Search results

Search for "catalytic hydrogenation" in Full Text gives 122 result(s) in Beilstein Journal of Organic Chemistry.

A review of asymmetric synthetic organic electrochemistry and electrocatalysis: concepts, applications, recent developments and future directions

  • Munmun Ghosh,
  • Valmik S. Shinde and
  • Magnus Rueping

Beilstein J. Org. Chem. 2019, 15, 2710–2746, doi:10.3762/bjoc.15.264

Graphical Abstract
  • chiral auxiliary ([92]. The authors established that the Mannich addition occurred exclusively on the Si-face of the N-acyliminium ions, resulting in the threo-isomer as the major isomer (with moderate yields and good diastereomeric ratios). Upon catalytic hydrogenation followed by methanolysis, threo
PDF
Album
Review
Published 13 Nov 2019

N-(1-Phenylethyl)aziridine-2-carboxylate esters in the synthesis of biologically relevant compounds

  • Iwona E. Głowacka,
  • Aleksandra Trocha,
  • Andrzej E. Wróblewski and
  • Dorota G. Piotrowska

Beilstein J. Org. Chem. 2019, 15, 1722–1757, doi:10.3762/bjoc.15.168

Graphical Abstract
  • catalytic hydrogenation but metal-ammonia reduction (Birch reaction) and organic acid in anisole (vide infra) can be efficiently applied. We begin with a short presentation of syntheses of aziridine-2-carboxylates, the corresponding aldehydes and 2-methanols. Review Syntheses of starting materials Synthesis
  • nucleophiles to provide 9 or even by catalytic hydrogenation to form 10. Thus, biologically important fragments like vicinal amino alcohols 11 or 2-amino-1,3-propanediols 12a [Nu = OH] can be obtained in highly enantioselective procedures preserving the absolute configuration at C2. The latter compounds are
  • NaBH4/ZnCl2 mixture (chelation controlled) gave the aziridine alcohol 20 as a major product. Reductive opening of the aziridine ring produced the amino alcohol 21 which was transformed into the substituted oxazolidin-2-one 22. Its catalytic hydrogenation effected deoxygenation at the benzylic position
PDF
Album
Review
Published 23 Jul 2019

Heck- and Suzuki-coupling approaches to novel hydroquinone inhibitors of calcium ATPase

  • Robert J. Kempton,
  • Taylor A. Kidd-Kautz,
  • Soizic Laurenceau and
  • Stefan Paula

Beilstein J. Org. Chem. 2019, 15, 971–975, doi:10.3762/bjoc.15.94

Graphical Abstract
  • appended. Unfortunately, reactions of 6 and 8 utilizing catalytic hydrogenation, lithium aluminium hydride by itself as well as with added aluminium chloride or samarium iodide produced only trace amounts of an amine (e.g., 9). When samarium iodide was used as the reagent, the only discernible product (not
PDF
Album
Supp Info
Full Research Paper
Published 24 Apr 2019

Sigmatropic rearrangements of cyclopropenylcarbinol derivatives. Access to diversely substituted alkylidenecyclopropanes

  • Guillaume Ernouf,
  • Jean-Louis Brayer,
  • Christophe Meyer and
  • Janine Cossy

Beilstein J. Org. Chem. 2019, 15, 333–350, doi:10.3762/bjoc.15.29

Graphical Abstract
  • 6. [3,3]-Sigmatropic rearrangement of tertiary cyclopropenylcarbinyl acetates 10a–c. [3,3]-Sigmatropic rearrangement of secondary cyclopropenylcarbinyl esters 10d–h. [3,3]-Sigmatropic rearrangement of trichoroacetimidates 12a–i. Reaction of trichloroacetamide 13f with pyrrolidine. Catalytic
  • hydrogenation of (arylmethylene)cyclopropropane 13f. Instability of trichloroacetimidates 21a–c derived from cyclopropenylcarbinols 20a–c. [3,3]-Sigmatropic rearrangement of cyanate 27 generated from cyclopropenylcarbinyl carbamate 26. Synthesis of alkylidene(aminocyclopropane) derivatives 30–37 from carbamate
PDF
Album
Review
Published 05 Feb 2019

Unnatural α-amino ethyl esters from diethyl malonate or ethyl β-bromo-α-hydroxyiminocarboxylate

  • Eloi P. Coutant,
  • Vincent Hervin,
  • Glwadys Gagnot,
  • Candice Ford,
  • Racha Baatallah and
  • Yves L. Janin

Beilstein J. Org. Chem. 2018, 14, 2853–2860, doi:10.3762/bjoc.14.264

Graphical Abstract
  • 2ae. First of all, reduction of the alkylidenemalonate 6ae using a palladium-based catalytic hydrogenation also led to the concomitant hydrogenation of the furan ring to give compound 8. As depicted, this actually allowed us to prepare to the 2-tetrahydrofuranyl-bearing α-aminoester 10 in a 35
  • the water formed in situ. The 1H NMR monitoring of crude samples pointed out a complete conversion, most often overnight at 60 °C, and the resulting solutions of alkylidenemalonates 6a–al were then directly reduced to give the malonates 3a–al. For this reduction step, palladium-based catalytic
  • hydrogenation was preferably used although, when incompatible with the substrates, sodium borohydride was employed. In most cases, large proportion of the expected substituted malonates 3a–al were observed by 1H NMR. Thus, in order to simplify even further this procedure, these crude malonates were subjected to
PDF
Album
Supp Info
Full Research Paper
Published 16 Nov 2018

Synthesis of unnatural α-amino esters using ethyl nitroacetate and condensation or cycloaddition reactions

  • Glwadys Gagnot,
  • Vincent Hervin,
  • Eloi P. Coutant,
  • Sarah Desmons,
  • Racha Baatallah,
  • Victor Monnot and
  • Yves L. Janin

Beilstein J. Org. Chem. 2018, 14, 2846–2852, doi:10.3762/bjoc.14.263

Graphical Abstract
  • acid in ethanol overnight gave a sufficient amount of the (pure) target phenyl-bearing α-amino ester 10 which had been previously obtained by catalytic hydrogenation using palladium [20]. The same transformation sequences were used starting with compound 6n and provided the furan-bearing α-amino ester
PDF
Album
Supp Info
Full Research Paper
Published 15 Nov 2018

Synthesis of a leopolic acid-inspired tetramic acid with antimicrobial activity against multidrug-resistant bacteria

  • Luce Mattio,
  • Loana Musso,
  • Leonardo Scaglioni,
  • Andrea Pinto,
  • Piera Anna Martino and
  • Sabrina Dallavalle

Beilstein J. Org. Chem. 2018, 14, 2482–2487, doi:10.3762/bjoc.14.224

Graphical Abstract
  • protect the oxygen at C-4 [15]. We selected a benzyl protecting group, as it could be cleaved by catalytic hydrogenation together with the benzyl ester of L-phenylalanine in the ureidodipeptide fragment (see synthesis of compound 20) by a one-pot reaction. To increase the reaction rate toward O-alkylation
  • hand, we finally accomplished the N-acylation reaction using n-BuLi in THF at −60 °C [15] in 60% yield. Removal of both protecting groups by catalytic hydrogenation, gave the desired compound 1 in 72% yield (Scheme 3). Compound 1 was subjected to a preliminary study to evaluate the antimicrobial
PDF
Album
Supp Info
Letter
Published 24 Sep 2018

A novel and practical asymmetric synthesis of eptazocine hydrobromide

  • Ruipeng Li,
  • Zhenren Liu,
  • Liang Chen,
  • Jing Pan,
  • Kuaile Lin and
  • Weicheng Zhou

Beilstein J. Org. Chem. 2018, 14, 2340–2347, doi:10.3762/bjoc.14.209

Graphical Abstract
  • purity. With purified 4 in hand, the next step was the reduction. When compound 4 was reduced by catalytic hydrogenation at 0.4 MPa in the presence of Raney-Ni as catalyst in NH3/CH3OH, compounds 9 and 10 were formed as the main products instead of the expected compound 5. When the solvent NH3/CH3OH was
PDF
Album
Supp Info
Full Research Paper
Published 06 Sep 2018

Diazirine-functionalized mannosides for photoaffinity labeling: trouble with FimH

  • Femke Beiroth,
  • Tomas Koudelka,
  • Thorsten Overath,
  • Stefan D. Knight,
  • Andreas Tholey and
  • Thisbe K. Lindhorst

Beilstein J. Org. Chem. 2018, 14, 1890–1900, doi:10.3762/bjoc.14.163

Graphical Abstract
  • from p-nitrophenyl α-D-mannopyranoside (1), which was first reduced to the corresponding amine 6 [26][27] by catalytic hydrogenation (Scheme 1). HATU-mediated peptide coupling with Boc-protected glycine under basic conditions led to 7. After removal of the Boc protecting group using trifluoroacetic
PDF
Album
Supp Info
Full Research Paper
Published 24 Jul 2018

An amine protecting group deprotectable under nearly neutral oxidative conditions

  • Shahien Shahsavari,
  • Chase McNamara,
  • Mark Sylvester,
  • Emily Bromley,
  • Savannah Joslin,
  • Bao-Yuan Lu and
  • Shiyue Fang

Beilstein J. Org. Chem. 2018, 14, 1750–1757, doi:10.3762/bjoc.14.149

Graphical Abstract
  • groups for the purpose mainly include those deprotectable by acid (e.g., tert-butyloxycarbonyl (Boc) group) [2][3][4], base (e.g., 9-fluorenylmethyloxycarbonyl (Fmoc) group and trifluoroacetyl group) [5][6][7], catalytic hydrogenation (e.g., benzyl group) [8], photoirradiation (e.g., 2-nitrophenylethyl
  • arylamines. This group could be removed under nearly neutral oxidative conditions, which are orthogonal to the commonly used conditions for deprotection of protected amines including acid, base, and catalytic hydrogenation. Compared to Dmoc, dM-Dmoc has the advantage of being stable under a wide range of
PDF
Album
Supp Info
Full Research Paper
Published 13 Jul 2018

One hundred years of benzotropone chemistry

  • Arif Dastan,
  • Haydar Kilic and
  • Nurullah Saracoglu

Beilstein J. Org. Chem. 2018, 14, 1120–1180, doi:10.3762/bjoc.14.98

Graphical Abstract
  • -bromo-6-hydroxylamino-2,3-benzotropone oximes 262 were obtained. Hydrolysis of these oximes 262 with sulfuric acid gave 5-bromo-6-hydroxy-2,3-benzotropone and the 4-bromo isomer 263, which were debrominated with catalytic hydrogenation to give 239 (Scheme 41). Although 239 is capable of existing as two
  • ) [174]. Catalytic hydrogenation of 241 over Adams's catalyst (PtO2.H2) gave the diol 295 (Scheme 49) [162][165][174]. Treatment of 241 with alkaline hydrogen peroxide caused degradative fission to give o-carboxycinnamic acid (296) [165], while nitration of 241 with nitric acid in an acetic acid solution
  • were catalyzed by NaOH. 5.4.2. Reaction of 4-hydroxy-2,3-benzotropone (174): The structure of 174 was confirmed by the reduction of both benzotropolone 174 and diketone 300 into the diol 305 with catalytic hydrogenation (Scheme 51) [178]. 6. Halobenzotropones 6.1. Monohalobenzotropones 6.1.1. One-step
PDF
Album
Review
Published 23 May 2018

Synthetic and semi-synthetic approaches to unprotected N-glycan oxazolines

  • Antony J. Fairbanks

Beilstein J. Org. Chem. 2018, 14, 416–429, doi:10.3762/bjoc.14.30

Graphical Abstract
  • conditions for their cleavage. Secondly some glycosyl oxazolines are also prone to reductive cleavage by catalytic hydrogenation [41], presenting a significant further limitation as to which OH-protecting groups may be employed. Most of the reports in the literature have therefore used a protecting group
  • removed. Treatment with UDP-Gal and a β(1–4)-galactosyl transferase led to the addition of galactose residues to all of the 4-hydroxy groups of the GlcNAcs. Deprotection of the remaining benzyl protecting groups and removal of the SPh at the reducing terminus by catalytic hydrogenation gave the completely
PDF
Album
Review
Published 15 Feb 2018
Graphical Abstract
  • material 3. Due to the very similar polarities of 3 and 4, chromatographic separation was very tedious, and only 34% of methyl compound 4 was isolated, accompanied by about 30% of starting material 3 and mixed fractions. Debenzylation of 4 by catalytic hydrogenation in methanol solution under palladium
  • highly reactive benzylammonium residue still takes place, but O-debenzylation is predominantly suppressed by this catalyst poison. Finally, poisoning of the catalyst was prevented by simply passing a solution of the methoiodide 7 through a chloride-loaded ion exchanger prior to catalytic hydrogenation
PDF
Album
Supp Info
Full Research Paper
Published 11 Jan 2018

Aminosugar-based immunomodulator lipid A: synthetic approaches

  • Alla Zamyatina

Beilstein J. Org. Chem. 2018, 14, 25–53, doi:10.3762/bjoc.14.3

Graphical Abstract
  • deprotection by catalytic hydrogenation furnished lipid A 31. Alternatively, the lactol 30 was phosphitylated by application of the phosphoramidite procedure with (benzyloxy)[(N-Cbz-3-aminopropyl)oxy](N,N-diisopropylamino)phosphine in the presence of 1H-tetrazole and subsequent oxidation with dimethyldioxirane
PDF
Album
Review
Published 04 Jan 2018

The use of 4,4,4-trifluorothreonine to stabilize extended peptide structures and mimic β-strands

  • Yaochun Xu,
  • Isabelle Correia,
  • Tap Ha-Duong,
  • Nadjib Kihal,
  • Jean-Louis Soulier,
  • Julia Kaffy,
  • Benoît Crousse,
  • Olivier Lequin and
  • Sandrine Ongeri

Beilstein J. Org. Chem. 2017, 13, 2842–2853, doi:10.3762/bjoc.13.276

Graphical Abstract
  • with TFA and then performing the coupling reaction with Boc-L-Ala-OH in the presence of HBTU/HOBt/DIPEA or DMTMM(Cl−)/NMM. Catalytic hydrogenation, using 10% Pd/C or Pd(OH)2, under H2 atmosphere, gave pentapeptides 1a–3a in moderate to quantitative yield. After acidic removal of the Boc group, the
PDF
Album
Supp Info
Full Research Paper
Published 21 Dec 2017

Synthesis of oligonucleotides on a soluble support

  • Harri Lönnberg

Beilstein J. Org. Chem. 2017, 13, 1368–1387, doi:10.3762/bjoc.13.134

Graphical Abstract
  • linker was replaced with the 4-carboxymethylbenzoic acid linker 9, the fully protected oligomer could be released by catalytic hydrogenation. This allowed the preparation of appropriately protected dimeric and trimeric building blocks having only the 3´-terminal hydroxy function unprotected and, hence
PDF
Album
Review
Published 12 Jul 2017

Phosphorus pentasulfide mediated conversion of organic thiocyanates to thiols

  • Chandra Kant Maurya,
  • Avik Mazumder and
  • Pradeep Kumar Gupta

Beilstein J. Org. Chem. 2017, 13, 1184–1188, doi:10.3762/bjoc.13.117

Graphical Abstract
  • , Zn–HCl, catalytic hydrogenation (H2–molybdenum disulfide) and metal hydrides like LAH [12][13][14][15][16][17]. These methods, however, suffer from disadvantages like slow reaction rates, poor product yields, involvement of expensive and harsh reagents [16] and predominant side reactions leading to
PDF
Album
Supp Info
Letter
Published 20 Jun 2017

Continuous-flow processes for the catalytic partial hydrogenation reaction of alkynes

  • Carmen Moreno-Marrodan,
  • Francesca Liguori and
  • Pierluigi Barbaro

Beilstein J. Org. Chem. 2017, 13, 734–754, doi:10.3762/bjoc.13.73

Graphical Abstract
  • greener manufacturing methods [24][25]. Nonetheless, in order to be competitive on the large-scale, continuous-flow systems for the catalytic hydrogenation of alkynes should not only provide their intrinsic benefits over conventional batch processes, but also be advantageous, or at least equal, either in
  • Lindlar-based batch process [155][156]. Several systems have been reported on the lab scale for the catalytic hydrogenation of 11 under continuous-flow conditions. An accurate study was carried out using the Pd@MonoBor monolithic catalyst [136], showing how the subtle effect of fine adjustments of
PDF
Album
Review
Published 20 Apr 2017

Exploring endoperoxides as a new entry for the synthesis of branched azasugars

  • Svenja Domeyer,
  • Mark Bjerregaard,
  • Henrik Johansson and
  • Daniel Sejer Pedersen

Beilstein J. Org. Chem. 2017, 13, 644–647, doi:10.3762/bjoc.13.63

Graphical Abstract
  • by-product. Likely, diol 26 is formed by ring-opening of the epoxide by water present in the mCPBA and the reaction could be optimised by performing the reaction under anhydrous conditions. Attempts at cleaving the endoperoxide bond of 20 and 21 by catalytic hydrogenation resulted in rapid
PDF
Album
Supp Info
Full Research Paper
Published 03 Apr 2017

Derivatives of the triaminoguanidinium ion, 5. Acylation of triaminoguanidines leading to symmetrical tris(acylamino)guanidines and mesoionic 1,2,4-triazolium-3-aminides

  • Jan Szabo,
  • Julian Greiner and
  • Gerhard Maas

Beilstein J. Org. Chem. 2017, 13, 579–588, doi:10.3762/bjoc.13.57

Graphical Abstract
  • mentioned above, a two-step protocol – conversion of 1 into N,N’,N’’-tris(benzylideneamino)guanidinium chloride followed by catalytic hydrogenation of the imine groups – was developed. The fluorophenyl-substituted salt 5 was prepared analogously. Depending on the reaction conditions, the guanidinium salts 4
  • were confirmed by single-crystal X-ray diffraction (vide infra). Catalytic hydrogenation of 1,2,4-triazolium-3-aminides 7 with H2 and Pd/C in methanol selectively cleaves the N1–Cbenzyl bond and yields the neutral N-benzyl-N’-(4-benzylamino-4H-1,2,4-triazol-3-yl)benzohydrazides 10 in high yields
  • -1,2,4-triazolium salts by protonation or methylation at the anionic hydrazinide nitrogen atom and into highly substituted and functionalized 1,2,4-triazoles by N-debenzylation through catalytic hydrogenation. Thus, the reaction of triaminoguanidine and its 1,2,3-tribenzyl derivative with acid chlorides
PDF
Album
Supp Info
Full Research Paper
Published 22 Mar 2017

Revaluation of biomass-derived furfuryl alcohol derivatives for the synthesis of carbocyclic nucleoside phosphonate analogues

  • Bemba Sidi Mohamed,
  • Christian Périgaud and
  • Christophe Mathé

Beilstein J. Org. Chem. 2017, 13, 251–256, doi:10.3762/bjoc.13.28

Graphical Abstract
  • catalytic hydrogenation of furfural; the latter is obtained from the dehydration of xylose, a 5-carbon sugar derived from vegetal biomass. Furfuryl alcohol finds widespread application in the chemical industries and for example is employed for the production of synthetic fibers, fine chemicals, etc. In fine
PDF
Album
Supp Info
Full Research Paper
Published 09 Feb 2017

New syntheses of (±)-tashiromine and (±)-epitashiromine via enaminone intermediates

  • Darren L. Riley,
  • Joseph P. Michael and
  • Charles B. de Koning

Beilstein J. Org. Chem. 2016, 12, 2609–2613, doi:10.3762/bjoc.12.256

Graphical Abstract
  • recrystallisation from hexane. The cyclised enaminones 9b–d underwent catalytic hydrogenation in the presence of Adams catalyst (PtO2·xH2O) under mildly acidic conditions. The reduction can proceed either by direct cis-hydrogenation of the C=C bond, or by hydrogenation of the bicyclic iminium system formed by C
  • nitrile experiencing reproducibility issues during the cyclisation step. Key to the success of the synthesis however is the ability to remove efficiently the triphenylphosphine residues after the cyclisation step as the catalytic hydrogenation appeared to be adversely effected by the presence of these
PDF
Album
Supp Info
Full Research Paper
Published 02 Dec 2016
Graphical Abstract
  • containing one asymmetric feature, namely the electrophilic carbonyl group. This molecule is made industrially from precursors that already have the 6-membered ring preformed [132]. Example routes include dehydrogenation of cyclohexanol, which in turn is made either by catalytic hydrogenation of phenol
PDF
Album
Supp Info
Full Research Paper
Published 16 Nov 2016

Elongated and substituted triazine-based tricarboxylic acid linkers for MOFs

  • Arne Klinkebiel,
  • Ole Beyer,
  • Barbara Malawko and
  • Ulrich Lüning

Beilstein J. Org. Chem. 2016, 12, 2267–2273, doi:10.3762/bjoc.12.219

Graphical Abstract
  • derivative. The reaction time and the hydrogen pressure had to be optimized. By heterogeneous catalytic hydrogenation at 5 bar with a Pd/C catalyst, aminotriazine 16d was obtained in 77% yield after 5 days. Hydrolyses of all three methyl esters 16b–d provided the tricarboxylic acids 17b–d in 96% to
PDF
Album
Supp Info
Full Research Paper
Published 27 Oct 2016

A chiral analog of the bicyclic guanidine TBD: synthesis, structure and Brønsted base catalysis

  • Mariano Goldberg,
  • Denis Sartakov,
  • Jan W. Bats,
  • Michael Bolte and
  • Michael W. Göbel

Beilstein J. Org. Chem. 2016, 12, 1870–1876, doi:10.3762/bjoc.12.176

Graphical Abstract
  • us to assign the R configuration by anomalous dispersion (Supporting Information File 4). This isomer corresponds to the slower running isomer on a Chiralpak IA column. By catalytic hydrogenation with Pd on charcoal the bromo residue of enantiopure 30 was replaced with hydrogen thus converting R
PDF
Album
Supp Info
Full Research Paper
Published 19 Aug 2016
Other Beilstein-Institut Open Science Activities