Search results

Search for "ketone" in Full Text gives 697 result(s) in Beilstein Journal of Organic Chemistry. Showing first 200.

On the application of 3d metals for C–H activation toward bioactive compounds: The key step for the synthesis of silver bullets

  • Renato L. Carvalho,
  • Amanda S. de Miranda,
  • Mateus P. Nunes,
  • Roberto S. Gomes,
  • Guilherme A. M. Jardim and
  • Eufrânio N. da Silva Júnior

Beilstein J. Org. Chem. 2021, 17, 1849–1938, doi:10.3762/bjoc.17.126

Graphical Abstract
  • inspired by the biocatalytic action of the cytochrome P-450 cycle, which is driven by a reductase or bioreductant, and presented high versatility in incorporating both aldehyde and ketone functionalities into unprotected arylboronic acids. The reaction consists of using a porphyrin-based iron catalyst, and
PDF
Album
Review
Published 30 Jul 2021

Development of N-F fluorinating agents and their fluorinations: Historical perspective

  • Teruo Umemoto,
  • Yuhao Yang and
  • Gerald B. Hammond

Beilstein J. Org. Chem. 2021, 17, 1752–1813, doi:10.3762/bjoc.17.123

Graphical Abstract
  • carbanions [90]. The precursor 27-1, which was prepared in a three step protocol from saccharin, was fluorinated with FClO3 to give 27-2 in good yield (Scheme 60). Direct fluorination of 27-1 with 10% F2/N2 had failed because of decomposition. Various ketone enolates were successfully fluorinated with
PDF
Album
Review
Published 27 Jul 2021

Cerium-photocatalyzed aerobic oxidation of benzylic alcohols to aldehydes and ketones

  • Girish Suresh Yedase,
  • Sumit Kumar,
  • Jessica Stahl,
  • Burkhard König and
  • Veera Reddy Yatham

Beilstein J. Org. Chem. 2021, 17, 1727–1732, doi:10.3762/bjoc.17.121

Graphical Abstract
  • benzylic alcohol selectively to the aldehyde or ketone is still desirable. Recently, cerium photocatalysis was introduced as a robust alternative to generate oxygen or carbon-centered radicals under mild reaction conditions [57][58][59][60][61][62][63][64]. CeCl3 reacts via ligand-to-metal charge transfer
PDF
Album
Supp Info
Letter
Published 23 Jul 2021

A recent overview on the synthesis of 1,4,5-trisubstituted 1,2,3-triazoles

  • Pezhman Shiri,
  • Ali Mohammad Amani and
  • Thomas Mayer-Gall

Beilstein J. Org. Chem. 2021, 17, 1600–1628, doi:10.3762/bjoc.17.114

Graphical Abstract
  • . This method was then extended to ketone, tosyl, and phthalimide groups on alkyl azides to produce the desired triazole derivatives. The ethylene glycol-, phenylalanine-, and glucose-derived azides were also good candidates to furnish the triazole derivatives. This protocol provides access to various
PDF
Album
Review
Published 13 Jul 2021

Methodologies for the synthesis of quaternary carbon centers via hydroalkylation of unactivated olefins: twenty years of advances

  • Thiago S. Silva and
  • Fernando Coelho

Beilstein J. Org. Chem. 2021, 17, 1565–1590, doi:10.3762/bjoc.17.112

Graphical Abstract
  • ), and notably, hydroalkylation products were produced from α-aryl ketones, from more acidic substrates like 4a, and from α-alkyl ketones, including the less activated methyl ketone 4c. Examples of intermolecular hydroalkylations of olefins using Pd were much scarcer than their intramolecular
PDF
Album
Review
Published 07 Jul 2021

Total synthesis of ent-pavettamine

  • Memory Zimuwandeyi,
  • Manuel A. Fernandes,
  • Amanda L. Rousseau and
  • Moira L. Bode

Beilstein J. Org. Chem. 2021, 17, 1440–1446, doi:10.3762/bjoc.17.99

Graphical Abstract
  • -pavettamine rather than pavettamine. Chain extension and stereoselective ketone reduction were achieved using the (R)-methyl p-tolyl sulfoxide chiral auxiliary to give the desired 1,3-syn-diol C5 unit. A protecting-group strategy was also developed for the orthogonal protection of the alcohol and amine
PDF
Album
Supp Info
Full Research Paper
Published 10 Jun 2021

Icilio Guareschi and his amazing “1897 reaction”

  • Gian Cesare Tron,
  • Alberto Minassi,
  • Giovanni Sorba,
  • Mara Fausone and
  • Giovanni Appendino

Beilstein J. Org. Chem. 2021, 17, 1335–1351, doi:10.3762/bjoc.17.93

Graphical Abstract
  • cyanoacetamide (and not a cyanoacetic ester) with a carbonyl derivative (aldehyde or ketone) was further investigated by the British chemist Jocelyn Fred Thorpe (1872–1940), a decade after the original studies by Guareschi [52]. In Thorpe’s modification, the reaction takes place in the presence of a secondary
  • ”, formally an internal redox reaction where the heterocyclic system is oxidatively aromatized and one of the substituents at C-4 reductively lost as a hydrocarbon. The reaction involves the treatment of a ketone with a solution of ethylcyanoacetate in ethanolic ammonia [7]. A precipitate of the ammonium salt
  • terms of overall redox transformation, the reaction formally “hydrolyses” a ketone into a hydrocarbon and a carboxylic acid, and the mechanism remained a black box for over a century, being eventually clarified only in 2007 by a team of British and Russian chemists [8]. One important starting
PDF
Album
Supp Info
Review
Published 25 May 2021

A comprehensive review of flow chemistry techniques tailored to the flavours and fragrances industries

  • Guido Gambacorta,
  • James S. Sharley and
  • Ian R. Baxendale

Beilstein J. Org. Chem. 2021, 17, 1181–1312, doi:10.3762/bjoc.17.90

Graphical Abstract
  • introduced to the reactor alongside cyclohexanone (65) in a single flow stream. A simple HPLC pump, mild heating (50 °C) and a residence time of 25 minutes was all that was required to give the β-hydroxy ketone 66 with >95% conversion, with modest diastereomeric ratio (dr) of 3:1 and high ee (82%). In the
PDF
Album
Review
Published 18 May 2021

N-tert-Butanesulfinyl imines in the asymmetric synthesis of nitrogen-containing heterocycles

  • Joseane A. Mendes,
  • Paulo R. R. Costa,
  • Miguel Yus,
  • Francisco Foubelo and
  • Camilla D. Buarque

Beilstein J. Org. Chem. 2021, 17, 1096–1140, doi:10.3762/bjoc.17.86

Graphical Abstract
  • ketone derivative 111, which was not isolated. After removal of the sulfinyl group under acidic conditions, and intramolecular N-alkylation upon treatment with sodium bicarbonate, (−)-pelletierine (112) was formed, and easily isolated as its hydrochloride derivative (Scheme 32) [120]. Compound 112 is a
  • products were obtained after four additional steps: cross-metathesis of allylated compounds 120 with methyl vinyl ketone, reduction of conjugated C=C double bond, removal of the sulfinyl group under acidic conditions, and final stereoselective reduction of the imine formed by intramolecular cyclization
  • (Scheme 33) [122]. The group of Prasad reported the diastereoselective synthesis of β-amino ketone derivatives from N-tert-butanesulfinyl imines and silyl enol ethers of aryl methyl ketone [123]. The synthetic interest in β-amino ketones was exemplified in the synthesis of alkaloid (+)-sedamine (125
PDF
Album
Review
Published 12 May 2021

Kinetics of enzyme-catalysed desymmetrisation of prochiral substrates: product enantiomeric excess is not always constant

  • Peter J. Halling

Beilstein J. Org. Chem. 2021, 17, 873–884, doi:10.3762/bjoc.17.73

Graphical Abstract
  • Peter J. Halling WestCHEM, Dept Pure & Applied Chemistry, University of Strathclyde, Glasgow G1 1XL, Scotland, UK 10.3762/bjoc.17.73 Abstract The kinetics of enzymatic desymmetrisation were analysed for the most common kinetic mechanisms: ternary complex ordered (prochiral ketone reduction); ping
  • -pong second (ketone amination, diol esterification, desymmetrisation in the second half reaction); ping-pong first (diol ester hydrolysis) and ping-pong both (prochiral diacids). For plausible values of enzyme kinetic parameters, the product enantiomeric excess (ee) can decline substantially as the
  • -reductases. The reductant (usually NADH or NADPH) has to bind first to the enzyme, followed by the prochiral ketone in the second step. The chiral products are then released before the oxidised co-product. “Ping-pong, second”. Followed by most transaminases and lipase or esterase-catalysed acylation of
PDF
Album
Supp Info
Full Research Paper
Published 21 Apr 2021

Microwave-assisted multicomponent reactions in heterocyclic chemistry and mechanistic aspects

  • Shivani Gulati,
  • Stephy Elza John and
  • Nagula Shankaraiah

Beilstein J. Org. Chem. 2021, 17, 819–865, doi:10.3762/bjoc.17.71

Graphical Abstract
  • condensation between ketone and formylquinoline. The amine and the intermediate A undergo Michael addition furnishing the keto-amine B. Further, an intramolecular cyclization with the attack of the amino group onto the carbonyl functionality with subsequent elimination of a water molecule results in the
  • min). The protocol adroitly represents the efficiency of microwave and multicomponent strategy in the generation of complex molecules like steroids. The mechanism follows a pathway where an imine A is generated from the reaction between steroidal ketone and ammonium acetate. Simultaneously, the
PDF
Album
Review
Published 19 Apr 2021

Synthesis of dibenzosuberenone-based novel polycyclic π-conjugated dihydropyridazines, pyridazines and pyrroles

  • Ramazan Koçak and
  • Arif Daştan

Beilstein J. Org. Chem. 2021, 17, 719–729, doi:10.3762/bjoc.17.61

Graphical Abstract
  • corresponding ketone 10bc. Eventually, pyrrole derivative 10bc, having a carbonyl group, was obtained by these reactions (Scheme 7). In order to increase the conjugation of dibenzosuberenone 1 for the photophysical aspect, the p-quinone methide derivative of dibenzosuberenone 11 was synthesized according to the
PDF
Album
Supp Info
Full Research Paper
Published 15 Mar 2021

α,γ-Dioxygenated amides via tandem Brook rearrangement/radical oxygenation reactions and their application to syntheses of γ-lactams

  • Mikhail K. Klychnikov,
  • Radek Pohl,
  • Ivana Císařová and
  • Ullrich Jahn

Beilstein J. Org. Chem. 2021, 17, 688–704, doi:10.3762/bjoc.17.58

Graphical Abstract
  • substituent at the nitrogen atom also plays essentially no role for the diastereoselectivity of the cyclization (Table 3, entry 10 vs entry 9). The minor cis-diastereomer of N-(1-β-naphthylethyl)pyrrolidone 12j crystallized after oxidation to ketone 13j and its configuration was unequivocally established by X
PDF
Album
Supp Info
Full Research Paper
Published 09 Mar 2021

[2 + 1] Cycloaddition reactions of fullerene C60 based on diazo compounds

  • Yuliya N. Biglova

Beilstein J. Org. Chem. 2021, 17, 630–670, doi:10.3762/bjoc.17.55

Graphical Abstract
  • with tosylhydrazone The first publication on the synthesis of methanofullerenes via tosyl derivatives appeared in 1993 [83]. According to the original source, C60 cyclopropanation is assumed to involve a diazo compound preliminarily synthesized from an aldehyde- or ketone-based tosylhydrazone. The
PDF
Review
Published 05 Mar 2021

Valorisation of plastic waste via metal-catalysed depolymerisation

  • Francesca Liguori,
  • Carmen Moreno-Marrodán and
  • Pierluigi Barbaro

Beilstein J. Org. Chem. 2021, 17, 589–621, doi:10.3762/bjoc.17.53

Graphical Abstract
  • activation of the chain-linking group of the polymer (either an ester, carbonate, ketone or amide) toward the nucleophilic attack of the various solvents. Specific examples, broken down according to the nature of the polymer and the process, will be reported in the next sections, in which metal catalysts are
PDF
Album
Review
Published 02 Mar 2021

Designed whole-cell-catalysis-assisted synthesis of 9,11-secosterols

  • Marek Kõllo,
  • Marje Kasari,
  • Villu Kasari,
  • Tõnis Pehk,
  • Ivar Järving,
  • Margus Lopp,
  • Arvi Jõers and
  • Tõnis Kanger

Beilstein J. Org. Chem. 2021, 17, 581–588, doi:10.3762/bjoc.17.52

Graphical Abstract
  • , ketone 2 (1.01 g, 99%) was isolated as white amorphous solid. [α]D20 +177.4 (c 0.46, CHCl3); 1H NMR (CDCl3, 400 MHz) δ 5.69 (d, J = 1.3 Hz, 1H), 4.45 (q, J = 3.0 Hz, 1H), 2.58–1.97 (m, 10H), 1.95 (dd, J = 14.4, 2.7 Hz, 1H), 1.85 (td, J = 13.5, 4.6 Hz, 1H), 1.73–1.58 (m, 1H), 1.52–1.47 (m, 1H), 1.46 (s
PDF
Album
Supp Info
Full Research Paper
Published 01 Mar 2021

A new and efficient methodology for olefin epoxidation catalyzed by supported cobalt nanoparticles

  • Lucía Rossi-Fernández,
  • Viviana Dorn and
  • Gabriel Radivoy

Beilstein J. Org. Chem. 2021, 17, 519–526, doi:10.3762/bjoc.17.46

Graphical Abstract
  • structure and/or degree of substitution at the C=C double bond. Thus, 1-phenylcyclohexene (1j, Table 2, entry 10), gave the epoxide 2j as the main product along with 19% of the corresponding allylic ketone in position 3 of the cyclohexenyl moiety (α-oxidation product). On the other hand, the epoxidation of
  • the diene (±)-limonene (1k, Table 2, entry 11) took place mainly on the endocyclic C=C double bond with good selectivity, although with a relatively modest conversion. On the contrary, for cyclohexene (1l, Table 2, entry 12) the main oxidation product was found to be the corresponding allylic ketone
PDF
Album
Supp Info
Full Research Paper
Published 22 Feb 2021
Graphical Abstract
  • flash column chromatography, using a n-hexane/ethyl acetate mixture as eluent to yield the products 12a–o. General procedure for the synthesis of sulfones A solution of β-naphthyl-β-sulfanyl ketone (0.1 mmol) in 0.8 mL DCM was cooled to 0 °C. m-CPBA (0.22 mmol, 37.97 mg) was added to this stirred
PDF
Album
Supp Info
Full Research Paper
Published 18 Feb 2021

Synthesis of trifluoromethyl ketones by nucleophilic trifluoromethylation of esters under a fluoroform/KHMDS/triglyme system

  • Yamato Fujihira,
  • Yumeng Liang,
  • Makoto Ono,
  • Kazuki Hirano,
  • Takumi Kagawa and
  • Norio Shibata

Beilstein J. Org. Chem. 2021, 17, 431–438, doi:10.3762/bjoc.17.39

Graphical Abstract
  • ][70][71], but the use of HCF3 for this transformation reaction is still limited. In 1998, Russel and Roques examined the transformation of methyl benzoate to trifluoromethyl phenyl ketone with HCF3 in the presence of KHMDS or KH/DMSO in DMF, but the method required DMF and only a single example was
  • indicated (Scheme 2a) [23]. Prakash and co-workers showed the first example of the DMF-free preparation of trifluoromethyl phenyl ketone with HCF3 in the presence of KHMDS in THF, but they did not examined the scope of the reaction (Scheme 2b) [38]. In 2018, Szymczak and co-workers showed a single example
  • of the preparation of phenyl trifluoromethyl ketone using HCF3-derived borazine CF3– in 29% yield (Scheme 2c) [43]. Very recently, Han, Lian, and co-workers reported that a protocol using diisopropylaminosodium (NaDA) was useful for the trifluoromethylation of esters to trifluoromethyl ketones with
PDF
Album
Supp Info
Letter
Published 12 Feb 2021

Unexpected rearrangements and a novel synthesis of 1,1-dichloro-1-alkenones from 1,1,1-trifluoroalkanones with aluminium trichloride

  • Beatrice Lansbergen,
  • Catherine S. Meister and
  • Michael C. McLeod

Beilstein J. Org. Chem. 2021, 17, 404–409, doi:10.3762/bjoc.17.36

Graphical Abstract
  • 5m compared to the longer chain substrates (e.g., 5c and 5l) could be explained mechanistically by the formation of a terminal carbocation upon the extraction of a fluorine atom by the aluminium species (Scheme 3). This carbocation could be stabilised to varying degrees by the ketone moiety
  • ketone. When the 4-methoxy derivative 5n was treated with AlCl3 using our standard conditions, none of the expected 1,1-dichloroalkenone 6n was obtained. Instead, the acid chloride 13 was isolated in an excellent yield (Scheme 5). The structure of this product was elucidated using 2D-NMR experiments
  • the described reactivity would be observed with substrates not containing a ketone linker. Replacing the ketone moiety with an oxygen or sulphur atom proved unsuccessful, with only complex mixtures being obtained the upon treatment with AlCl3 (see Supporting Information File 1). This observation
PDF
Album
Supp Info
Letter
Published 10 Feb 2021

CF3-substituted carbocations: underexploited intermediates with great potential in modern synthetic chemistry

  • Anthony J. Fernandes,
  • Armen Panossian,
  • Bastien Michelet,
  • Agnès Martin-Mingot,
  • Frédéric R. Leroux and
  • Sébastien Thibaudeau

Beilstein J. Org. Chem. 2021, 17, 343–378, doi:10.3762/bjoc.17.32

Graphical Abstract
  • allylic carbenium ions could exist in solution. The solvolysis of CF3-substituted allyl sulfonates was thus thoroughly examined by Gassmann and Harrington [76]. The solvolysis of doubly CF3-deactivated 90 in trifluoroethanol (TFE) required the presence of 2,6-lutidine, leading to ketone 91 and triflate 92
  • , Pittman, et al. investigated the protonation of a variety of trifluoromethyl ketones in a superacid [35][91]. Trifluoromethyl ketone protonation was observed by NMR spectroscopy at −60 °C in a superacidic FSO3H–SbF5–SO2 solution (Scheme 34). The 19F chemical shift variation for the generated oxygen
  • ↔142’ (Scheme 35). Oxygen-stabilized α-(trifluoromethyl)carbenium ions (oxocarbenium ions) have been exploited for chemical synthesis [92][93][94]. Ketone 143a and ketoxime 143b undergo Friedel–Crafts reactions in the presence of Brønsted or Lewis acid to furnish the corresponding CF3-containing
PDF
Album
Review
Published 03 Feb 2021

The preparation and properties of 1,1-difluorocyclopropane derivatives

  • Kymbat S. Adekenova,
  • Peter B. Wyatt and
  • Sergazy M. Adekenov

Beilstein J. Org. Chem. 2021, 17, 245–272, doi:10.3762/bjoc.17.25

Graphical Abstract
  • -difluorocyclopropyl acetals 110 to form 2-aryl-3-fluorofurans 112 (Scheme 50) [99]. The reaction could proceed either via the intermediacy of the gem-difluorocyclopropyl ketone 111 (path a) or by the direct rearrangement of the protonated acetal (path b). Recently, the group of Amii has reported the conversion of 1
  • imines 115, which led to alkylideneazetidines 116 (Scheme 52) [102]. The MgI2 acted as a Lewis acid and reducing agent, effecting the distal C–C bond cleavage in 113a to form an allenyl ketone, or an equivalent fluoro,iodo-enone species, either of which could then have added to the imine 115 and led to
  • -fluoropyrroles 142 (Scheme 62) [113]. The reaction involved the gem-difluorocyclopropyl ketones 143 and nitriles 144. It was proposed that the protonation of the ketone with triflic acid led to a partial ring opening of the gem-difluorocyclopropyl ketone to generate a carbocation-like center that was stabilized
PDF
Album
Review
Published 26 Jan 2021

Selective synthesis of α-organylthio esters and α-organylthio ketones from β-keto esters and sodium S-organyl sulfurothioates under basic conditions

  • Jean C. Kazmierczak,
  • Roberta Cargnelutti,
  • Thiago Barcellos,
  • Claudio C. Silveira and
  • Ricardo F. Schumacher

Beilstein J. Org. Chem. 2021, 17, 234–244, doi:10.3762/bjoc.17.24

Graphical Abstract
  • ethyl 2-(benzylthio)acetate (3a, 20% yield) and 1-(benzylthio)propan-2-one (4a, 44% yield) were obtained in a pure form by column chromatography (Table 1, entry 1). Interestingly, the formation of both an α-thio ester and an α-thio ketone, starting from ethyl acetoacetate and a sulfur source, was not
  • chromatographed on silica gel, eluting with hexanes/EtOAc 99:1 to isolate the product 4 after combining the appropriate fractions. Minor fractions of the corresponding compound 3 were isolated in 6% to 17% yield. In addition, we employed acetylacetone (5) as a reagent to obtain an α-thio ketone (Scheme 2
PDF
Album
Supp Info
Full Research Paper
Published 26 Jan 2021

Recent progress in the synthesis of homotropane alkaloids adaline, euphococcinine and N-methyleuphococcinine

  • Dimas J. P. Lima,
  • Antonio E. G. Santana,
  • Michael A. Birkett and
  • Ricardo S. Porto

Beilstein J. Org. Chem. 2021, 17, 28–41, doi:10.3762/bjoc.17.4

Graphical Abstract
  • hydrogenation occurred with high stereoselectivity producing a single diastereoisomer of 29. Then, the amide was treated with methyllithium at −78 °C to provide ketone 30 in 85% yield. Subsequently, the intramolecular Mannich reaction was carried out, leading to the desired alkaloid, via precursor 32. Ketone 30
  • diastereoisomeric mixture, converted to ketone (±)-37 via methylene derivative (±)-36, in 63% over two steps (Scheme 5). Ketone (±)-37 was converted to alkenyl triflate (±)-38 after treatment with LDA at −78 °C, followed by the Comins reagent [47]. (±)-38 was subjected to palladium-catalyzed hydrogenation
  • , where the axial proton in position 3 appears in δ 4.62 as a triplet of triplets, having coupling constants 11.0 and 6.4 Hz. Oxidation of (±)-41 with the TPAP-NMO system produced ketone (±)-42, a potential precursor to (±)-euphococcinine (2). Although being racemic, Ikeda's synthesis employed an
PDF
Album
Review
Published 05 Jan 2021

Pentannulation of N-heterocycles by a tandem gold-catalyzed [3,3]-rearrangement/Nazarov reaction of propargyl ester derivatives: a computational study on the crucial role of the nitrogen atom

  • Giovanna Zanella,
  • Martina Petrović,
  • Dina Scarpi,
  • Ernesto G. Occhiato and
  • Enrique Gómez-Bengoa

Beilstein J. Org. Chem. 2020, 16, 3059–3068, doi:10.3762/bjoc.16.255

Graphical Abstract
  • for the complete disappearance of the starting material). Moreover, besides the ketone 16 [53], formed as byproduct in the reaction with AgOTf, we observed the formation of many other unidentified compounds, reasonably either via side reactions of gold intermediates or the degradation of the starting
PDF
Album
Supp Info
Full Research Paper
Published 15 Dec 2020
Other Beilstein-Institut Open Science Activities