Search results

Search for "single electron transfer" in Full Text gives 136 result(s) in Beilstein Journal of Organic Chemistry.

The chemistry of amine radical cations produced by visible light photoredox catalysis

  • Jie Hu,
  • Jiang Wang,
  • Theresa H. Nguyen and
  • Nan Zheng

Beilstein J. Org. Chem. 2013, 9, 1977–2001, doi:10.3762/bjoc.9.234

Graphical Abstract
  • share one common characteristic: a facile intersystem crossing (ISC) that allows the conversion of the initially formed singlet photoexcited state to the relatively long-lived triplet photoexcited state. The triplet photoexcited state’s long lifetime permits it to engage in single-electron transfer with
  • to reductively quench the photoexcited state while they are oxidized to amine radical cations. This single-electron transfer process was investigated intensively in the late 1970s and early 1980s because amines were used as a sacrificial electron donor in water splitting [31][32] and carbon dioxide
PDF
Album
Review
Published 01 Oct 2013

Electron self-exchange activation parameters of diethyl sulfide and tetrahydrothiophene

  • Martin Goez and
  • Martin Vogtherr

Beilstein J. Org. Chem. 2013, 9, 1448–1454, doi:10.3762/bjoc.9.164

Graphical Abstract
  • solvent reorganization. Keywords: CIDNP; electron transfer; free radicals; kinetics; photochemistry; pyrylium salts; self-exchange; sulfides; Introduction Single-electron transfer is probably the simplest chemical process of an organic molecule, because usually no full bonds are broken or formed. For
PDF
Album
Full Research Paper
Published 19 Jul 2013

Organocatalytic C–H activation reactions

  • Subhas Chandra Pan

Beilstein J. Org. Chem. 2012, 8, 1374–1384, doi:10.3762/bjoc.8.159

Graphical Abstract
  • a deuterium radical from THF-d8 to provide 23. The authors found a low conversion (2%) for 23 in the absence of Ph-phen indicating the involvement of Ph-phen in the radical generation. The authors explained that Ph-phen can act as a single-electron-transfer (SET) mediator because it has a low lying
PDF
Album
Review
Published 27 Aug 2012

Hybrid super electron donors – preparation and reactivity

  • Jean Garnier,
  • Douglas W. Thomson,
  • Shengze Zhou,
  • Phillip I. Jolly,
  • Leonard E. A. Berlouis and
  • John A. Murphy

Beilstein J. Org. Chem. 2012, 8, 994–1002, doi:10.3762/bjoc.8.112

Graphical Abstract
  • to an iodoarene; single electron transfer would afford an aryl radical that would undergo cyclisation efficiently [17], while two-electron transfer to afford an aryl anion would afford an aryl anion that would not cyclise in DMF as solvent [18]. The reaction with 30 was conducted under slightly
PDF
Album
Supp Info
Full Research Paper
Published 03 Jul 2012

Reduction of benzylic alcohols and α-hydroxycarbonyl compounds by hydriodic acid in a biphasic reaction medium

  • Michael Dobmeier,
  • Josef M. Herrmann,
  • Dieter Lenoir and
  • Burkhard König

Beilstein J. Org. Chem. 2012, 8, 330–336, doi:10.3762/bjoc.8.36

Graphical Abstract
  • stepwise reduction by single electron transfer (SET) accompanied by the oxidation of I− to I2. The iodine, generated in the second step, is recycled by reduction with red phosphorous, regenerating hydriodic acid. Admittedly, the above-mentioned TEMPO adduct could also be generated by nucleophilic
PDF
Album
Supp Info
Full Research Paper
Published 02 Mar 2012

Highly substituted benzannulated cyclooctanol derivatives by samarium diiodide-induced cyclizations

  • Jakub Saadi,
  • Irene Brüdgam and
  • Hans-Ulrich Reissig

Beilstein J. Org. Chem. 2010, 6, 1229–1245, doi:10.3762/bjoc.6.141

Graphical Abstract
  • -trig cyclizations to cycloheptanol derivatives have been observed. In examples with high steric hindrance the ketyl–aryl coupling can be a competing process. Keywords: cyclooctanes; ketones; ketyls; medium-sized rings; samarium diiodide; single electron transfer; styrene derivatives; radicals
PDF
Album
Supp Info
Full Research Paper
Published 28 Dec 2010

Aromatic and heterocyclic perfluoroalkyl sulfides. Methods of preparation

  • Vladimir N. Boiko

Beilstein J. Org. Chem. 2010, 6, 880–921, doi:10.3762/bjoc.6.88

Graphical Abstract
  • disulfides with Li/liquid NH3 (Table 8), in much the same way as the described above for RFI [158][159]. 4.1.5. Other methods of initiating From the knowledge that the reaction mechanism is a single-electron transfer process involving RF• radicals, alternative methods to photochemical initiation have been
PDF
Album
Review
Published 18 Aug 2010

Shelf-stable electrophilic trifluoromethylating reagents: A brief historical perspective

  • Norio Shibata,
  • Andrej Matsnev and
  • Dominique Cahard

Beilstein J. Org. Chem. 2010, 6, No. 65, doi:10.3762/bjoc.6.65

Graphical Abstract
  • studies with appropriate analytical tools should be conducted in order to obtain more insight on the transfer of the electrophilic CF3 group. A bimolecular nucleophilic substitution, SN2 type mechanism, is often suggested, although a single electron transfer mechanism cannot be ruled out depending on the
PDF
Album
Review
Published 16 Jun 2010

Convergent syntheses of LeX analogues

  • An Wang,
  • Jenifer Hendel and
  • France-Isabelle Auzanneau

Beilstein J. Org. Chem. 2010, 6, No. 17, doi:10.3762/bjoc.6.17

Graphical Abstract
  • conditions did not lead to the desired corresponding thiol or disulfide product but produced the hexyl glycoside 1. The mechanism proposed to explain this reductive desulfurization is shown in Scheme 4. It involves first a single electron transfer to the thioacetyl group that is followed by the cleavage of
PDF
Album
Supp Info
Full Research Paper
Published 22 Feb 2010

Reduction of arenediazonium salts by tetrakis(dimethylamino)ethylene (TDAE): Efficient formation of products derived from aryl radicals

  • Mohan Mahesh,
  • John A. Murphy,
  • Franck LeStrat and
  • Hans Peter Wessel

Beilstein J. Org. Chem. 2009, 5, No. 1, doi:10.3762/bjoc.5.1

Graphical Abstract
  • Abstract Tetrakis(dimethylamino)ethylene (TDAE 1), has been exploited for the first time as a mild reagent for the reduction of arenediazonium salts to aryl radical intermediates through a single electron transfer (SET) pathway. Cyclization of the aryl radicals produced in this way led, in appropriate
PDF
Album
Supp Info
Full Research Paper
Published 12 Jan 2009

Photosonochemical catalytic ring opening of α-epoxyketones

  • Hamid R. Memarian and
  • Ali Saffar-Teluri

Beilstein J. Org. Chem. 2007, 3, No. 2, doi:10.1186/1860-5397-3-2

Graphical Abstract
  • -epoxyketones in the presence of various nucleophiles has received considerable attention in recent years, partially owing to current interest in single electron transfer (SET) process and also because of potential application in organic synthesis. Such reactions have been recognized as important processes not
  • only in thermal but also in photochemical transformations. Single electron transfer (SET) induced ring opening reactions of epoxides and α-epoxyketones have demonstrated C-C and C-O bond cleavages through photo-induced electron transfer by various electron donors such as triethylamine (TEA), [21
  • ] tribenzylamine (TBA) [20] and 1,3-dimethyl-2-phenylbenzimidazoline (DMPBI) [22][23][24] or thermally induced single electron transfer by electron donating compounds such as samarium diiodide, [25] tributyltin hydride [26] and bis(cyclopentadienyl)titanium(III) chloride. [27] Ring opening reactions of epoxides
PDF
Album
Supp Info
Full Research Paper
Published 27 Jan 2007
Other Beilstein-Institut Open Science Activities