Search for "carbocation" in Full Text gives 207 result(s) in Beilstein Journal of Organic Chemistry. Showing first 200.
Beilstein J. Org. Chem. 2012, 8, 1936–1998, doi:10.3762/bjoc.8.225
Graphical Abstract
Figure 1: Loschmidt’s structure proposal for benzene (1) (Scheme 181 from [3]) and the corresponding modern stru...
Figure 2: The first isolated bisallenes.
Figure 3: Carbon skeletons of selected bisallenes discussed in this review.
Scheme 1: The preparation of 1,2,4,5-hexatetraene (2).
Scheme 2: The preparation of a conjugated bisallene by the DMS-protocol.
Scheme 3: Preparation of the 3-deuterio- and 3,4-dideuterio derivatives of 24.
Scheme 4: A versatile method to prepare alkylated conjugated bisallenes and other allenes.
Scheme 5: A preparation of 3,4-dimethyl-1,2,4,5-hexatetraene (38).
Scheme 6: A (C6 + 0)-approach to 1,2,4,5-hexatetraene (2).
Scheme 7: The preparation of a fully alkylated bisallenes from a 2,4-hexadiyne-1,6-diol diacetate.
Scheme 8: The preparation of the first phenyl-substituted conjugated bisallenes 3 and 4.
Scheme 9: Selective hydrogenation of [5]cumulenes to conjugated bisallenes: another (C6 + 0)-route.
Scheme 10: Aryl-substituted conjugated bisallenes by a (C3 + C3)-approach.
Scheme 11: Hexaphenyl-1,2,4,5-hexatetraene (59) by a (C3 + C3)-approach.
Scheme 12: An allenation route to conjugated bisallenes.
Scheme 13: The preparation of 3,4-difunctionalized conjugated bisallenes.
Scheme 14: Problems during the preparation of sulfur-substituted conjugated bisallenes.
Scheme 15: The preparation of 3,4-dibromo bisallenes.
Scheme 16: Generation of allenolates by an oxy-Cope rearrangement.
Scheme 17: A linear trimerization of alkynes to conjugated bisallenes: a (C2 + C2 + C2)-protocol.
Scheme 18: Preparation of a TMS-substituted conjugated bisallene by a C3-dimerization route.
Scheme 19: A bis(trimethylsilyl)bisallene by a C3-coupling protocol.
Scheme 20: The rearrangement of highly substituted benzene derivatives into their conjugated bisallenic isomer...
Scheme 21: From fully substituted benzene derivatives to fully substituted bisallenes.
Scheme 22: From a bicyclopropenyl to a conjugated bisallene derivative.
Scheme 23: The conversion of a bismethylenecyclobutene into a conjugated bisallene.
Scheme 24: The preparation of monofunctionalized bisallenes.
Scheme 25: Preparation of bisallene diols and their cyclization to dihydrofurans.
Scheme 26: A 3,4-difunctionalized conjugated bisallene by a C3-coupling process.
Scheme 27: Preparation of a bisallenic diketone by a coupling reaction.
Scheme 28: Sulfur and selenium-substituted bisallenes by a [2.3]sigmatropic rearrangement.
Scheme 29: The biallenylation of azetidinones.
Scheme 30: The preparation of a fully ferrocenylated conjugated bisallene.
Scheme 31: The first isomerization of a 1,5-hexadiyne to a 1,2,4,5-hexatetraene.
Scheme 32: The preparation of alkynyl-substituted bisallenes by a C3-dimerization protocol.
Scheme 33: Preparation of another completely ferrocenylated bisallene.
Scheme 34: The cyclization of 1,5-hexadiyne (129) to 3,4-bismethylenecyclobutene (130) via 1,2,4,5-hexatetraen...
Scheme 35: Stereochemistry of the thermal cyclization of bisallenes to bismethylenecyclobutenes.
Scheme 36: Bisallene→bismethylenecyclobutene ring closures in the solid state.
Scheme 37: A bisallene cyclization/dimerization reaction.
Scheme 38: A selection of Diels–Alder additions of 1,2,4,5-hexatetraene with various double-bond dienophiles.
Scheme 39: The stereochemistry of the [2 + 4] cycloaddition to conjugated bisallenes.
Scheme 40: Preparation of azetidinone derivatives from conjugated bisallenes.
Scheme 41: Cycloaddition of heterodienophiles to a conjugated bisallene.
Scheme 42: Addition of triple-bond dienophiles to conjugated bisallenes.
Scheme 43: Sulfur dioxide addition to conjugated bisallenes.
Scheme 44: The addition of a germylene to a conjugated bisallene.
Scheme 45: Trapping of conjugated bisallenes with phosphinidenes.
Scheme 46: The cyclopropanantion of 1,2,4,5-hexatetraene (2).
Scheme 47: Photochemical reactions involving conjugated bisallenes.
Scheme 48: Base-catalyzed isomerizations of conjugated bisallenes.
Scheme 49: Ionic additions to a conjugated bisallene.
Scheme 50: Oxidation reactions of a conjugated bisallene.
Scheme 51: The mechanism of oxidation of the bisallene 24.
Scheme 52: CuCl-catalyzed cyclization of 1,2,4,5-hexatetraene (2).
Scheme 53: The conversion of conjugated bisallenes into cyclopentenones.
Scheme 54: Oligomerization of a conjugated bisallene by nickel catalysts.
Scheme 55: Generation of 1,2,5,6-heptatetraene (229) as a reaction intermediate.
Scheme 56: The preparation of a stable derivative of 1,2,5,6-heptatetraene.
Scheme 57: A bisallene with a carbonyl group as a spacer element.
Scheme 58: The first preparation of 1,2,6,7-octatetraene (242).
Scheme 59: Preparation of 1,2,6,7-octatetraenes by (C4 + C4)-coupling of enynes.
Scheme 60: Preparation of 1,2,6,7-octatetraenes by (C4 + C4)-coupling of homoallenyl bromides.
Scheme 61: Preparation of 1,2,6,7-octatetraenes by alkylation of propargylic substrates.
Scheme 62: Preparation of two highly functionalized 1,2,6,7-octatetraenes.
Scheme 63: Preparation of several higher α,ω-bisallenes.
Scheme 64: Preparation of different alkyl derivatives of α,ω-bisallenes.
Scheme 65: The preparation of functionalized 1,2,7,8-nonatetraene derivatives.
Scheme 66: Preparation of functionalized α,ω-bisallenes.
Scheme 67: The preparation of an α,ω-bisallene by direct homologation of an α,ω-bisalkyne.
Scheme 68: The gas-phase pyrolysis of 4,4-dimethyl-1,2,5,6-heptatetraene (237).
Scheme 69: Gas-phase pyrolysis of 1,2,6,7-octatetraene (242).
Scheme 70: The cyclopropanation of 1,2,6,7-octatetraene (242).
Scheme 71: Intramolecular cyclization of 1,2,6,7-octatetraene derivatives.
Scheme 72: The gas-phase pyrolysis of 1,2,7,8-nonatetraene (265) and 1,2,8,9-decatetraene (266).
Scheme 73: Rh-catalyzed cyclization of a functionalized 1,2,7,8-nonatetraene.
Scheme 74: A triple cyclization involving two different allenic substrates.
Scheme 75: Bicyclization of keto derivatives of 1,2,7,8-nonatetraene.
Scheme 76: The preparation of complex organic compounds from functionalized bisallenes.
Scheme 77: Cycloisomerization of an α,ω-bisallene containing a C9 tether.
Scheme 78: Organoborane polymers from α,ω-bisallenes.
Scheme 79: Preparation of trans- (337) and cis-1,2,4,6,7-octapentaene (341).
Scheme 80: The preparation of 4-methylene-1,2,5,6-heptatetraene (349).
Scheme 81: The preparation of acetylenic bisallenes.
Scheme 82: The preparation of derivatives of hydrocarbon 351.
Scheme 83: The construction of macrocyclic alleno-acetylenes.
Scheme 84: Preparation and reactions of 4,5-bismethylene-1,2,6,7-octatetraene (365).
Scheme 85: Preparation of 1,2-bis(propadienyl)benzene (370).
Scheme 86: The preparation of 1,4-bis(propadienyl)benzene (376).
Scheme 87: The preparation of aromatic and heteroaromatic bisallenes by metal-mediated coupling reactions.
Scheme 88: Double cyclization of an aromatic bisallene.
Scheme 89: Preparation of an allenic [15]paracyclophane by a ring-closing metathesis reaction of an aromatic α...
Scheme 90: Preparation of a macrocyclic ring system containing 1,4-bis(propadienyl)benzene units.
Scheme 91: Preparation of copolymers from 1,4-bis(propadienyl)benzene (376).
Scheme 92: A boration/copolymerization sequence of an aromatic bisallene and an aromatic bisacetylene.
Scheme 93: Formation of a layered aromatic bisallene.
Figure 4: The first members of the semicyclic bisallene series.
Scheme 94: Preparation of the first bis(vinylidene)cyclobutane derivative.
Scheme 95: Dimerization of strain-activated cumulenes to bis(vinylidene)cyclobutanes.
Scheme 96: Photodimerization of two fully substituted butatrienes in the solid state.
Scheme 97: Preparation of the two parent bis(vinylidene)cyclobutanes.
Scheme 98: The preparation of 1,3-bis(vinylidene)cyclopentane and its thermal isomerization.
Scheme 99: The preparation of the isomeric bis(vinylidene)cyclohexanes.
Scheme 100: Bi- and tricyclic conjugated bisallenes.
Scheme 101: A selection of polycyclic bisallenes.
Scheme 102: The first endocyclic bisallenes.
Figure 5: The stereochemistry of 1,2,6,7-cyclodecatetraene.
Scheme 103: The preparation of several endocyclic bisallenes.
Scheme 104: Synthesis of diastereomeric derivatives of 1,2,6,7-cyclodecatetraene.
Scheme 105: Preparation of a derivative of 1,2,8,9-cyclotetradecatetraene.
Scheme 106: The preparation of keto derivatives of cyclic bisallenes.
Scheme 107: The preparation of cyclic biscumulenic ring systems.
Scheme 108: Cyclic bisallenes in natural- and non-natural-product chemistry.
Scheme 109: The preparation of iron carbonyl complexes from cyclic bisallenes.
Figure 6: A selection of unknown exocyclic bisallenes that should have interesting chemical properties.
Scheme 110: The thermal isomerization of 1,2-diethynylcyclopropanes and -cyclobutanes.
Scheme 111: Intermediate generation of a cyclooctapentaene.
Scheme 112: Attempted preparation of a cyclodecahexaene.
Scheme 113: The thermal isomerization of 1,5,9-cyclododecatriyne (511) into [6]radialene (514).
Scheme 114: An isomerization involving a diketone derived from a conjugated bisallene.
Scheme 115: Typical reaction modes of heteroorganic bisallenes.
Scheme 116: Generation and thermal behavior of acyclic hetero-organic bisallenes.
Scheme 117: Generation of bis(propadienyl)thioether.
Scheme 118: The preparation of a bisallenic sulfone and its thermal isomerization.
Scheme 119: Bromination of the bisallenic sulfone 535.
Scheme 120: Metalation/hydrolysis of the bisallenic sulfone 535.
Scheme 121: Aromatic compounds from hetero bisallenes.
Scheme 122: Isomerization/cyclization of bispropargylic ethers.
Scheme 123: The preparation of novel aromatic systems by base-catalyzed isomerization of bispropargyl ethers.
Scheme 124: The isomerization of bisacetylenic thioethers to bicyclic thiophenes.
Scheme 125: Aromatization of macrocyclic bispropargylic sulfides.
Scheme 126: Preparation of ansa-compounds from macrocyclic bispropargyl thioethers.
Scheme 127: Alternate route for cyclization of a heterorganic bisallene.
Scheme 128: Multiple isomerization/cyclization of “double” bispropargylic thioethers.
Scheme 129: Preparation of a bisallenyl disulfide and its subsequent bicyclization.
Scheme 130: Thermal cyclization of a bisallenyl thiosulfonate.
Scheme 131: Some reactions of heteroorganic bisallenes with two sulfur atoms.
Scheme 132: Further methods for the preparation of heteroorganic bisallenes.
Scheme 133: Cyclization reactions of heteroorganic bisallenes.
Scheme 134: Thermal cycloadditions of bisallenic tertiary amines.
Scheme 135: Cyclization of a bisallenic tertiary amine in the presence of a transition-metal catalyst.
Scheme 136: A Pauson–Khand reaction of a bisallenic ether.
Scheme 137: Formation of a 2:1adduct from two allenic substrates.
Scheme 138: A ring-forming silastannylation of a bisallenic tertiary amine.
Scheme 139: A three-component cyclization involving a heterorganic bisallene.
Scheme 140: Atom-economic construction of a complex organic framework from a heterorganic α,ω-bisallene.
Beilstein J. Org. Chem. 2012, 8, 1406–1442, doi:10.3762/bjoc.8.163
Graphical Abstract
Scheme 1: Reactions for the methyl cation affinity (MCA) of a neutral Lewis base (1a), an anionic Lewis base ...
Figure 1: MCA values of monosubstituted amines of general formula Me2N(CH2)nH (n = 1–7, in kJ/mol).
Scheme 2: Systematic dependence of MCA.
Scheme 3: Trends in amine MCA values.
Figure 2: Eclipsing interactions in the best conformation of N+Me(iPr)3 (16Me) (left), and the corresponding ...
Scheme 4: General expression for the chain-length dependence of MCA values.
Figure 3: MCA values of monosubstituted phosphanes of general formula Me2P(CH2)nH (n = 1–8, in kJ/mol).
Figure 4: MCA values of monosubstituted phosphanes of general formula PMe2(CH(CH2)n+1) (n = 1–8, in kJ/mol).
Figure 5: The MCA values of n-butyldiphenylphosphane (102) and its (αα-/ββ-/γγ-) dimethylated analogues.
Figure 6: MCA values of phosphanes Me2P–NR2 with cyclic and acyclic amine substituents.
Figure 7: MCA values of phosphanes PMe2R connected to α,α- and β,β-position of nitrogen containing cyclic sub...
Scheme 5: Reactions for the benzhydryl cation affinity (BHCA) of a Lewis base (5a) and pyridine (5b).
Figure 8: Comparison of BHCA values (kJ/mol) and nucleophilicity parameters N for sterically unbiased pyridin...
Scheme 6: Reactions for the trityl cation affinity (THCA) of a Lewis base (6a) and pyridine (6b).
Figure 9: Comparison of MCA, BHCA, and TCA values of selected Lewis bases.
Scheme 7: Correlations of BHCA/TCA values with the respective MCA data for sterically unbiased systems (exclu...
Figure 10: Scheme for the angle d(RXRR) measurements.
Scheme 8: Reactions for the Mosher's cation affinity (MOSCA) of a Lewis base.
Scheme 9: Reactions for the acetyl cation affinity (ACA) of a Lewis base (9a) and pyridine (9b).
Figure 11: Structure of the acetylated pyridine 380 (380Ac).
Scheme 10: Reaction for the Michael-acceptor affinity (MAA) of a Lewis base.
Figure 12: Inverted reaction free energies for the addition of N- and P-based Lewis bases to three different M...
Figure 13: Correlation between MCA values and affinity values towards three different Michael acceptors.
Scheme 11: (a) General definition for a methyl cation transfer reaction between Lewis bases LB1 and LB2, and (...
Figure 14: The energetically best conformations of Pn-Bu3 (120_1, top) and (120_2, bottom).
Figure 15: Relative order of the conformations 120_1 to 120_7 depending on the level of theory.
Figure 16: The structure of the energetically best conformations of 120Me.
Beilstein J. Org. Chem. 2012, 8, 705–711, doi:10.3762/bjoc.8.79
Graphical Abstract
Figure 1: Structure of glycyrrhizin (GL), carbenoxolone (CBX), and spacer analogues.
Scheme 1: Synthesis of methyl 2-haloethyl 1-thio-glucuronide derivatives: (a) 1 M NaOMe, MeOH, −60 °C to −45 ...
Scheme 2: Synthesis of thioalkylglucuronide GA derivatives: (a) DMF, DIPEA, 45–50 °C, 16 h, 79%; (b) TEA, Ac2...
Figure 2: 400 MHz 1H NMR expansion plots of the carbohydrate region of compound 11, recorded at various tempe...
Scheme 3: Synthesis of 3-thioether-bridged glucuronide derivatives: (a) K2CO3, acetone, 60%; (b) 0.8 M NaOMe,...
Beilstein J. Org. Chem. 2012, 8, 164–169, doi:10.3762/bjoc.8.17
Graphical Abstract
Figure 1: ORTEP diagram of compound 4 (50% probability level, H atoms of arbitrary sizes). The asymmetric uni...
Scheme 1: Sequential 2-step synthesis of 3,12-dioxoolean-28-oic acid (11) directly from 3-oxooleanolic acid (1...
Figure 2: ORTEP diagram of compound 11 (50% probability level, H atoms of arbitrary sizes).
Beilstein J. Org. Chem. 2011, 7, 1602–1608, doi:10.3762/bjoc.7.188
Graphical Abstract
Scheme 1: Calix[4]arene tetraethers 1–4 and corresponding bridge monosubstituted carboxylic acid derivatives 5...
Figure 1: A: Four fundamental conformations of a calix[4]arene. B: Arrangement of the methylene group substit...
Scheme 2: Pathways to the calixarene acids 13 and 14 bearing mixed ether functions in different fashions.
Figure 2: 1H NMR spectrum (CDCl3, 293 K, 500 MHz) of calixarene ether 12 before (A) and after the addition of...
Figure 3: Crystal structure of compound 12. For clarity only one of the two crystallographically independent ...
Beilstein J. Org. Chem. 2011, 7, 1288–1293, doi:10.3762/bjoc.7.149
Graphical Abstract
Figure 1: Hastelloy-made micromixer (MiChS β-150H).
Figure 2: Hastelloy-made microextraction unit.
Figure 3: Acid-tolerant microflow system used for the Koch–Haaf reaction.
Scheme 1: Synthesis of 1-adamantanecarboxylic acid (2a) in a microflow system.
Scheme 2: Koch–Haaf reaction of 1b and 1c in a microflow system.
Scheme 3: Multigram scale flow synthesis of 1-adamantanecarboxylic acid (2a).
Beilstein J. Org. Chem. 2011, 7, 1198–1204, doi:10.3762/bjoc.7.139
Graphical Abstract
Figure 1: Working hypothesis for the present gold-catalyzed oxaallylic alkylation reaction.
Scheme 1: Gold-catalyzed synthesis of γ-lactones 4 from the corresponding monoesters 3.
Scheme 2: Mechanistic sketch of the gold-promoted oxaallylic alkylation reaction.
Beilstein J. Org. Chem. 2011, 7, 1108–1114, doi:10.3762/bjoc.7.127
Graphical Abstract
Scheme 1: Electrochemically generated N-acyliminium ions 1 and subsequent reactions.
Figure 1: Electrochemical microreactor.
Scheme 2: Electrolysis of furan.
Scheme 3: Kolbe electrolysis of phenylacetic acids 6 in flow.
Scheme 4: Synthesis of diaryliodonium salts 11 in flow.
Beilstein J. Org. Chem. 2011, 7, 1075–1094, doi:10.3762/bjoc.7.124
Graphical Abstract
Scheme 1: AuCl3-catalyzed benzannulations reported by Yamamoto.
Scheme 2: Synthesis of 9-oxabicyclo[3.3.1]nona-4,7-dienes from 1-oxo-4-oxy-5-ynes [40].
Scheme 3: Stereocontrolled oxacyclization/(4 + 2)-cycloaddition cascade of ketone–allene substrates [43].
Scheme 4: Gold-catalyzed synthesis of polycyclic, fully substituted furans from 1-(1-alkynyl)cyclopropyl keto...
Scheme 5: Gold-catalyzed 1,3-dipolar cycloaddition of 2-(1-alkynyl)-2-alken-1-ones with nitrones [47].
Scheme 6: Enantioselective 1,3-dipolar cycloaddition of 2-(1-alkynyl)-2-alken-1-ones with nitrones [48].
Scheme 7: Gold-catalyzed 1,3-dipolar cycloaddition of 2-(1-alkynyl)-2-alken-1-ones with α,β-unsaturated imine...
Scheme 8: Gold-catalyzed (4 + 3) cycloadditions of 1-(1-alkynyl)oxiranyl ketones [50].
Scheme 9: (3 + 2) Cycloaddition of gold-containing azomethine ylides [52].
Scheme 10: Gold-catalyzed generation and reaction of azomethine ylides [53].
Scheme 11: Gold-catalyzed intramolecular (4 + 2) cycloadditions of unactivated alkynes and dienes [55].
Scheme 12: Gold-catalyzed preparation of bicyclo[4.3.0]nonane derivatives from dienol silyl ethers [59].
Scheme 13: Gold(I)-catalyzed intramolecular (4 + 2) cycloadditions of arylalkynes or 1,3-enynes with alkenes [60].
Scheme 14: Gold(I)-catalyzed intermolecular (2 + 2) cycloaddition of alkynes with alkenes [62].
Scheme 15: Metal-catalyzed cycloaddition of alkynes tethered to cycloheptatriene [65].
Scheme 16: Gold-catalyzed cycloaddition of functionalized ketoenynes: Synthesis of (+)-orientalol F [68].
Scheme 17: Gold-catalyzed intermolecular cyclopropanation of enynes with alkenes [70].
Scheme 18: Gold-catalyzed intermolecular hetero-dehydro Diels–Alder cycloaddition [72].
Figure 1: Gold-catalyzed 1,2- or 1,3-acyloxy migrations of propargyl esters.
Scheme 19: Gold(I)-catalyzed stereoselective olefin cyclopropanation [74].
Scheme 20: Reaction of propargylic benzoates with α,β-unsaturated imines to give azepine cycloadducts [77].
Scheme 21: Gold-catalyzed (3 + 3) annulation of azomethine imines with propargyl esters [81].
Scheme 22: Gold(I)-catalyzed isomerization of 5-en-2-yn-1-yl acetates [83].
Scheme 23: (3 + 2) and (2 + 2) cycloadditions of indole-3-acetates 41 [85,86].
Scheme 24: Gold(I)-catalyzed (2 + 2) cycloaddition of allenenes [87].
Scheme 25: Formal (3 + 2) cycloaddition of allenyl MOM ethers and alkenes [90].
Scheme 26: (4 + 3) Cycloadditions of allenedienes [97,98].
Scheme 27: Gold-catalyzed transannular (4 + 3) cycloaddition reactions [101].
Scheme 28: Gold(I)-catalyzed (4 + 2) cycloadditions of allenedienes [102].
Scheme 29: Enantioselective gold(I)-catalyzed (4 + 2) cycloadditions of allenedienes [88,102,104].
Scheme 30: (3 + 2) versus (2 + 2) Cycloadditions of allenenes [87,99].
Figure 2: NHC ligands with different π-acceptor properties [106].
Scheme 31: (3 + 2) versus (2 + 2) Cycloadditions of allenenes [106].
Scheme 32: Gold(I)-catalyzed intermolecular (4 + 2) cycloaddition of allenamides and acyclic dienes [109].
Beilstein J. Org. Chem. 2011, 7, 897–936, doi:10.3762/bjoc.7.103
Graphical Abstract
Scheme 1: Gold-catalyzed addition of alcohols.
Scheme 2: Gold-catalyzed cycloaddition of alcohols.
Scheme 3: Ionic liquids as the solvent in gold-catalyzed cycloaddition.
Scheme 4: Gold-catalyzed cycloaddition of diynes.
Scheme 5: Gold(I) chloride catalyzed cycloisomerization of 2-alkynyl-1,5-diols.
Scheme 6: Gold-catalyzed cycloaddition of glycols and dihydroxy compounds.
Scheme 7: Gold-catalyzed ring-opening of cyclopropenes.
Scheme 8: Gold-catalyzed intermolecular hydroalkoxylation of alkynes. PR3 = 41–45.
Scheme 9: Gold-catalyzed intramolecular 6-endo-dig cyclization of β-hydroxy-α,α-difluoroynones.
Scheme 10: Gold-catalyzed intermolecular hydroalkoxylation of non-activated olefins.
Scheme 11: Preparation of unsymmetrical ethers from alcohols.
Scheme 12: Expedient synthesis of dihydrofuran-3-ones.
Scheme 13: Catalytic approach to functionalized divinyl ketones.
Scheme 14: Gold-catalyzed glycosylation.
Scheme 15: Gold-catalyzed cycloaddition of aldehydes and ketones.
Scheme 16: Gold-catalyzed annulations of 2-(ynol)aryl aldehydes and o-alkynyl benzaldehydes.
Scheme 17: Gold-catalyzed addition of carboxylates.
Scheme 18: Dual-catalyzed rearrangement reaction of allenoates.
Scheme 19: Meyer–Schuster rearrangement of propargylic alcohols.
Scheme 20: Propargylic alcohol rearrangements.
Scheme 21: Gold-catalyzed synthesis of imines and amine alkylation.
Scheme 22: Hydroamination of allenes and allenamides.
Scheme 23: Gold-catalyzed inter- and intramolecular amination of alkynes and alkenes.
Scheme 24: Gold-catalyzed cycloisomerization of O-propioloyl oximes and β-allenylhydrazones.
Scheme 25: Intra- and intermolecular amination with ureas.
Scheme 26: Gold-catalyzed cyclization of ortho-alkynyl-N-sulfonylanilines and but-3-yn-1-amines.
Scheme 27: Gold-catalyzed piperidine ring synthesis.
Scheme 28: Ring expansion of alkylnyl cyclopropanes.
Scheme 29: Gold-catalyzed annulations of N-propargyl-β-enaminones and azomethine imines.
Scheme 30: Gold(I)-catalyzed cycloisomerization of aziridines.
Scheme 31: AuCl3/AgSbF6-catalyzed intramolecular amination of 2-(tosylamino)phenylprop-1-en-3-ols.
Scheme 32: Gold-catalyzed cyclization via a 7-endo-dig pathway.
Scheme 33: Gold-catalyzed synthesis of fused xanthines.
Scheme 34: Gold-catalyzed synthesis of amides and isoquinolines.
Scheme 35: Gold-catalyzed oxidative cross-coupling reactions of propargylic acetates.
Scheme 36: Gold-catalyzed nucleophilic addition to allenamides.
Scheme 37: Gold-catalyzed direct carbon–carbon bond coupling reactions.
Scheme 38: Gold-catalyzed C−H functionalization of indole/pyrrole heterocycles and non-activated arenes.
Scheme 39: Gold-catalyzed cycloisomerization of cyclic compounds.
Scheme 40: Gold-catalyzed cycloaddition of 1-aryl-1-allen-6-enes and propargyl acetates.
Scheme 41: Gold(I)-catalyzed cycloaddition with ligand-controlled regiochemistry.
Scheme 42: Gold(I)-catalyzed cycloaddition of dienes and enynes.
Scheme 43: Gold-catalyzed intramolecular cycloaddition of 3-alkoxy-1,5-enynes and 2,2-dipropargylmalonates.
Scheme 44: Gold-catalyzed intramolecular cycloaddition of 1,5-allenynes.
Scheme 45: Gold(I)-catalyzed cycloaddition of indoles.
Scheme 46: Gold-catalyzed annulation reactions.
Scheme 47: Gold–carbenoid induced cleavage of a sp3-hybridized C−H bond.
Scheme 48: Furan- and indole-based cascade reactions.
Scheme 49: Tandem process using aromatic alkynes.
Scheme 50: Gold-catalyzed cycloaddition of 1,3-dien-5-ynes.
Scheme 51: Gold-catalyzed cascade cyclization of diynes, propargylic esters, and 1,3-enynyl ketones.
Scheme 52: Tandem reaction of β-phenoxyimino ketones and alkynyl oxime ethers.
Scheme 53: Gold-catalyzed tandem cyclization of enynes, 2-(tosylamino)phenylprop-1-yn-3-ols, and allenoates.
Scheme 54: Cyclization of 2,4-dien-6-yne carboxylic acids.
Scheme 55: Gold(I)-catalyzed tandem cyclization approach to tetracyclic indolines.
Scheme 56: Gold-catalyzed tandem reactions of alkynes.
Scheme 57: Aminoarylation and oxyarylation of alkenes.
Scheme 58: Cycloaddition of 2-ethynylnitrobenzene with various alkenes.
Scheme 59: Gold-catalyzed tandem reactions of allenoates and alkynes.
Scheme 60: Gold-catalyzed asymmetric synthesis of 2,3-dihydropyrroles.
Scheme 61: Chiral [NHC–Au(I)]-catalyzed cyclization of enyne.
Scheme 62: Gold-catalyzed hydroaminations and hydroalkoxylations.
Scheme 63: Gold(I)-catalyzed asymmetric hydroalkoxylation of 1,3-dihydroxymethyl-2-alkynylbenzene chromium com...
Scheme 64: Gold-catalyzed synthesis of julolidine derivatives.
Scheme 65: Gold-catalyzed the synthesis of chiral fused heterocycles.
Scheme 66: Gold-catalyzed asymmetric reactions with 3,5-(t-Bu)2-4-MeO-MeOBIPHEP.
Scheme 67: Gold-catalyzed cyclization of o-(alkynyl) styrenes.
Scheme 68: Asymmetric gold(I)-catalyzed redox-neutral domino reactions of enynes.
Scheme 69: Gold(I)-catalyzed enantioselective polyene cyclization reaction.
Scheme 70: Gold(I)-catalyzed enantioselective synthesis of benzopyrans.
Scheme 71: Gold(I)-catalyzed enantioselective ring expansion of allenylcyclopropanols.
Beilstein J. Org. Chem. 2011, 7, 866–877, doi:10.3762/bjoc.7.99
Graphical Abstract
Scheme 1: Gold-catalyzed propargylic substitutions.
Scheme 2: Propargylic substitution: scope of substrates.
Scheme 3: Propargylic substitutions on allylic/propargylic substrates.
Scheme 4: Direct propargylic substitutions: Scope of nucleophiles.
Scheme 5: Meyer–Schuster rearrangements.
Scheme 6: Silyl-protected propargyl alcohols in propargylic substitutions.
Scheme 7: Acetylacetone as nucleophile in direct propargylic substitution.
Scheme 8: Enantiomerically enriched propargylic alcohols.
Scheme 9: Scope of ‘activated’ alcohols in direct substitution reactions.
Scheme 10: BF3 vs AuCl3 in propargylic substitutions [25].
Scheme 11: The use of bis-nucleophiles in direct propargylic substitutions.
Scheme 12: Tandem reactions from protected hydroxylamines and propargylic alcohols. P = Cbz, PhSO2.
Scheme 13: Tentative hydrolysis of bis-adduct 24a.
Scheme 14: Iron-catalyzed propargylic substitutions.
Scheme 15: Isoxazolines formation.
Scheme 16: Addition of nucleophiles to isoxazolines.
Scheme 17: Potential mechanistic pathways.
Scheme 18: Synthesis of furans from homoproargylic alcohols.
Scheme 19: Synthesis of furans.
Scheme 20: Propargylic substitutions: Synthetic applications. GH2 = Grubbs–Hoveyda 2nd generation catalyst.
Beilstein J. Org. Chem. 2011, 7, 847–859, doi:10.3762/bjoc.7.97
Graphical Abstract
Scheme 1: Mechanistic scenarios for alkyne activation.
Scheme 2: Synthesis of 3(2H)-furanones.
Scheme 3: Synthesis of furans.
Scheme 4: Formation of dihydrooxazoles.
Scheme 5: Variation on indole formation.
Scheme 6: Formation of naphthalenes.
Scheme 7: Formation of indenes.
Scheme 8: Iodocyclization of 3-silyloxy-1,5-enynes.
Scheme 9: 5-Endo cyclizations with concomitant nucleophilic trapping.
Scheme 10: Reactivity of 3-BocO-1,5-enynes.
Scheme 11: Intramolecular nucleophilic trapping.
Scheme 12: Approach to azaanthraquinones.
Scheme 13: Carbocyclizations with enol derivatives.
Scheme 14: Gold-catalyzed cyclization modes for 1,5-enynes.
Scheme 15: Iodine-induced cyclization of 1,5-enynes.
Scheme 16: Diverse reactivity of 1,6-enynes.
Scheme 17: Iodocyclization of 1,6-enynes.
Scheme 18: Cyclopropanation of alkenes with 1,6-enynes.
Scheme 19: Cyclopropanation of alkenes with 1,6-enynes.
Beilstein J. Org. Chem. 2011, 7, 839–846, doi:10.3762/bjoc.7.96
Graphical Abstract
Scheme 1: Gold-catalysed cycloisomerisations of aryl–alkynyl aziridine to pyrroles.
Scheme 2: Working mechanism to rationalise the formation of two regiosomeric pyrroles in the gold catalysed c...
Scheme 3: Bond fissions featured in the proposed mechanistic hypothesis and the initial mechanism probe.
Scheme 4: Preparation of D-labelled alkynyl aziridine 4. DMP = Dess–Martin periodinane.
Scheme 5: Reaction of deuterated alkynyl aziridine 4 in the skeletal rearrangement reaction.
Scheme 6: Preparation of 13C-enriched alkynyl aziridines.
Scheme 7: Cycloisomerisation of 11 in the skeletal rearrangement reaction.
Scheme 8: Cycloisomerisation of 11 to give 2,5-disubstituted pyrrole.
Scheme 9: Cycloisomerisation of 14 in the skeletal rearrangement reaction.
Scheme 10: Cycloisomerisation of 15 in the skeletal rearrangement reaction.
Scheme 11: Revised mechanism for the formation of 2,4-isomers by skeletal rearrangement.
Scheme 12: Synthesis of alkynyl aziridines 30 and 31.
Scheme 13: Electronic effects on the outcome of the skeletal rearrangement processes.
Scheme 14: Mechanistic rationale for the deuterium labelling study using Ph3PAuCl/AgOTf.
Beilstein J. Org. Chem. 2011, 7, 767–780, doi:10.3762/bjoc.7.87
Graphical Abstract
Scheme 1: Transition metal promoted rearrangements of bicyclo[1.1.0]butanes.
Scheme 2: Gold-catalyzed rearrangements of strained rings.
Scheme 3: Gold-catalyzed ring expansions of cyclopropanols and cyclobutanols.
Scheme 4: Mechanism of the cycloisomerization of alkynyl cyclopropanols and cyclobutanols.
Scheme 5: Proposed mechanism for the Au-catalyzed isomerization of alkynyl cyclobutanols.
Scheme 6: Gold-catalyzed cycloisomerization of 1-allenylcyclopropanols.
Scheme 7: Gold-catalyzed cycloisomerization of cyclopropylmethanols.
Scheme 8: Gold-catalyzed cycloisomerization of aryl alkyl epoxides.
Scheme 9: Gold-catalyzed synthesis of furans.
Scheme 10: Transformations of alkynyl oxiranes.
Scheme 11: Transformations of alkynyl oxiranes into ketals.
Scheme 12: Gold-catalyzed cycloisomerization of cyclopropyl alkynes.
Scheme 13: Gold-catalyzed synthesis of substituted furans.
Scheme 14: Proposed mechanism for the isomerization of alkynyl cyclopropyl ketones.
Scheme 15: Cycloisomerization of cyclobutylazides.
Scheme 16: Cycloisomerization of alkynyl aziridines.
Scheme 17: Gold-catalyzed synthesis of disubstituted cyclohexadienes.
Scheme 18: Gold-catalyzed synthesis of indenes.
Scheme 19: Gold-catalyzed [n + m] annulation processes.
Scheme 20: Gold-catalyzed generation of 1,4-dipoles.
Scheme 21: Gold-catalyzed synthesis of repraesentin F.
Scheme 22: Gold-catalyzed ring expansion of cyclopropyl 1,6-enynes.
Scheme 23: Gold-catalyzed synthesis of ventricos-7(13)-ene.
Scheme 24: 1,2- vs 1,3-Carboxylate migration.
Scheme 25: Gold-catalyzed cycloisomerization of vinyl alkynyl cyclopropanes.
Scheme 26: Proposed mechanism for the cycloisomerization of vinyl alkynyl cyclopropanes.
Scheme 27: Gold-catalyzed 1,2-acyloxy rearrangement/cyclopropanation/cycloisomerization cascades.
Scheme 28: Formal total synthesis of frondosin A.
Scheme 29: Gold-catalyzed rearrangement/cycloisomerization of cyclopropyl propargyl acetates.
Beilstein J. Org. Chem. 2011, 7, 744–758, doi:10.3762/bjoc.7.85
Graphical Abstract
Figure 1: Chiral aryl selenium electrophiles 1–3.
Scheme 1: Plausible mechanism of alkene selenenylation.
Figure 2: Plot of log krel values for PhSeCl addition to alkenes versus their corresponding IEs. Point number...
Figure 3: Plot of log krel values for PhSeCl addition to alkenes versus their corresponding HOMOs, analogous ...
Figure 4: Plot of log krel versus HOMO shows data grouped by branching at α position. Data are from Table 3; point n...
Scheme 2: Major products from reactions of 1 and 2 with representative alkenols.
Figure 5: Structure of intermediate complex 9.
Figure 6: Plot of log krel values for PhSCl addition to alkenes versus their IEs. Data are from Table 6.
Beilstein J. Org. Chem. 2011, 7, 717–734, doi:10.3762/bjoc.7.82
Graphical Abstract
Scheme 1: General reactivity of cyclopropenes in the presence of gold catalysts.
Scheme 2: Cationic organogold species generated from cyclopropenone acetals.
Scheme 3: Rotation barriers around the C2–C3 bond (M06 DFT calculations).
Scheme 4: Au–C1 bond length in organogold species of type D.
Scheme 5: Gold-catalyzed addition of alcohols or water to cyclopropene 8.
Scheme 6: Gold-catalyzed addition of alcohols to cyclopropene 10.
Scheme 7: Mechanism of the gold-catalyzed addition of alcohols to cyclopropenes.
Scheme 8: Synthesis of tert-allylic ethers from cyclopropenes and allenes.
Scheme 9: Oxidation of the intermediate gold–carbene with diphenylsulfoxide.
Scheme 10: Gold, copper and Lewis acid-catalyzed reactions of cyclopropene 18.
Scheme 11: Mechanism of the Lewis acid-catalyzed reactions of cyclopropene 18.
Scheme 12: Gold-catalyzed rearrangement of vinylcyclopropenes 25.
Scheme 13: Gold-catalyzed rearrangement of cyclopropenes 27 to indenes 28.
Scheme 14: Gold-catalyzed rearrangement of cyclopropenes 29 to indenes 30.
Scheme 15: Gold-catalyzed rearrangement of cyclopropenyl ester 34a.
Scheme 16: Gold-catalyzed reactions of cyclopropenyl esters 34b–34d.
Scheme 17: Gold-catalyzed reactions of cyclopropenylsilane 34e.
Scheme 18: Gold-catalyzed rearrangement of cyclopropenylmethyl acetates.
Scheme 19: Mechanism of the gold-catalyzed rearrangement of cyclopropenes 39.
Scheme 20: Gold-catalyzed cyclopropanation of styrene with cyclopropene 8.
Scheme 21: Representative reactions of carbene precursors on gold metal.
Scheme 22: Intermolecular olefin cyclopropanation with gold carbenes generated from cyclopropenes.
Scheme 23: Gold-catalyzed formation of trienes from cyclopropenes and furans.
Scheme 24: Gold-catalyzed formation of trienes from cyclopropenes and furans.
Scheme 25: Gold-catalyzed formation of trienes from cyclopropenes and furans.
Scheme 26: Gold-catalyzed cycloisomerization of cyclopropene-ene 59.
Scheme 27: Gold-catalyzed cycloisomerization of substituted allyl cyclopropenyl carbinyl ethers 62a–62f.
Scheme 28: Gold-catalyzed cycloisomerization of cyclopropene-enes.
Scheme 29: Gold-catalyzed cycloisomerization of cyclopropene-ynes.
Scheme 30: Formation of products arising from a double cleavage process in the gold-catalyzed cycloisomerizati...
Scheme 31: Gold-catalyzed cycloisomerization of cyclopropene-ynes involving a double cleavage process.
Scheme 32: Gold-catalyzed reaction of cyclopropene-ynes, cyclopropene-enes and cyclopropene-allenes.
Beilstein J. Org. Chem. 2011, 7, 582–595, doi:10.3762/bjoc.7.68
Graphical Abstract
Figure 1: Seven out of the ten top selling drugs in the USA in 2009 contain sulfur. Figures in italics are to...
Figure 2: Naturally occurring organosulfur compounds glutathione and (R)-thioterpineol.
Figure 3: Methods for the synthesis of chiral tertiary thiol 1.
Scheme 1: Preparation of thioethers 4 from α-hydroxy esters.
Scheme 2: Nucleophilic substitution in α-aryl-α-hydroxy esters.
Scheme 3: Preparation of α,α-dialkylthioethers.
Scheme 4: Preparation of α-cyanothioacetate 12.
Scheme 5: Synthesis of (R)-(+)-spirobrassinin.
Scheme 6: Opening of cyclic sulfamidates with thiol nucleophiles.
Scheme 7: Synthesis of androgen 20.
Scheme 8: Synthesis of (+)-BE-52440A.
Scheme 9: The Mitsunobu reaction.
Scheme 10: Mitsunobu substitution at a quaternary centre.
Figure 4: Initially assigned structure of hexacyclinol.
Scheme 11: Preparation of thioether 29.
Scheme 12: Thioethers 33 prepared from phosphinites 31.
Scheme 13: Preparation of enantiomerically pure thiol 39.
Scheme 14: Thioethers prepared by a modified Mitsunobu reaction.
Scheme 15: Nucleophilic conjugate addition.
Scheme 16: Asymmetric addition to cyclic enones.
Scheme 17: Preparation of thioether 45.
Scheme 18: Catalytic kinetic resolution of the enantiomers of enone 46.
Scheme 19: Organocatalytic conjugate addition to nitroalkenes 49.
Scheme 20: Preparation of β-amino acid 54.
Scheme 21: Sulfur migration within oxazolidine-2-thiones 56.
Scheme 22: Preparation of thiols 62 by self-regeneration of stereocentres.
Scheme 23: Synthesis of (5R)-thiolactomycin.
Scheme 24: Preparation of tertiary thiols and thioethers via α-thioorganolithiums.
Scheme 25: Diastereoselective methylation of organolithium 71.
Scheme 26: Addition to lithiated thiocarbamate 75.
Scheme 27: Configurational lability in unhindered α-lithiothiocarbamates.
Scheme 28: Configurational stability in bulky α-lithiothiocarbamates.
Scheme 29: Asymmetric functionalisation of secondary benzylic thiocarbamates.
Scheme 30: Methylation of lithioallyl thiocarbamates.
Scheme 31: Asymmetric preparation of tertiary allylic thiols.
Scheme 32: Asymmetric preparation of thiols 96 by aryl migration in lithiated thiocarbamates.
Beilstein J. Org. Chem. 2011, 7, 543–552, doi:10.3762/bjoc.7.62
Graphical Abstract
Figure 1: Molecular structures of syn-isobutyl chloroformate (1), syn-isobutyl chlorothioformate (2), phenyl ...
Scheme 1: Stepwise addition–elimination mechanism through a tetrahedral intermediate for solvolysis of chloro...
Scheme 2: Unimolecular solvolytic pathway for the dithioformate esters.
Figure 2: The plot of log (k/k0) for iBuOCOCl (1) against log (k/k0) for PhOCOCl (3).
Figure 3: The plot of log (k/k0) for isobutyl chloroformate (1) against 1.82 NT + 0.53 YCl in eighteen pure a...
Figure 4: The plot of log (k/k0) for isobutyl chlorothioformate (2) against 0.42 NT + 0.73 YCl in 15 pure and...
Beilstein J. Org. Chem. 2011, 7, 346–363, doi:10.3762/bjoc.7.45
Graphical Abstract
Scheme 1: Superelectrophilic activation of the acetyl cation.
Scheme 2: Ring opening of diprotonated 2-oxazolines.
Scheme 3: AlCl3-promoted ring opening of isoxaolidine 16.
Scheme 4: Ring-opening reactions of cyclopropyl derivatives.
Scheme 5: Condensations of ninhydrin (28) with benzene.
Scheme 6: Rearrangement of 29 to 30.
Scheme 7: Superacid promoted ring opening of succinic anhydride (33).
Scheme 8: Reaction of phthalic acid (36) in FSO3H-SbF5.
Scheme 9: Ring expansion of superelectrophile 42.
Scheme 10: Reaction of camphor (44) in superacid.
Scheme 11: Isomerization of 2-cyclohexen-1-one (48).
Scheme 12: Isomerization of 2-decalone (51).
Scheme 13: Rearrangement of the acyl-dication 58.
Scheme 14: Reaction of dialkylketone 64.
Scheme 15: Ozonolysis in superacid.
Scheme 16: Rearrangement of 1-hydroxy-2-methylcyclohexane carboxylic acid (79) in superacid.
Scheme 17: Isomerization of the 1,5-manxyl dication 87.
Scheme 18: Energetics of isomerization.
Scheme 19: Rearrangement of dication 90.
Scheme 20: Superacid promoted rearrangement of pivaldehyde (92).
Scheme 21: Rearrangement of a superelectrophilic carboxonium ion 100.
Scheme 22: Proposed mechanism for the Wallach rearrangement.
Scheme 23: Wallach rearrangement of azoxypyridines 108 and 109.
Scheme 24: Proposed mechanism of the benzidine rearrangement.
Scheme 25: Superacid-promoted reaction of quinine (122).
Scheme 26: Superacid-promoted reaction of vindoline derivative 130.
Scheme 27: Charge migration by hydride shift and acid–base chemistry.
Scheme 28: Reactions of 1-hydroxycyclohexanecarboxylic acid (137).
Scheme 29: Reaction of alcohol 143 with benzene in superacid.
Scheme 30: Reaction of alcohol 148 in superacid with benzene.
Scheme 31: Mechanism of aza-polycyclic aromatic compound formation.
Scheme 32: Superacid-promoted reaction of ethylene glycol (159).
Scheme 33: Reactions of 1,3-propanediol (165) and 2-methoxyethanol (169).
Scheme 34: Rearrangement of superelelctrophilic acyl dication 173.
Beilstein J. Org. Chem. 2011, 7, 320–328, doi:10.3762/bjoc.7.42
Graphical Abstract
Figure 1: 1,8-disubstituted naphthalene model systems.
Scheme 1: The general reaction for the preparation of the 1,8-disubstituted naphthol derivatives 1–5 [31].
Figure 2: X-ray structure of 8-(4-methylphenyl)-1-naphthol derivative 4.
Figure 3: Potentiometric titration data for compound 1 and TBAH.
Figure 4: Structures (a) with the hydrogen atom pointing into the ring, as seen in the crystal structure of 4...
Scheme 2: Titration of the acids 1–5 to generate the corresponding anions 8–12, respectively.
Figure 5: Plot of pKa' values for compounds 1–5 versus the corresponding R-substituent σp Hammett parameter. ...
Figure 6: Anion density (HOMO) for the phenyl-derivative 8, illustrating no conjugation of the anion with the...
Figure 7: Bond critical points (red), ring critical points (yellow) and bond paths illustrated for the anion 8...
Beilstein J. Org. Chem. 2010, 6, 1035–1042, doi:10.3762/bjoc.6.118
Graphical Abstract
Scheme 1: Mechanism of dehydration of benzene-1,2-dihydrodiol.
Figure 1: Reactivity ratios for acid-catalyzed reaction of arene dihydrodiols.
Figure 2: Substrates for solvolysis measurements.
Scheme 2: Products of solvolysis and (ester) hydrolysis of trans-1-trichloroacetoxy-2-methoxy-1,2-dihydronaph...
Scheme 3: Products of solvolysis of trans-1-chloro-2-hydroxy-1,2,3,4-tetrahydronaphthalene.
Figure 3: Rate constants for aqueous solvolyses.
Figure 4: Cis/trans reactivity ratios for β-hydroxycarbocation forming reactions.
Figure 5: Comparison of the effect of a β-hydroxy group on the reactivity of cis and trans di- and tetrahdron...
Scheme 4: ‘Aromatic’ hyperconjugation for the benzenium ion.
Scheme 5: Stereochemistry of carbocation formation from solvolysis of cis-1-trichloroacetoxy-2-hydroxy-1,2-di...
Beilstein J. Org. Chem. 2010, 6, 1002–1014, doi:10.3762/bjoc.6.113
Graphical Abstract
Figure 1: Chemical structures of compounds 1–3.
Scheme 1: Acid-catalysed behaviour of 4,5-bis(2-arylhydroxymethyl)-1,3-dithiole-2-thiones 2.
Scheme 2: The proposed mechanism for the formation of 3.
Scheme 3: The proposed mechanism for the decomposition of 13 in the presence of perchloric acid.
Figure 2: Generalised structure of diol 17.
Scheme 4: Reagents and conditions: (i) LDA (1 equiv), 2,4-dimethoxybenzaldehyde (1 equiv), then repeat, −78 °...
Scheme 5: Reagents and conditions: (i) ethylenediamine, AcOH, MeOH; (ii) P(OEt)3, 120 °C, 3 h.
Figure 3: Molecular structure and numbering scheme of compound 22 with Hs omitted.
Scheme 6: Reagents and conditions: (i) P(OEt)3, reflux; (ii) Hg(OAc)2, CH2Cl2/AcOH; (iii) NaOEt, THF, reflux,...
Figure 4: Molecular structure of 28 with the tetrabutylammonium cation omitted.
Figure 5: Packing diagram of 28 identifying close intermolecular contacts.
Figure 6: UV–visible spectra of 3, 25, 27 and 28 in CH2Cl2 solution.
Figure 7: Cyclic voltammograms of compounds 3, 25, 27, and 28. Glassy carbon working electrode, using Pt wire...
Beilstein J. Org. Chem. 2010, 6, No. 46, doi:10.3762/bjoc.6.46
Graphical Abstract
Scheme 1: Electrophilic [4 + 4] dimerization of oxetanes 1a–c under action of BF3·OEt2 catalyst.
Figure 1: ORTEP drawing of compounds 2a and 2b with thermal ellipsoids drawn to the 50% probability level.
Scheme 2: Reaction of 1d with BF3·OEt2.
Scheme 3: Reaction of 2,2-bis(trifluoromethyl)-4-alkoxyoxetanes 1b, c with methanol.
Scheme 4: Reaction of oxetane 1c with alcohols.
Scheme 5: Putative mechanism for the reaction oxetanes 2a–d with BF3·OEt2 and alcohols.
Scheme 6: Reaction of thietanes 4a, b with H2SO4 to generate 5.
Figure 2: ORTEP drawing of 5 with thermal ellipsoids drawn to the 50% probability level.
Scheme 7: Reaction of 4c with H2SO4.
Scheme 8: Putative mechanism for the formation bicyclic ether 5.
Beilstein J. Org. Chem. 2010, 6, No. 6, doi:10.3762/bjoc.6.6
Graphical Abstract
Scheme 1: AlCl3-mediated reaction between amyl chloride and benzene as developed by Friedel and Crafts.
Figure 1: Most often used metal salts for catalytic FC alkylations and hydroarylations of arenes.
Figure 2: 1,1-diarylalkanes with biological activity.
Scheme 2: Alkylating reagents and side products produced.
Scheme 3: Initially reported TeCl4-mediated FC alkylation of 1-penylethanol with toluene.
Scheme 4: Sc(OTf)3-catalyzed FC benzylation of arenes.
Scheme 5: Reductive FC alkylation of arenes with arenecarbaldehydes.
Scheme 6: Iron(III)-catalyzed FC benzylation of arenes and heteroarenes.
Scheme 7: A gold(III)-catalyzed route to beclobrate.
Scheme 8: Catalytic FC-type alkylations of 1,3-dicarbonyl compounds.
Scheme 9: Iron(III)-catalyzed synthesis of phenprocoumon.
Scheme 10: Bi(OTf)3-catalyzed FC alkylation of benzyl alcohols developed by Rueping et al.
Scheme 11: (A) Bi(OTf)3-catalyzed intramolecular FC alkylation as an efficient route to substituted fulvenes. ...
Scheme 12: FC-type glycosylation of 1,2-dimethylindole and trimethoxybenzene.
Scheme 13: FC alkylation with highly reactive ferrocenyl- and benzyl alcohols. The reaction proceeds even with...
Scheme 14: Reductive FC alkylation of arenes with benzaldehyde and acetophenone catalyzed by the Ir-carbene co...
Scheme 15: Formal synthesis of 1,1-diarylalkanes from benzyl alcohols and styrenes.
Scheme 16: (A) Mo-catalyzed hydroarylation of styrenes and cyclohexenes. (B) Hydroalkylation–cyclization casca...
Scheme 17: Bi(III)-catalyzed hydroarylation of styrenes with arenes and heteroarenes.
Scheme 18: BiCl3-catalyzed ene/FC alkylation reaction cascade – A fast access to highly arylated dihydroindene...
Scheme 19: Au(I)/Ag(I)-catalyzed hydroarylation of indoles with styrenes, aliphatic and cyclic alkenes.
Scheme 20: First transition-metal-catalyzed ortho-hydroarylation developed by Beller et al.
Scheme 21: (A) Ti(IV)-mediated rearrangement of an N-benzylated aniline to the corresponding ortho-alkylated a...
Scheme 22: Dibenzylation of aniline gives potentially useful amine-based ligands in a one-step procedure.
Scheme 23: FC-type alkylations with allyl alcohols as alkylating reagents – linear vs. branched product format...
Scheme 24: (A) First catalytic FC allylation and cinnamylation using allyl alcohols and its derivatives. (B) E...
Scheme 25: FC allylation/cyclization reaction yielding substituted chromanes.
Scheme 26: Synthesis of (all-rac)-α-tocopherol utilizing Lewis- and strong Brønsted-acids.
Scheme 27: Au(III)-catalyzed cinnamylation of arenes.
Scheme 28: “Exhaustive” allylation of benzene-1,3,5-triol.
Scheme 29: Palladium-catalyzed allylation of indole.
Scheme 30: Pd-catalyzed synthesis of pyrroloindoles from L-tryptophane.
Scheme 31: Ru(IV)-catalyzed allylation of indole and pyrroles with unique regioselectivity.
Scheme 32: Silver(I)-catalyzed intramolecular FC-type allylation of arenes and heteroarenes.
Scheme 33: FC-type alkylations of arenes using propargyl alcohols.
Scheme 34: (A) Propargylation of arenes with stoichiometric amounts of the Ru-allenylidene complex 86. (B) Fir...
Scheme 35: Diruthenium-catalyzed formation of chromenes and 1H-naphtho[2,1-b]pyrans.
Scheme 36: Rhenium(V)-catalyzed FC propargylations as a first step in the total synthesis of podophyllotoxin, ...
Scheme 37: Scandium-catalyzed arylation of 3-sulfanyl- and 3-selanylpropargyl alcohols.
Scheme 38: Synthesis of 1,3-diarylpropynes via direct coupling of propargyl trichloracetimidates and arenes.
Scheme 39: Diastereoselective substitutions of benzyl alcohols.
Scheme 40: (A) First diastereoselective FC alkylations developed by Bach et al. (B) anti-Selective FC alkylati...
Scheme 41: Diastereoselective AuCl3-catalyzed FC alkylation.
Scheme 42: Bi(OTf)3-catalyzed alkylation of α-chiral benzyl acetates with silyl enol ethers.
Scheme 43: Bi(OTf)3-catalyzed diastereoselective substitution of propargyl acetates.
Scheme 44: Nucelophilic substitution of enantioenriched ferrocenyl alcohols.
Scheme 45: First catalytic enantioselective propargylation of arenes.
Beilstein J. Org. Chem. 2009, 5, No. 75, doi:10.3762/bjoc.5.75
Graphical Abstract
Figure 1: Solvent-free PV-PTFE reaction apparatus.
Figure 2: Bromination of cis-stilbene. a) scheme of the reaction apparatus, b) reaction mixture (note a thin ...
Scheme 1: Bromination of stilbenes.