Search results

Search for "graphene" in Full Text gives 483 result(s) in Beilstein Journal of Nanotechnology. Showing first 200.

Synthesis of novel C-doped g-C3N4 nanosheets coupled with CdIn2S4 for enhanced photocatalytic hydrogen evolution

  • Jingshuai Chen,
  • Chang-Jie Mao,
  • Helin Niu and
  • Ji-Ming Song

Beilstein J. Nanotechnol. 2019, 10, 912–921, doi:10.3762/bjnano.10.92

Graphical Abstract
  • ]. In addition, hierarchical CdIn2S4/graphene nano-heterostructures have been fabricated as efficient photocatalysts for solar H2 evolution [33]. In this study, synergy can be obtained by combining the two strategies, self-doped C-atom g-C3N4 (CCN) and hybridization with another semiconductor, to
PDF
Album
Full Research Paper
Published 18 Apr 2019

Novel reversibly switchable wettability of superhydrophobic–superhydrophilic surfaces induced by charge injection and heating

  • Xiangdong Ye,
  • Junwen Hou and
  • Dongbao Cai

Beilstein J. Nanotechnol. 2019, 10, 840–847, doi:10.3762/bjnano.10.84

Graphical Abstract
  • between superhydrophobicity and superhydrophilicity using a folded graphene coating that was prepared by ethanol drying and prewetting. The wettability of droplets on electrodes coated with an insulator thin film can be changed by applying direct or alternating-current potentials. This phenomenon is
  • reversible transition of graphene surface water droplets from hydrophobic to hydrophilic was studied at a shutdown voltage [24]. Nbelayim et al. [25] achieved the reversible transformation of graphene from hydrophobic to hydrophilic driven by a direct-current voltage. Cui et al. [26] tested droplets of
PDF
Album
Full Research Paper
Published 10 Apr 2019

Electronic properties of several two dimensional halides from ab initio calculations

  • Mohamed Barhoumi,
  • Ali Abboud,
  • Lamjed Debbichi,
  • Moncef Said,
  • Torbjörn Björkman,
  • Dario Rocca and
  • Sébastien Lebègue

Beilstein J. Nanotechnol. 2019, 10, 823–832, doi:10.3762/bjnano.10.82

Graphical Abstract
  • theory; electronic properties; halide monolayers; Introduction The discovery of graphene [1] by exfoliation [2] opened a new era in several domains of science. Graphene has attracted great attention due to its unique properties [3] and because it offers many advantages in comparison with more common
  • materials [4][5][6][7]. Although graphene is the most extensively studied 2D crystal [8], graphene is gapless, and this lack of a bandgap hampers its application in electronic and optoelectronic devices. This has motivated the research on other two-dimensional (2D) materials with a finite bandgap, such as
PDF
Album
Supp Info
Full Research Paper
Published 03 Apr 2019

Capillary force-induced superlattice variation atop a nanometer-wide graphene flake and its moiré origin studied by STM

  • Loji K. Thomas and
  • Michael Reichling

Beilstein J. Nanotechnol. 2019, 10, 804–810, doi:10.3762/bjnano.10.80

Graphical Abstract
  • -sized graphene flake wherein we have induced a further rotation of the flake utilizing the capillary forces at play at a solid–liquid interface using STM tip motion. We propose a more “realistic” tip–surface meniscus relevant to STM at solid–liquid interfaces and show that the capillary force is
  • sufficient to account for the total expenditure of energy involved in the process. Keywords: capillary force; graphene; graphite; HOPG; moiré; solid–liquid interface; STM; superlattice; Introduction Graphite is a layered material with graphene sheets arranged in ABAB stacking. HOPG is an ordered form of
  • various defects such as cleavage steps, graphite strands, wrinkles/ridges, fiber-like entities, folded-over flakes, broken graphite pieces and other carbon aggregates [5][6][7][8][9][10]. Graphene, a monolayer of graphite, is the thinnest and strongest material ever known [11][12][13] and holds immense
PDF
Album
Supp Info
Full Research Paper
Published 01 Apr 2019

Polydopamine-coated Au nanorods for targeted fluorescent cell imaging and photothermal therapy

  • Boris N. Khlebtsov,
  • Andrey M. Burov,
  • Timofey E. Pylaev and
  • Nikolai G. Khlebtsov

Beilstein J. Nanotechnol. 2019, 10, 794–803, doi:10.3762/bjnano.10.79

Graphical Abstract
  • ], Fe3O4 [35], graphene [36], and many others [37][38]. The PDA shell surface contains numerous catechol and quinone groups suitable for click conjugation with various biomolecules through Michael addition and Schiff-base reaction [39][40]. The high loading capacity and biocompatibility of the PDA layer
PDF
Album
Supp Info
Full Research Paper
Published 01 Apr 2019

An efficient electrode material for high performance solid-state hybrid supercapacitors based on a Cu/CuO/porous carbon nanofiber/TiO2 hybrid composite

  • Mamta Sham Lal,
  • Thirugnanam Lavanya and
  • Sundara Ramaprabhu

Beilstein J. Nanotechnol. 2019, 10, 781–793, doi:10.3762/bjnano.10.78

Graphical Abstract
  • upcoming energy storage devices. Mainly porous, conductive, carbon-based materials, such as activated carbon, carbon black, carbon nanotubes, and graphene have been explored as electrode materials for EDLCs, which deliver high power density and prolonged cycle stability [10]. Among these, carbon nanofibers
PDF
Album
Supp Info
Full Research Paper
Published 01 Apr 2019

Trapping polysulfide on two-dimensional molybdenum disulfide for Li–S batteries through phase selection with optimized binding

  • Sha Dong,
  • Xiaoli Sun and
  • Zhiguo Wang

Beilstein J. Nanotechnol. 2019, 10, 774–780, doi:10.3762/bjnano.10.77

Graphical Abstract
  • as an efficient approach to improve the electrochemical performance. Due to the polarity of LPSs species, the interaction between LPSs and anchoring materials can be enhanced through polar–polar interactions. Graphene-based materials have been considered as anchoring materials due to their high
  • electrical conductivity [10]. However, the adsorption of polarized LPSs on non-polarized graphene is weak; heteroatom doping is necessary for improving the anchoring effect. Nitrogen doping has been used to modify the anchoring behavior of graphene, and the N-doped graphene showed improved anchoring of Li2Sx
  • specific capacity. Nanoflower MoS2/reduced graphene oxides composites exhibited a high specific capacity (1225 mAh/g) and an excellent cycling performance (680 mAh/g) after 250 cycles [19]. MoS2 nanoparticles have been used as a starting material for the synthesis of Li–S battery cathodes, since Li2S and
PDF
Album
Full Research Paper
Published 26 Mar 2019

Deposition of metal particles onto semiconductor nanorods using an ionic liquid

  • Michael D. Ballentine,
  • Elizabeth G. Embry,
  • Marco A. Garcia and
  • Lawrence J. Hill

Beilstein J. Nanotechnol. 2019, 10, 718–724, doi:10.3762/bjnano.10.71

Graphical Abstract
  • ionic liquids in deposition of metal particles onto semiconductor nanoparticles afforded many references involving deposition of nanoparticles onto graphene and carbon nanotubes [18][19][20][21][22][23][24]. CdS nanorods with average diameters below 10 nm have been synthesized by Rao et al. in ionic
PDF
Album
Supp Info
Letter
Published 14 Mar 2019

The effect of translation on the binding energy for transition-metal porphyrines adsorbed on Ag(111) surface

  • Luiza Buimaga-Iarinca and
  • Cristian Morari

Beilstein J. Nanotechnol. 2019, 10, 706–717, doi:10.3762/bjnano.10.70

Graphical Abstract
  • the geometric properties. For example, the magnetic properties of porphyrin on porous graphene-like carbon nitride gives values such 3μB for Fe, 0.91μB for Co and 1.49μB for Ni [67]. The magnetic moments obtained for the adsorbed molecules are close to those of the free molecules, with a single
PDF
Album
Supp Info
Full Research Paper
Published 13 Mar 2019

A carrier velocity model for electrical detection of gas molecules

  • Ali Hosseingholi Pourasl,
  • Sharifah Hafizah Syed Ariffin,
  • Mohammad Taghi Ahmadi,
  • Razali Ismail and
  • Niayesh Gharaei

Beilstein J. Nanotechnol. 2019, 10, 644–653, doi:10.3762/bjnano.10.64

Graphical Abstract
  • . Graphene nanoribbons (GNRs) which have exceptional electrical, physical, and chemical properties can fulfil all of these requirements. The detection of gas molecules using gas sensors, particularly in medical diagnostics and safety applications, is receiving particularly high demand. GNRs exhibit
  • remarkable changes in their electrical characteristics when exposed to different gases through molecular adsorption. In this paper, the adsorption effects of the target gas molecules (CO and NO) on the electrical properties of the armchair graphene nanoribbon (AGNR)-based sensor are analytically modelled
  • the AGNR sensor that are simulated based both on the proposed model and first principles calculations are compared, and an acceptable agreement is achieved. Keywords: armchair graphene nanoribbons; carrier velocity; gas sensor; I–V characteristics; molecular adsorption; Introduction The unique
PDF
Album
Full Research Paper
Published 04 Mar 2019

Mo-doped boron nitride monolayer as a promising single-atom electrocatalyst for CO2 conversion

  • Qianyi Cui,
  • Gangqiang Qin,
  • Weihua Wang,
  • Lixiang Sun,
  • Aijun Du and
  • Qiao Sun

Beilstein J. Nanotechnol. 2019, 10, 540–548, doi:10.3762/bjnano.10.55

Graphical Abstract
  • efficiency than conventional nanoparticles [22][23][24][25]. To date, the catalysts that have employed various single transition metal (TM) atoms anchored on the different substrates such as graphene [26][27][28][29] and graphitic carbon nitride [30][31][32][33][34], have presented good performance and high
  • efficiency. As an analogue of graphene, boron nitride (BN) nanomaterials have sparked worldwide interest in exploring their applications in many fields, both experimentally and theoretically, due to their excellent properties, such as high chemical stability, thermal conductivity, oxidation resistance and
  • of CO2 to CH4 is 0.64 and 0.77 eV [9]. In addition, the performance of Mo-doped BN is comparable to or even better than some catalysts composed of noble metals, such as titania-modified silver (0.47 eV) [48], and osmium and ruthenium atom doped graphene (0.52 eV) [26]. The Mo-doped BN monolayer
PDF
Album
Supp Info
Full Research Paper
Published 22 Feb 2019

Choosing a substrate for the ion irradiation of two-dimensional materials

  • Egor A. Kolesov

Beilstein J. Nanotechnol. 2019, 10, 531–539, doi:10.3762/bjnano.10.54

Graphical Abstract
  • to a peculiar doping effect, as it was shown for graphene in [1]. Besides, one cannot exclude participation of displaced recoil atoms [8] that reach the interface but remain within the substrate. Moreover, since there is a charge transfer between the substrate and the monolayer [9][10][11][12], the
  • Transport of Ions in Matter (TRIM) simulations using 160 MeV Xe ions for the irradiation of graphene on Cu, SiO2/Si and glass leads to negligible overall participation of substrate sputtering and a stronger (but small) role of the substrate recoils. Besides, it was noted that hot electrons generated in the
  • , initially recognized due to its catalytic effect in the CVD synthesis of graphene. SiO2, the most common material for supporting monolayers (usually in the SiO2/Si alignment), is in turn a typical dielectric, mostly referred to as introducing a comparatively small effect on the properties of 2D materials
PDF
Album
Full Research Paper
Published 22 Feb 2019

A porous 3D-RGO@MWCNT hybrid material as Li–S battery cathode

  • Yongguang Zhang,
  • Jun Ren,
  • Yan Zhao,
  • Taizhe Tan,
  • Fuxing Yin and
  • Yichao Wang

Beilstein J. Nanotechnol. 2019, 10, 514–521, doi:10.3762/bjnano.10.52

Graphical Abstract
  • , Geelong, Vic 3216, Australia 10.3762/bjnano.10.52 Abstract In this work, a unique three-dimensional (3D) structured carbon-based composite was synthesized. In the composite, multiwalled carbon nanotubes (MWCNT) form a lattice matrix in which porous spherical reduced graphene oxide (RGO) completes the 3D
  • cathode. It was believed that a carbon-based material network with specific morphology will not only allow for a high sulfur loading but will also provide both the chemical and physical restraints on the polysulfide shuttle effect. In the previous report, we synthesized porous 3D reduced graphene oxide
  • (3D-RGO), showing a reversible capacity of 790 mAh·g−1 (at 0.2C) after 200 cycles [26]. It has been reported that three-dimensional carbon nanotubes/graphene–sulfur (3DCGS) is an excellent cathode template, revealing a final capacity of 975 mAh·g−1 after 200 cycles [24]. Carbon nanotubes (CNTs) can be
PDF
Album
Supp Info
Full Research Paper
Published 21 Feb 2019

Polymorphic self-assembly of pyrazine-based tectons at the solution–solid interface

  • Achintya Jana,
  • Puneet Mishra and
  • Neeladri Das

Beilstein J. Nanotechnol. 2019, 10, 494–499, doi:10.3762/bjnano.10.50

Graphical Abstract
  • realizable application. On the other hand, exploring molecular functionalities under ambient conditions on technologically relevant two-dimensional surfaces such as graphene or MoS2 is highly desirable for realizing the full potential of molecules for a diverse range of devices [7][8][9][10][11]. At room
  • pyrazine-based tectons will be utilized to form modular supramolecular structures using self-assembly based on hydrogen and halogen bonds on surfaces such as graphene [29]. Both the halogen bond and the hydrogen bond have comparable strengths [30][31], and have been utilized frequently in supramolecular
  • with tunable nanocavities. A future perspective of these molecules is in the direction of developing modular supramolecular structures using the self-assembly based on hydrogen bonds and halogen bonds on surfaces such as graphene. A schematic molecule structure of 1. Polymorphic self-assembly of 1 at
PDF
Album
Supp Info
Full Research Paper
Published 18 Feb 2019

Widening of the electroactivity potential range by composite formation – capacitive properties of TiO2/BiVO4/PEDOT:PSS electrodes in contact with an aqueous electrolyte

  • Konrad Trzciński,
  • Mariusz Szkoda,
  • Andrzej P. Nowak,
  • Marcin Łapiński and
  • Anna Lisowska-Oleksiak

Beilstein J. Nanotechnol. 2019, 10, 483–493, doi:10.3762/bjnano.10.49

Graphical Abstract
  • materials characterized by a developed surface area [9], graphene-based [10] and diamond-based materials [11], conductive polymers (CPs) and hybrid materials [12][13], and numerous types of composite materials [14][15]. For many years, conjugated polymers, also known as conductive polymers, e.g., poly(3,4
PDF
Album
Full Research Paper
Published 15 Feb 2019

Wearable, stable, highly sensitive hydrogel–graphene strain sensors

  • Jian Lv,
  • Chuncai Kong,
  • Chao Yang,
  • Lu Yin,
  • Itthipon Jeerapan,
  • Fangzhao Pu,
  • Xiaojing Zhang,
  • Sen Yang and
  • Zhimao Yang

Beilstein J. Nanotechnol. 2019, 10, 475–480, doi:10.3762/bjnano.10.47

Graphical Abstract
  • 21500, P. R. China Research institute of Xi'an Jiaotong University, Hangzhou, Zhejiang, 311215, P. R. China 10.3762/bjnano.10.47 Abstract A stable and highly sensitive graphene/hydrogel strain sensor is designed by introducing glycerol as a co-solvent in the formation of a hydrogel substrate and then
  • casting a graphene solution onto the hydrogel in a simple, two-step method. This hydrogel-based strain sensor can effectively retain water in the polymer network due to the formation of strong hydrogen bonding between glycerol and water. The addition of glycerol not only enhances the stability of the
  • hydrogel over a wider temperature range, but also increases the stretchability of the hydrogel from 800% to 2000%. The enhanced sensitivity can be attributed to the graphene film, whereby the graphene flakes redistribute to optimize the contact area under different strains. The careful design enables this
PDF
Album
Supp Info
Letter
Published 14 Feb 2019

Temperature-dependent Raman spectroscopy and sensor applications of PtSe2 nanosheets synthesized by wet chemistry

  • Mahendra S. Pawar and
  • Dattatray J. Late

Beilstein J. Nanotechnol. 2019, 10, 467–474, doi:10.3762/bjnano.10.46

Graphical Abstract
  • future sensor devices. Keywords: nanosheets; PtSe2; Raman spectroscopy; sensor; thermal effect; Introduction Graphene, the most well-studied example of the two-dimensional (2D) aromatic compounds, is the building block of all forms of carbon allotropes [1]. In recent years, it has been widely studied
  • due to its extraordinary optical, electrical, mechanical, magnetic and chemical properties [2][3][4][5]. Like graphene and its organic analogues [6], inorganic 2D metal dichalcogenides also exhibit outstanding performance in many applications including transistors, sensors, photodetectors, solar cells
  • found to be −0.014 and −0.008, respectively. The nature of the temperature dependence of the Raman spectra of PtSe2 nanosheets is found to be similar in nature to that of graphene and other 2D materials such as MoS2, WS2, MoSe2, WSe2, BP, TiS3, multilayer graphene, and MoTe2 [29][31][32][33][34]. A
PDF
Album
Supp Info
Full Research Paper
Published 13 Feb 2019

Reduced graphene oxide supported C3N4 nanoflakes and quantum dots as metal-free catalysts for visible light assisted CO2 reduction

  • Md Rakibuddin and
  • Haekyoung Kim

Beilstein J. Nanotechnol. 2019, 10, 448–458, doi:10.3762/bjnano.10.44

Graphical Abstract
  • , we report the synthesis of novel reduced graphene oxide (rGO)-supported C3N4 nanoflake (NF) and quantum dot (QD) hybrid materials (GCN) for visible light induced reduction of CO2. The C3N4 NFs and QDs are prepared by acid treatment of C3N4 nanosheets followed by ultrasonication and hydrothermal
  • conduction band (CB) and valence band (VB) edge positions, exhibit efficient charge separation, have a large surface area, and it must be cost effective. Considering the above factors, nontoxic metal-free catalysts, such as graphitic carbon nitride (g-C3N4) and reduced graphene oxide (rGO) have received wide
  • the help of protons. Conclusion Reduced graphene oxide supported C3N4 NF and QD hybrid (GCN) materials have been successfully synthesized via a sol–gel and hydrothermal method and are characterized in this work. The formation of g-C3N4 NFs (20–45 nm) and QDs (2–3 nm) can be controlled by varying the
PDF
Album
Supp Info
Full Research Paper
Published 13 Feb 2019

Transport signatures of an Andreev molecule in a quantum dot–superconductor–quantum dot setup

  • Zoltán Scherübl,
  • András Pályi and
  • Szabolcs Csonka

Beilstein J. Nanotechnol. 2019, 10, 363–378, doi:10.3762/bjnano.10.36

Graphical Abstract
  • ][14], Majorana states in graphene [15][16][17] and devices with even more exotic non-Abelian excitations, such as parafermions [18][19][20]. CAR was studied experimentally in metallic nanostructures [21][22][23][24] and later in so-called Cooper-pair splitter devices, where two quantum dots (QDs) are
PDF
Album
Supp Info
Full Research Paper
Published 06 Feb 2019

Effects of post-lithography cleaning on the yield and performance of CVD graphene-based devices

  • Eduardo Nery Duarte de Araujo,
  • Thiago Alonso Stephan Lacerda de Sousa,
  • Luciano de Moura Guimarães and
  • Flavio Plentz

Beilstein J. Nanotechnol. 2019, 10, 349–355, doi:10.3762/bjnano.10.34

Graphical Abstract
  • Horizonte, Minas Gerais 30123-970, Brasil 10.3762/bjnano.10.34 Abstract The large-scale production of high-quality and clean graphene devices, aiming at technological applications, has been a great challenge over the last decade. This is due to the high affinity of graphene with polymers that are usually
  • applied in standard lithography processes and that, inevitably, modify the electrical proprieties of graphene. By Raman spectroscopy and electrical-transport investigations, we correlate the room-temperature carrier mobility of graphene devices with the size of well-ordered domains in graphene. In
  • addition, we show that the size of these well-ordered domains is highly influenced by post-photolithography cleaning processes. Finally, we show that by using poly(dimethylglutarimide) (PMGI) as a protection layer, the production yield of CVD graphene devices is enhanced. Conversely, their electrical
PDF
Album
Full Research Paper
Published 05 Feb 2019

A Ni(OH)2 nanopetals network for high-performance supercapacitors synthesized by immersing Ni nanofoam in water

  • Donghui Zheng,
  • Man Li,
  • Yongyan Li,
  • Chunling Qin,
  • Yichao Wang and
  • Zhifeng Wang

Beilstein J. Nanotechnol. 2019, 10, 281–293, doi:10.3762/bjnano.10.27

Graphical Abstract
  • derivatives, such as active carbon, porous carbon, graphene, carbon nanotubes with good electrical conductivity and high specific surface area, are most commonly employed as electrode materials [5][6][7]. The other category are pseudocapacitors governed by reversible faradic redox reactions at the interface
  • , respectively. The highest energy density in this work is comparable to that of a Ni@Ni(OH)2//graphene-CNT hybrid SC device (33.9 mWh/cm3 at a power density of 0.2 W/cm3) [50] and better than that of our previous NiO/np-Ni/MG symmetric supercapacitor device (19.82 mWh/cm3 at 0.4 W/cm3) [51]. This volumetric
PDF
Album
Full Research Paper
Published 25 Jan 2019

Scanning probe microscopy for energy-related materials

  • Rüdiger Berger,
  • Benjamin Grévin,
  • Philippe Leclère and
  • Yi Zhang

Beilstein J. Nanotechnol. 2019, 10, 132–134, doi:10.3762/bjnano.10.12

Graphical Abstract
  • individual graphene oxide sheets” by Yue Shen and co-workers. Yue Shen won the prize for the best presentation during the E-MRS conference [12]. Electrostatic force spectroscopy (EFS) is used here to characterize the degree of reduction of uniformly reduced one-atom-thick graphene oxide (GO) sheets at the
PDF
Editorial
Published 10 Jan 2019

Wet chemistry route for the decoration of carbon nanotubes with iron oxide nanoparticles for gas sensing

  • Hussam M. Elnabawy,
  • Juan Casanova-Chafer,
  • Badawi Anis,
  • Mostafa Fedawy,
  • Mattia Scardamaglia,
  • Carla Bittencourt,
  • Ahmed S. G. Khalil,
  • Eduard Llobet and
  • Xavier Vilanova

Beilstein J. Nanotechnol. 2019, 10, 105–118, doi:10.3762/bjnano.10.10

Graphical Abstract
  • composites with other materials such as graphene oxide or polyaniline has been reported to detect NO2 [17][18]. The decoration of CNTs with iron oxide has been reported for sensing different species in air such as acetone, CO2 and some volatile organic compounds [19][20][21]. Moreover, composites made of
PDF
Album
Supp Info
Full Research Paper
Published 09 Jan 2019

Graphene–graphite hybrid epoxy composites with controllable workability for thermal management

  • Idan Levy,
  • Eyal Merary Wormser,
  • Maxim Varenik,
  • Matat Buzaglo,
  • Roey Nadiv and
  • Oren Regev

Beilstein J. Nanotechnol. 2019, 10, 95–104, doi:10.3762/bjnano.10.9

Graphical Abstract
  • comprising a combination of two different carbon-based fillers, graphene nanoplatelets (GNPs) and graphite. By adjusting the GNP:graphite concentration ratio and the total concentration of the fillers, we were able to fine tune the thermal conductivity and the workability of the hybrid polymer composite. To
  • graphene, a two-dimensional sheet of sp2-hybridized carbons, with a much lower filler-to-filler resistance than that of the CNTs [11][24][25]. In recent years, extensive studies have been conducted on graphite and graphene nanoplatelets (GNPs, composed of several graphene layers, with thickness of up to
  • °C; a thermocouple was attached to the upper copper surface, and the temperature was recorded at intervals of 1 s. SEM images of graphene nanoplatelet- (a) and graphite- (b) loaded single-filler epoxy composites. (c) GNP–graphite hybrid composite. The arrows indicate edge-on GNP filler in (a) and (c
PDF
Album
Supp Info
Full Research Paper
Published 08 Jan 2019

Threshold voltage decrease in a thermotropic nematic liquid crystal doped with graphene oxide flakes

  • Mateusz Mrukiewicz,
  • Krystian Kowiorski,
  • Paweł Perkowski,
  • Rafał Mazur and
  • Małgorzata Djas

Beilstein J. Nanotechnol. 2019, 10, 71–78, doi:10.3762/bjnano.10.7

Graphical Abstract
  • Mateusz Mrukiewicz Krystian Kowiorski Pawel Perkowski Rafal Mazur Malgorzata Djas Institute of Applied Physics, Military University of Technology, 00-908 Warsaw, Poland Department of Chemical Synthesis and Flake Graphene, Institute of Electronic Materials Technology, 01-919 Warsaw, Poland 10.3762
  • /bjnano.10.7 Abstract We report a threshold voltage decrease in a nematic liquid crystal compound, 4-cyano-4′-pentylbiphenyl (5CB), doped with graphene oxide (GO) flakes at a concentration of 0.05–0.3 wt %. The threshold voltage decrease was observed at the same concentration in electro-optic and
  • dielectric spectroscopy measurements. The effect is related to the disrupted planar alignment due to the strong π–π stacking between the 5CB’s benzene rings and the graphene oxide’s structure. Additionally, we present the GO concentration dependence on the isotropic–nematic phase transition temperature
PDF
Album
Full Research Paper
Published 07 Jan 2019
Other Beilstein-Institut Open Science Activities