Search results

Search for "enzymes" in Full Text gives 489 result(s) in Beilstein Journal of Organic Chemistry. Showing first 200.

Recent developments in enantioselective photocatalysis

  • Callum Prentice,
  • James Morrisson,
  • Andrew D. Smith and
  • Eli Zysman-Colman

Beilstein J. Org. Chem. 2020, 16, 2363–2441, doi:10.3762/bjoc.16.197

Graphical Abstract
PDF
Album
Review
Published 29 Sep 2020

Tools for generating and analyzing glycan microarray data

  • Akul Y. Mehta,
  • Jamie Heimburg-Molinaro and
  • Richard D. Cummings

Beilstein J. Org. Chem. 2020, 16, 2260–2271, doi:10.3762/bjoc.16.187

Graphical Abstract
  • , all concentration plots, and a model structure. The software was designed to be useful for lectin and enzyme analysis. It has been used to discover fine specificities of lectins (AAL, SNA) and glycosidase enzymes (α1-2-fucosidase and an α2-3,6,8-neuraminidase) [45]. 3. SignalFinder-Microarray: Status
PDF
Album
Review
Published 10 Sep 2020

pH- and concentration-dependent supramolecular self-assembly of a naturally occurring octapeptide

  • Goutam Ghosh and
  • Gustavo Fernández

Beilstein J. Org. Chem. 2020, 16, 2017–2025, doi:10.3762/bjoc.16.168

Graphical Abstract
  • noncovalent interactions can also be designed to be responsive to various external stimuli, such as heat, pH, light, enzymes, metal ions, and chemical triggers [23][24][25][26][27][28][29][30][31][32][33][34][35][36][37][38][39]. In this regard, a particularly relevant property of peptide assemblies is their
PDF
Album
Supp Info
Full Research Paper
Published 17 Aug 2020

Selective preparation of tetrasubstituted fluoroalkenes by fluorine-directed oxetane ring-opening reactions

  • Clément Q. Fontenelle,
  • Thibault Thierry,
  • Romain Laporte,
  • Emmanuel Pfund and
  • Thierry Lequeux

Beilstein J. Org. Chem. 2020, 16, 1936–1946, doi:10.3762/bjoc.16.160

Graphical Abstract
  • nucleotides such as the antiviral agent FPMPA (IV) [7][8][9]. Other main structural modifications of ACN relied on the introduction of a hydroxy group into the aliphatic chain to improve hydrogen bonding with enzymes [10], or of a carbon–carbon double bond to constrain the aliphatic chain and to limit
  • hydrogen-bond accepting capacity with proteins or enzymes would be restored [14]. The synthesis of fluoroalkene precursors of modified acyclonucleosides (VIII) has been explored by Choi, and more recently by us [15][16][17]. Nevertheless, it was reported that no antiviral activity for compounds of series
PDF
Album
Supp Info
Full Research Paper
Published 07 Aug 2020

Synthesis, docking study and biological evaluation of ᴅ-fructofuranosyl and ᴅ-tagatofuranosyl sulfones as potential inhibitors of the mycobacterial galactan synthesis targeting the galactofuranosyltransferase GlfT2

  • Marek Baráth,
  • Jana Jakubčinová,
  • Zuzana Konyariková,
  • Stanislav Kozmon,
  • Katarína Mikušová and
  • Maroš Bella

Beilstein J. Org. Chem. 2020, 16, 1853–1862, doi:10.3762/bjoc.16.152

Graphical Abstract
  • site of GlfT2, none of these compounds serve as efficient inhibitors of the enzymes involved in the mycobacterial galactan biosynthesis. Keywords: GlfT2; molecular modeling; mycobacterium tuberculosis; synthesis; transition state inhibitors; Introduction Tuberculosis (TB) is one of the most prevalent
  • galactofuranose (Galf) residues linked by alternating β-(1→5)- and β-(1→6)-glycosidic bonds [4]. The Galf monomer is restricted to some bacteria, fungi and a few protozoan species, and it seems to be absent in humans [5]. The enzymes participating in the galactan build-up could thus be considered as potential
  • enzymes require an activated sugar donor uridine diphosphate (UDP)-Galf, which is synthesized from UDP-galactopyranose (UDP-Galp) by the enzyme UDP-Galp mutase [9] (Supporting Information File 1, Figure S1). The recently published GlfT2 X-ray structure with a UDP donor part [10] was used in the reaction
PDF
Album
Supp Info
Full Research Paper
Published 27 Jul 2020

Nonenzymatic synthesis of anomerically pure, mannosyl-based molecular probes for scramblase identification studies

  • Giovanni Picca,
  • Markus Probst,
  • Simon M. Langenegger,
  • Oleg Khorev,
  • Peter Bütikofer,
  • Anant K. Menon and
  • Robert Häner

Beilstein J. Org. Chem. 2020, 16, 1732–1739, doi:10.3762/bjoc.16.145

Graphical Abstract
  • characterization of the configuration at the anomeric position was done by HSQC NMR (see Supporting Information File 1). Since the target enzymes are unknown and can be expected to have stereospecific binding sites, the α-configured ᴅ-mannose probe MPC-3 is also important as a reference for our biochemical assays
PDF
Album
Supp Info
Full Research Paper
Published 20 Jul 2020

Antibacterial scalarane from Doriprismatica stellata nudibranchs (Gastropoda, Nudibranchia), egg ribbons, and their dietary sponge Spongia cf. agaricina (Demospongiae, Dictyoceratida)

  • Cora Hertzer,
  • Stefan Kehraus,
  • Nils Böhringer,
  • Fontje Kaligis,
  • Robert Bara,
  • Dirk Erpenbeck,
  • Gert Wörheide,
  • Till F. Schäberle,
  • Heike Wägele and
  • Gabriele M. König

Beilstein J. Org. Chem. 2020, 16, 1596–1605, doi:10.3762/bjoc.16.132

Graphical Abstract
  • were shown to share and cover various core functions of sponge metabolism by functionally equivalent symbionts, analogous enzymes, or biosynthetic pathways [16][79][80]. Another Spongia species, S. officinalis, was shown to harbour bacteria with terpenoid cyclases/protein prenyltransferases responsible
PDF
Album
Supp Info
Full Research Paper
Published 03 Jul 2020

A dynamic combinatorial library for biomimetic recognition of dipeptides in water

  • Florian Klepel and
  • Bart Jan Ravoo

Beilstein J. Org. Chem. 2020, 16, 1588–1595, doi:10.3762/bjoc.16.131

Graphical Abstract
  • our initial assumption that dynamic peptides, due to their similarity towards enzymes, can bind a broad scope of biomolecules. ITC measurements suggest that the cyclic tripeptide dimers a(CFC)2 and p(CFC)2 are stronger binders for the aromatic dipeptides FF and YY (K ≈ 229–702 M−1), then for the non
PDF
Album
Supp Info
Full Research Paper
Published 02 Jul 2020

4-Hydroxy-3-methyl-2(1H)-quinolone, originally discovered from a Brassicaceae plant, produced by a soil bacterium of the genus Burkholderia sp.: determination of a preferred tautomer and antioxidant activity

  • Dandan Li,
  • Naoya Oku,
  • Yukiko Shinozaki,
  • Yoichi Kurokawa and
  • Yasuhiro Igarashi

Beilstein J. Org. Chem. 2020, 16, 1489–1494, doi:10.3762/bjoc.16.124

Graphical Abstract
  • immunity [33], among which redox enzymes and antioxidants are the direct countermeasures to neutralize the toxicity of ROS [34]. Limited examples of antioxidants include catecholamine melanin from a fungus Cryptococcus neoformans [35], 1,8-dihydroxynaphthalene melanin from fungi Wangiella dermatitidis and
PDF
Album
Supp Info
Letter
Published 26 Jun 2020

Photocatalytic trifluoromethoxylation of arenes and heteroarenes in continuous-flow

  • Alexander V. Nyuchev,
  • Ting Wan,
  • Borja Cendón,
  • Carlo Sambiagio,
  • Job J. C. Struijs,
  • Michelle Ho,
  • Moisés Gulías,
  • Ying Wang and
  • Timothy Noël

Beilstein J. Org. Chem. 2020, 16, 1305–1312, doi:10.3762/bjoc.16.111

Graphical Abstract
  • (Scheme 1A). This property might be responsible for stronger binding affinities of trifluoromethoxylated compounds with the active sites in enzymes, proteins, or other biomolecules [8][9]. Several procedures for the synthesis of trifluoromethyl aryl ethers were reported from the mid-1900s, mostly based on
PDF
Album
Supp Info
Full Research Paper
Published 15 Jun 2020

Synthesis, antiinflammatory activity, and molecular docking studies of bisphosphonic esters as potential MMP-8 and MMP-9 inhibitors

  • Abimelek Cortes-Pacheco,
  • María Adelina Jiménez-Arellanes,
  • Francisco José Palacios-Can,
  • José Antonio Valcarcel-Gamiño,
  • Rodrigo Said Razo-Hernández,
  • María del Carmen Juárez-Vázquez,
  • Adolfo López-Torres and
  • Oscar Abelardo Ramírez-Marroquín

Beilstein J. Org. Chem. 2020, 16, 1277–1287, doi:10.3762/bjoc.16.108

Graphical Abstract
  • molecular docking analysis led us to propose MMP-8 and MMP-9 inhibition as the possible action mechanism of 3–6 due to the good correlation between the antiinflammatory activity of the bisphosphonic esters and the interaction energy with these enzymes (especially MMP-8). Also, a good correlation between the
  • biological effects and interaction of the compounds with the Zn2+ cofactor of these enzymes was observed. Previously reported antiinflammatory bisphosphonates 1 and 2. edema inhibition (in %, carrageenan model, 50 mg/kg) for 1: 7.0; for 2: 22.2. Designed bisphosphonic esters as antiinflammatory agents
  • the test compounds was used.a Antiinflammatory activity of 3–6 with a carrageenan oral model. Test compounds: 25 mg/kg.a Molecular properties of the compounds 3–6. MolDock Score and LE1 values (kcal/mol) for the docking experiments of the molecules 3–6 with MMP-8 and MMP-9 enzymes and the
PDF
Album
Supp Info
Full Research Paper
Published 08 Jun 2020

Fluorinated phenylalanines: synthesis and pharmaceutical applications

  • Laila F. Awad and
  • Mohammed Salah Ayoup

Beilstein J. Org. Chem. 2020, 16, 1022–1050, doi:10.3762/bjoc.16.91

Graphical Abstract
  • protein–protein and protein–ligand interactions and consequently metabolic processes [20][21]. Fluorinated phenylalanines (FPhe) have been incorporated into various proteins and enzymes [22][23][24][25] with advantageous biophysical, chemical, and biological properties, and their effect on the stability
  • and activity of peptides in therapeutic vaccines and enzymes has been studied [19][26][27][28][29][30][31][32][33]. In this review we provide an overview for the various syntheses of FPhes and analogues. Five different categories of FPhe are represented and are classified I–V according to the position
PDF
Album
Review
Published 15 May 2020

Fabclavine diversity in Xenorhabdus bacteria

  • Sebastian L. Wenski,
  • Harun Cimen,
  • Natalie Berghaus,
  • Sebastian W. Fuchs,
  • Selcuk Hazir and
  • Helge B. Bode

Beilstein J. Org. Chem. 2020, 16, 956–965, doi:10.3762/bjoc.16.84

Graphical Abstract
  • the anterior midgut of larvae [43]. Consequently, this mode of action could also be possible for fabclavines. Conclusion This study revealed a large chemical diversity for fabclavine derivatives among different Xenorhabdus strains, which is achieved by the promiscuity of single enzymes or domains
PDF
Album
Supp Info
Full Research Paper
Published 07 May 2020

Copper catalysis with redox-active ligands

  • Agnideep Das,
  • Yufeng Ren,
  • Cheriehan Hessin and
  • Marine Desage-El Murr

Beilstein J. Org. Chem. 2020, 16, 858–870, doi:10.3762/bjoc.16.77

Graphical Abstract
  • -abundant metals, such as copper, with radical ligands is originally known from biological systems such as metalloenzymes [1]. Among the myriad of existing enzymes, galactose oxidase (GAO) is a copper-based enzyme performing the two-electron oxidation of galactose through a mechanism involving the metal and
  • . Among other tasks, copper enzymes are known to be actively involved in electron transfer as exemplified by blue copper enzymes, which have captured the interest of chemists and biochemists. Copper can also cooperate with iron to perform activation of O2 and nitrogen oxides (NOx) in cytochrome c oxidases
  • could be circumvented through ligand modification. Phenol oxidation is ubiquitous in biological systems as demonstrated by the involvement of the copper enzymes tyrosinases (type III) in the melanogenesis process. The regioselectivity and reactivity of the oxidation of phenols are strongly dependent on
PDF
Album
Review
Published 24 Apr 2020

Recent advances in Cu-catalyzed C(sp3)–Si and C(sp3)–B bond formation

  • Balaram S. Takale,
  • Ruchita R. Thakore,
  • Elham Etemadi-Davan and
  • Bruce H. Lipshutz

Beilstein J. Org. Chem. 2020, 16, 691–737, doi:10.3762/bjoc.16.67

Graphical Abstract
  • boron can lead to dative bond formation with enzymes, and therefore increase binding affinity. As shown in Scheme 1, several silicon [9][10][11][12] and boron-containing [13][14][15][16] drugs have already entered the market, or are currently in the drug development pipeline. As the number of drugs
PDF
Album
Review
Published 15 Apr 2020

Design and synthesis of diazine-based panobinostat analogues for HDAC8 inhibition

  • Sivaraman Balasubramaniam,
  • Sajith Vijayan,
  • Liam V. Goldman,
  • Xavier A. May,
  • Kyra Dodson,
  • Sweta Adhikari,
  • Fatima Rivas,
  • Davita L. Watkins and
  • Shana V. Stoddard

Beilstein J. Org. Chem. 2020, 16, 628–637, doi:10.3762/bjoc.16.59

Graphical Abstract
  • involve acetylation/deacetylation of histone proteins by histone deacetylases (HDACs) [1]. HDACs belong to an important family of enzymes consisting of 18 isozymes. They control protein acetylation, which is a change that occurs after translation. In addition, they regulate gene transcription, cell
PDF
Album
Supp Info
Full Research Paper
Published 07 Apr 2020

Synthesis and herbicidal activities of aryloxyacetic acid derivatives as HPPD inhibitors

  • Man-Man Wang,
  • Hao Huang,
  • Lei Shu,
  • Jian-Min Liu,
  • Jian-Qiu Zhang,
  • Yi-Le Yan and
  • Da-Yong Zhang

Beilstein J. Org. Chem. 2020, 16, 233–247, doi:10.3762/bjoc.16.25

Graphical Abstract
  • . Keywords: aryloxyacetic acid; herbicidal activity; 4-hydroxyphenylpyruvate dioxygenase; modification; synthesis; Introduction 4-Hydroxyphenylpyruvate dioxygenase (EC 1.13.11.27, HPPD), which belongs to the family of non-heme FeII-containing enzymes, is a vital enzyme for tyrosine catabolism. This enzyme
PDF
Album
Supp Info
Full Research Paper
Published 19 Feb 2020

Reversible photoswitching of the DNA-binding properties of styrylquinolizinium derivatives through photochromic [2 + 2] cycloaddition and cycloreversion

  • Sarah Kölsch,
  • Heiko Ihmels,
  • Jochen Mattay,
  • Norbert Sewald and
  • Brian O. Patrick

Beilstein J. Org. Chem. 2020, 16, 111–124, doi:10.3762/bjoc.16.13

Graphical Abstract
  • structural changes of the nucleic acid. In turn, both of these processes interfere with biologically relevant recognition processes between DNA and enzymes, e.g., topoisomerase [10]. Therefore, many potential lead structures of chemotherapeutic anticancer drugs exhibit DNA-binding properties [1][2][3][4][5
PDF
Album
Supp Info
Full Research Paper
Published 23 Jan 2020

Understanding the role of active site residues in CotB2 catalysis using a cluster model

  • Keren Raz,
  • Ronja Driller,
  • Thomas Brück,
  • Bernhard Loll and
  • Dan T. Major

Beilstein J. Org. Chem. 2020, 16, 50–59, doi:10.3762/bjoc.16.7

Graphical Abstract
  • cascade can provide important information towards a biosynthetic strategy for cyclooctatin and the biomanufacturing of related terpene structures. Keywords: active site; CotB2 cyclase; diterpene; mechanism; quantum mechanics; Introduction Enzymes catalyze numerous complex biochemical reactions in
  • reactivity of the isolated species and provided crucial mechanistic insights, the biorelevant mechanism cannot be fully understood without taking into account the enzyme–solvent environment. A common problem when studying these enzymes is the lack of high-resolution crystal structures that are biologically
PDF
Album
Supp Info
Full Research Paper
Published 08 Jan 2020

Functionalization of the imidazo[1,2-a]pyridine ring in α-phosphonoacrylates and α-phosphonopropionates via microwave-assisted Mizoroki–Heck reaction

  • Damian Kusy,
  • Agata Wojciechowska,
  • Joanna Małolepsza and
  • Katarzyna M. Błażewska

Beilstein J. Org. Chem. 2020, 16, 15–21, doi:10.3762/bjoc.16.3

Graphical Abstract
  • composed of both, an imidazo[1,2-a]pyridine ring and the phosphoryl group. The combination of these functional groups can be found in bisphosphonates and phosphonocarboxylates [8][9][10] – inhibitors of the therapeutically important enzymes, farnesyl pyrophosphate synthase (FPPS) and Rab geranylgeranyl
PDF
Album
Supp Info
Full Research Paper
Published 03 Jan 2020

Synthesis of C-glycosyl phosphonate derivatives of 4-amino-4-deoxy-α-ʟ-arabinose

  • Lukáš Kerner and
  • Paul Kosma

Beilstein J. Org. Chem. 2020, 16, 9–14, doi:10.3762/bjoc.16.2

Graphical Abstract
  • ; lipopolysaccharide; Introduction Glycosyltransferases are important enzymes that accomplish the transfer of activated sugar phosphates onto their respective acceptor molecules [1]. In most cases, nucleotide diphosphate sugars serve as the reactive species, but lipid-linked diphosphate derivatives are equally
  • were inactive towards enzyme upstream of the biosynthetic pathway to undecaprenyl Ara4N, the peracetylated 4-azido derivative showed modest reduction of Ara4N incorporation into the lipid A part of Salmonella typhimurium [8]. We have recently set out to study the substrate specificity of ArnT enzymes
PDF
Album
Supp Info
Full Research Paper
Published 02 Jan 2020

Regioselectivity of glycosylation reactions of galactose acceptors: an experimental and theoretical study

  • Enrique A. Del Vigo,
  • Carlos A. Stortz and
  • Carla Marino

Beilstein J. Org. Chem. 2019, 15, 2982–2989, doi:10.3762/bjoc.15.294

Graphical Abstract
  • with more than one free hydroxy group allows reducing the usage of protecting groups, and thus developing simpler reaction sequences for the synthesis of oligosaccharides and glycoconjugates. A current alternative is the use of biocatalysts [4][5], although limited specific enzymes are available
PDF
Album
Supp Info
Full Research Paper
Published 19 Dec 2019

Bacterial terpene biosynthesis: challenges and opportunities for pathway engineering

  • Eric J. N. Helfrich,
  • Geng-Min Lin,
  • Christopher A. Voigt and
  • Jon Clardy

Beilstein J. Org. Chem. 2019, 15, 2889–2906, doi:10.3762/bjoc.15.283

Graphical Abstract
  • potential with molecular structure is severely restricted. The canonical terpene biosynthetic pathway uses a single enzyme to form a cyclized hydrocarbon backbone followed by modifications with a suite of tailoring enzymes that can generate dozens of different products from a single backbone. This
  • can be further modified by tailoring enzymes, but the core structure can be inferred from the organization of the biosynthetic genes and the modular architecture of the associated proteins [7][8]. Terpene biosynthesis has a very different logic. Five-carbon units called isoprenes are joined to create
  • . Biosynthetic core enzymes of well-characterized classes of natural products, such as modular thiotemplate assembly lines (NRPSs, PKSs), are usually highly specific and produce only a few closely related natural product analogs. Adenylation domains in NRPSs [26][27][28], acyltransferase (AT) domains in cis-AT
PDF
Album
Supp Info
Review
Published 29 Nov 2019

Emission and biosynthesis of volatile terpenoids from the plasmodial slime mold Physarum polycephalum

  • Xinlu Chen,
  • Tobias G. Köllner,
  • Wangdan Xiong,
  • Guo Wei and
  • Feng Chen

Beilstein J. Org. Chem. 2019, 15, 2872–2880, doi:10.3762/bjoc.15.281

Graphical Abstract
  • synthases (TPSs) are pivotal enzymes for the production of diverse terpenes, including monoterpenes, sesquiterpenes, and diterpenes. In our recent studies, dictyostelid social amoebae, also known as cellular slime molds, were found to contain TPS genes for making volatile terpenes. For comparison, here we
  • note that under our standard assay conditions, neither PpolyTPS2 nor PpolyTPS3 showed activity with either GPP or FPP. Because catalytic motifs are present in both TPSs (Figure 2), the inactivity is somehow puzzling. Some efforts are needed to discern whether they are instable enzymes, active with
PDF
Album
Supp Info
Full Research Paper
Published 28 Nov 2019

Palladium-catalyzed synthesis and nucleotide pyrophosphatase inhibition of benzo[4,5]furo[3,2-b]indoles

  • Hoang Huy Do,
  • Saif Ullah,
  • Alexander Villinger,
  • Joanna Lecka,
  • Jean Sévigny,
  • Peter Ehlers,
  • Jamshed Iqbal and
  • Peter Langer

Beilstein J. Org. Chem. 2019, 15, 2830–2839, doi:10.3762/bjoc.15.276

Graphical Abstract
  • NPP3, while compounds 5b, 5d, and 5h were more active against NPP3 than NPP1. Compounds 5j and 5i, containing aliphatic groups, were found to be much less active against both of the two enzymes. Compounds 6b and 6c with fluorinated functional groups (F-C6H4 and CF3C6H4) proved to be highly selective
  • ']diindoles 6 exhibited an even stronger activity than derivatives 5 which might be caused by their bigger heterocyclic moiety. All compounds 5 and 6 were active to inhibit enzymes h-NPP-3, which suggests that the furoindole core structure is the main pharmacophore for the inhibition against h-NPP, while
  • changes of the substitution pattern allow for a modification of the selectivity and activity of these compounds to these enzymes. Docking studies of h-ENPP1 inhibitors Molecular docking of the most potent compounds 5c and 6a (for ENPP1) and for 6e (exhibiting dual inhibition for both isozymes) were
PDF
Album
Supp Info
Full Research Paper
Published 22 Nov 2019
Other Beilstein-Institut Open Science Activities