TaS2 layers. The electronic density-of-states (DOSs) for the misfits with a Sr content up to
PDF
Album
Supp Info
Full Research Paper
Published 24 May 2019

Electronic and magnetic properties of doped black phosphorene with concentration dependence

  • Ke Wang,
  • Hai Wang,
  • Min Zhang,
  • Yan Liu and
  • Wei Zhao

Beilstein J. Nanotechnol. 2019, 10, 993–1001, doi:10.3762/bjnano.10.100

Graphical Abstract
  • the decreasing values of ΔEsp. These results suggest that doped phosphorenes with large supercell and low dopant concentration should be in the focus for the fabrication of spintronic devices. Magnetism distribution Figure 4 shows the partial density of states (PDOSs) of Si- and S-doped phosphorenes
  • phosphorene with (e) 2 × 2 × 1, (f) 3 × 3 × 1, (g) 4 × 4 × 1 and (h) 5 × 5 × 1 supercells, respectively. The Fermi level is shifted to 0 eV. Energy differences ΔEsp and net magnetic moments M as functions of the in-plane size of supercell. The partial density of states (PDOSs) of Si- and S-doped phosphorenes
PDF
Album
Full Research Paper
Published 02 May 2019

Electronic properties of several two dimensional halides from ab initio calculations

  • Mohamed Barhoumi,
  • Ali Abboud,
  • Lamjed Debbichi,
  • Moncef Said,
  • Torbjörn Björkman,
  • Dario Rocca and
  • Sébastien Lebègue

Beilstein J. Nanotechnol. 2019, 10, 823–832, doi:10.3762/bjnano.10.82

Graphical Abstract
  • crystal structure of a monolayer of: (a) AcOCl , (b) BiOCl, (c) YOI and (d) ScOI. Partial and total density of states of monolayers of AcOBr, BaFBr, BiOBr, and CaFBr. The Fermi level is set to 0 eV. Partial and total density of states of monolayers of AcOCl, AlOCl, BaFCl, and BiOCl. The Fermi level is set
  • to 0 eV. Partial and total density of states of monolayers of CrOF, GaOF, InOF, and LaOF. The Fermi level is set to 0 eV. Partial and total density of states of monolayers of BiOI, LaOI, ScOI and YOI. The Fermi level is set to 0 eV. Band structures of monolayers AcOBr, BaFBr, BiOBr, and CaFBr, using
PDF
Album
Supp Info
Full Research Paper
Published 03 Apr 2019

Capillary force-induced superlattice variation atop a nanometer-wide graphene flake and its moiré origin studied by STM

  • Loji K. Thomas and
  • Michael Reichling

Beilstein J. Nanotechnol. 2019, 10, 804–810, doi:10.3762/bjnano.10.80

Graphical Abstract
  • an STM image is a map of the local electronic density of states (LDOS), such electronic modifications may be visualized in real space. When STM is operated at solid–liquid interfaces, the capillary force due to the meniscus formed between the tip and the surface could be utilized for mechanically
PDF
Album
Supp Info
Full Research Paper
Published 01 Apr 2019

The effect of translation on the binding energy for transition-metal porphyrines adsorbed on Ag(111) surface

  • Luiza Buimaga-Iarinca and
  • Cristian Morari

Beilstein J. Nanotechnol. 2019, 10, 706–717, doi:10.3762/bjnano.10.70

Graphical Abstract
  • exchange–correlation functionals, we compared the density of states obtained using BH or the Perdew–Burke–Ernzerhoff (PBE) functional [63]. The data presented in Supporting Information File 1, Figure S1, shows that the DOS are almost identical for VPP, MnPP and FePP, while for three other molecules a
  • effect on the electronic structure of the molecule is strong enough to change the magnetization of the adsorbed molecule (see Supporting Information File 1, Figure S5 left panel, for details of the projected density of states of NiPP at the “i” and “b” points). The density of states of the “i” and “b
  • ” positions shows that in the bridge position the 3d orbital at 1.3 eV above the Fermi level is relatively localized from an energetically point of view. At the “i” position it interacts with the silver substrate, leading to a very broad density of states that is in the vicinity of the Fermi level
PDF
Album
Supp Info
Full Research Paper
Published 13 Mar 2019

A carrier velocity model for electrical detection of gas molecules

  • Ali Hosseingholi Pourasl,
  • Sharifah Hafizah Syed Ariffin,
  • Mohammad Taghi Ahmadi,
  • Razali Ismail and
  • Niayesh Gharaei

Beilstein J. Nanotechnol. 2019, 10, 644–653, doi:10.3762/bjnano.10.64

Graphical Abstract
  • . Thus, the energy dispersion relation of AGNR is developed considering the molecular adsorption effect using a tight binding (TB) method. The carrier velocity is calculated based on the density of states (DOS) and carrier concentration (n) to obtain I–V characteristics and to monitor its variation in
  • path forward to overcome the constraints of experimental approaches. The adsorption of gas molecules can modulate different electrical and physical properties of the GNRs, such as density of states (DOS), carrier concentration, carrier velocity, I–V characteristics, and energy band structure. On the
  • theoretical studies have confirmed that the velocity of the electrons is a function of carrier concentration (n) and density of states (DOS). The electron’s velocity is directly proportional to the DOS at any instance. The carrier velocity in the AGNR can be obtained by the accumulative velocity of all the
PDF
Album
Full Research Paper
Published 04 Mar 2019

Coexisting spin and Rabi oscillations at intermediate time regimes in electron transport through a photon cavity

  • Vidar Gudmundsson,
  • Hallmann Gestsson,
  • Nzar Rauf Abdullah,
  • Chi-Shung Tang,
  • Andrei Manolescu and
  • Valeriu Moldoveanu

Beilstein J. Nanotechnol. 2019, 10, 606–616, doi:10.3762/bjnano.10.61

Graphical Abstract
  • single-particle components, their probability distribution in the contact area of the short quantum wire, and depends on their energy and the density of states of the leads at the corresponding energy. The leads are quasi-1D with a sharply peaked density of states near the subband bottoms. Orbital
PDF
Album
Supp Info
Full Research Paper
Published 01 Mar 2019

Mo-doped boron nitride monolayer as a promising single-atom electrocatalyst for CO2 conversion

  • Qianyi Cui,
  • Gangqiang Qin,
  • Weihua Wang,
  • Lixiang Sun,
  • Aijun Du and
  • Qiao Sun

Beilstein J. Nanotechnol. 2019, 10, 540–548, doi:10.3762/bjnano.10.55

Graphical Abstract
  • preferable to H2O. As the projected density of states (Supporting Information File 1, Figure S3) shows, we note that there is an overlapping of the p- and d-orbitals of the CO2 absorbed structure located at around −1.36/−0.46 eV. This is the result of the strong interaction between CO2 and Mo-doped BN
PDF
Album
Supp Info
Full Research Paper
Published 22 Feb 2019

Transport signatures of an Andreev molecule in a quantum dot–superconductor–quantum dot setup

  • Zoltán Scherübl,
  • András Pályi and
  • Szabolcs Csonka

Beilstein J. Nanotechnol. 2019, 10, 363–378, doi:10.3762/bjnano.10.36

Graphical Abstract
  • obtained from the leading-order term in Fermi’s golden rule as where α {L,R} is the lead index, is a characteristic tunneling rate between the normal lead Nα and the SC–QD–SC system, ρNα is the density of states at the Fermi energy in the lead Nα, and is the Fermi function. We calculate the stationary
PDF
Album
Supp Info
Full Research Paper
Published 06 Feb 2019

Investigation of CVD graphene as-grown on Cu foil using simultaneous scanning tunneling/atomic force microscopy

  • Majid Fazeli Jadidi,
  • Umut Kamber,
  • Oğuzhan Gürlü and
  • H. Özgür Özer

Beilstein J. Nanotechnol. 2018, 9, 2953–2959, doi:10.3762/bjnano.9.274

Graphical Abstract
  • complicated as it could be interpreted as a map of the local charge density of states of the surface at the Fermi level [6]. Therefore, depending on tip type and its electronic charge state, different relative contrasts of the atoms on the surface, including even reversal of contrast, are obtained in STM
  • inequivalent. Since, b atoms have a greater contribution to the density of states close to Fermi energy compared to a atoms, they are imaged as bright spots at low bias voltages based on the STM investigations. These b atoms form a new larger triangular structure in STM images (two lattice points in this
  • slight difference in two different regions. Also, there is a small gradual increase in height starting midway through the STM image, which suggests a change in overall local density of states (LDOS) or topography. Line profiles of the force and STM topography in the two regions are given in the figure
PDF
Album
Full Research Paper
Published 28 Nov 2018

Intrinsic ultrasmall nanoscale silicon turns n-/p-type with SiO2/Si3N4-coating

  • Dirk König,
  • Daniel Hiller,
  • Noël Wilck,
  • Birger Berghoff,
  • Merlin Müller,
  • Sangeeta Thakur,
  • Giovanni Di Santo,
  • Luca Petaccia,
  • Joachim Mayer,
  • Sean Smith and
  • Joachim Knoch

Beilstein J. Nanotechnol. 2018, 9, 2255–2264, doi:10.3762/bjnano.9.210

Graphical Abstract
  • Moore’s law to reach the Si-crystallization limit of ca. 1.5 nm [15]. In our present work, we prove by hybrid-density functional theory (h-DFT) simulations and synchrotron-based long-term ultraviolet photoelectron spectroscopy (UPS) that usn-Si indeed can have a massive ΔE of their electronic density of
  • states (DOS) when embedded in SiO2 or Si3N4. We use further h-DFT results of a Si-nanowire (NWire) covered in SiO2 and Si3N4 to examine the device behaviour of an undoped Si-NWire FET based solely on CMOS-compatible materials (e.g., Si, SiO2, Si3N4) using the nonequilibrium Green’s function (NEGF
PDF
Album
Supp Info
Full Research Paper
Published 23 Aug 2018

Dumbbell gold nanoparticle dimer antennas with advanced optical properties

  • Janning F. Herrmann and
  • Christiane Höppener

Beilstein J. Nanotechnol. 2018, 9, 2188–2197, doi:10.3762/bjnano.9.205

Graphical Abstract
  • additionally, which is usually blue-shifted from the LSPR. As a consequence of these dependencies, the effective local density of states (LDOS) varies. The observed spectral variations for geometrically similar dimers are likely correlated to the spread in the fluorescence enhancement factor. In principle
PDF
Album
Full Research Paper
Published 17 Aug 2018

Spin-coated planar Sb2S3 hybrid solar cells approaching 5% efficiency

  • Pascal Kaienburg,
  • Benjamin Klingebiel and
  • Thomas Kirchartz

Beilstein J. Nanotechnol. 2018, 9, 2114–2124, doi:10.3762/bjnano.9.200

Graphical Abstract
  • absorption coefficient of a thin-film is measured over several orders of magnitude [52][53] which cannot be achieved by standard transmission–reflection measurements using an UV–vis photospectrometer. The large dynamic range of PDS makes it a powerful tool for to study the density of states in the sub
  • attributed to interference in the smooth films – which did not fully cancel out during data analysis – instead of actual variations in the materials’ density of states in the sub-bandgap region. The negative impact of the increased defect density on device performance is confirmed by comparing solar cells
PDF
Album
Supp Info
Full Research Paper
Published 08 Aug 2018

Metal-free catalysis based on nitrogen-doped carbon nanomaterials: a photoelectron spectroscopy point of view

  • Mattia Scardamaglia and
  • Carla Bittencourt

Beilstein J. Nanotechnol. 2018, 9, 2015–2031, doi:10.3762/bjnano.9.191

Graphical Abstract
  • zero-gap semiconductor). This peculiarity represents one of the biggest challenges for its use in concrete applications, because it results in a very low density of states (DOS) at the Fermi level for typical doping levels, making graphene an intrinsically inert material. To overcome these issues
  • , several strategies have been employed to tailor the properties of graphene. Being very sensitive to local perturbations, any modification of the lattice or adsorption of foreign atoms or molecules produce sudden evident changes in the density of states that can be monitored by the shift of the Dirac cone
  • the electronic states of graphene. In general, point defects generate localized states at the Fermi level, easily identifiable as protrusion by scanning tunneling microscopy (STM) [56], while carbon vacancies are responsible for an opening of the energy gap [57]. The increase in the density of states
PDF
Album
Review
Published 18 Jul 2018

The role of the Ge mole fraction in improving the performance of a nanoscale junctionless tunneling FET: concept and scaling capability

  • Hichem Ferhati,
  • Fayçal Djeffal and
  • Toufik Bentrcia

Beilstein J. Nanotechnol. 2018, 9, 1856–1862, doi:10.3762/bjnano.9.177

Graphical Abstract
  • combined using Matthiessen’s formula. Accordingly, the Lombardi model (CVT) is used to express the carrier mobility in the channel [27]. Moreover, the intrinsic parameters of the materials (Si, Si1−xGex and Ge) such as band gap, mobility and the density of states were considered to be dependent on the Ge
PDF
Album
Full Research Paper
Published 22 Jun 2018

Improving the catalytic activity for hydrogen evolution of monolayered SnSe2(1−x)S2x by mechanical strain

  • Sha Dong and
  • Zhiguo Wang

Beilstein J. Nanotechnol. 2018, 9, 1820–1827, doi:10.3762/bjnano.9.173

Graphical Abstract
  • increases upon application of tensile strain because the valence band and conduction band move upward and downward in energy, respectively. Previous reports showed that H adsorption depends on the density of states near the Fermi energy level [57][58], with the adsorption being enhanced as the d-band centre
PDF
Album
Full Research Paper
Published 18 Jun 2018

A zero-dimensional topologically nontrivial state in a superconducting quantum dot

  • Pasquale Marra,
  • Alessandro Braggio and
  • Roberta Citro

Beilstein J. Nanotechnol. 2018, 9, 1705–1714, doi:10.3762/bjnano.9.162

Graphical Abstract
  • electron dispersion in the two superconducting leads. In the following we furthermore assume that the bare electron dispersion varies in the interval [−D,D] and that the density of states is ρ0 = 1/(2D) with 2D the total bandwidth. The tunneling between the dot and the leads is described by the tunnel
PDF
Album
Full Research Paper
Published 08 Jun 2018

Josephson effect in junctions of conventional and topological superconductors

  • Alex Zazunov,
  • Albert Iks,
  • Miguel Alvarado,
  • Alfredo Levy Yeyati and
  • Reinhold Egger

Beilstein J. Nanotechnol. 2018, 9, 1659–1676, doi:10.3762/bjnano.9.158

Graphical Abstract
  • and take real-valued tunnel amplitudes λS/TS, see Figure 1a, using a gauge where the superconducting phase difference appears via the QD–TS tunneling term. These tunnel amplitudes contain density-of-states factors for the respective leads. The operator expression for the current flowing through the
PDF
Album
Full Research Paper
Published 06 Jun 2018

Free-radical gases on two-dimensional transition-metal disulfides (XS2, X = Mo/W): robust half-metallicity for efficient nitrogen oxide sensors

  • Chunmei Zhang,
  • Yalong Jiao,
  • Fengxian Ma,
  • Sri Kasi Matta,
  • Steven Bottle and
  • Aijun Du

Beilstein J. Nanotechnol. 2018, 9, 1641–1646, doi:10.3762/bjnano.9.156

Graphical Abstract
  • . The binding position and adsorption energy are analyzed in detail. In terms of the projected density of states (PDOS) and orbital contribution, our results offer a deep insight into the Fermi-level pinning mechanism. In addition, we expand the calculations to other 2D layered materials including GaS
PDF
Album
Supp Info
Full Research Paper
Published 05 Jun 2018

Interplay between pairing and correlations in spin-polarized bound states

  • Szczepan Głodzik,
  • Aksel Kobiałka,
  • Anna Gorczyca-Goraj,
  • Andrzej Ptok,
  • Grzegorz Górski,
  • Maciej M. Maśka and
  • Tadeusz Domański

Beilstein J. Nanotechnol. 2018, 9, 1370–1380, doi:10.3762/bjnano.9.129

Graphical Abstract
  • -of-plane spin–orbit field, respectively, and satisfy . Solving numerically the BdG equations (Equation 6) we can determine the local order parameter χi and occupancy niσ where f(ω) = [1 + exp(ω/kBT)]−1. In what follows, we shall inspect the spin-resolved local density of states For its numerical
  • observe a constructive influence of the Majorana quasiparticle on opposite-spin ↓ electrons. Figure 9 shows evolution of the spectral function ρ↑(ω) for various couplings tm. In the weak-coupling limit we clearly observe a reduction (by half) of the initial density of states. With increasing tm the
PDF
Album
Full Research Paper
Published 07 May 2018
Other Beilstein-Institut Open Science Activities