Search results

Search for "cycloaddition" in Full Text gives 633 result(s) in Beilstein Journal of Organic Chemistry. Showing first 200.

Regioselectivity of the SEAr-based cyclizations and SEAr-terminated annulations of 3,5-unsubstituted, 4-substituted indoles

  • Jonali Das and
  • Sajal Kumar Das

Beilstein J. Org. Chem. 2022, 18, 293–302, doi:10.3762/bjoc.18.33

Graphical Abstract
  • 2021, Deng et al. showcased an unprecedented iridium-catalyzed asymmetric [4 + 3] cycloaddition of racemic 4-indolyl allylic alcohols 22 with α-imino esters 23 as azomethine ylide precursors to afford azepino[3,4,5-cd]indoles 24 in good yields and with complete regioselectivity and generally excellent
  • cyclization leading to the formation of polycyclic azepino[5,4,3-cd]indoles. Synthesis of azepino[3,4,5-cd]indoles via iridium-catalyzed asymmetric [4 + 3] cycloaddition of racemic 4-indolyl allylic alcohols with azomethine ylides. Aldimine condensation/1,6-hydride transfer/Mannich-type cyclization cascade of
PDF
Album
Commentary
Published 08 Mar 2022

New advances in asymmetric organocatalysis

  • Radovan Šebesta

Beilstein J. Org. Chem. 2022, 18, 240–242, doi:10.3762/bjoc.18.28

Graphical Abstract
  • disclosed important discoveries with proline and imidazolidinones as ample chiral catalysts for aldol [7][8], Diels–Alder [9], dipolar cycloaddition [10], and Mannich reactions [11]. The organic chemistry community this time took a tremendous interest in this concept, which led to many valuable developments
PDF
Editorial
Published 28 Feb 2022

Anomeric 1,2,3-triazole-linked sialic acid derivatives show selective inhibition towards a bacterial neuraminidase over a trypanosome trans-sialidase

  • Peterson de Andrade,
  • Sanaz Ahmadipour and
  • Robert A. Field

Beilstein J. Org. Chem. 2022, 18, 208–216, doi:10.3762/bjoc.18.24

Graphical Abstract
  • sialic acid derivatives in good yields and high purity via copper-catalysed azide–alkyne cycloaddition (CuAAC, click chemistry) and evaluated their activity towards TcTS and neuraminidase. Surprisingly, the compounds showed practically no TcTS inhibition, whereas ca. 70% inhibition was observed for
  • ) has also been introduced at C-2 of α-triazole-linked sialic acid derivatives modified at C-9 as ligands for the transmembrane glycoprotein CD22 [21]. In this sense, we have synthesised a small series of 1,2,3-triazole-linked sialic acid derivatives via copper-catalysed azide–alkyne cycloaddition
  • broad range of substrates, solvents, and reaction conditions; all these parameters have to be carefully planned to avoid low yields or even no product formation, as previously described for compound 1 [20]. Amongst the vast number of reported procedures, the 1,3-dipolar cycloaddition was performed with
PDF
Album
Supp Info
Full Research Paper
Published 17 Feb 2022

Regioselective synthesis of methyl 5-(N-Boc-cycloaminyl)-1,2-oxazole-4-carboxylates as new amino acid-like building blocks

  • Jolita Bruzgulienė,
  • Greta Račkauskienė,
  • Aurimas Bieliauskas,
  • Vaida Milišiūnaitė,
  • Miglė Dagilienė,
  • Gita Matulevičiūtė,
  • Vytas Martynaitis,
  • Sonata Krikštolaitytė,
  • Frank A. Sløk and
  • Algirdas Šačkus

Beilstein J. Org. Chem. 2022, 18, 102–109, doi:10.3762/bjoc.18.11

Graphical Abstract
  • -oxazoles are: the 1,3-dipolar cycloaddition of alkenes and alkynes with nitrile oxides, and the reaction of a three-carbon atom component, such as a α,β-unsaturated ketone or a 1,3-diketone with hydroxylamine hydrochloride [33]. Recently, Rosa et al. reported a useful procedure for the synthesis of various
  • regioisomeric 1,2-oxazole derivatives. Accordingly, the synthetic route starts from the condensation of 1,3-diketones with N,N-dimethylformamide dimethylacetal to form β-enamino ketoester. The latter undergoes a subsequent cycloaddition reaction with hydroxylamine to form regioisomerically substituted 1,2
PDF
Album
Supp Info
Full Research Paper
Published 12 Jan 2022

Efficient and regioselective synthesis of dihydroxy-substituted 2-aminocyclooctane-1-carboxylic acid and its bicyclic derivatives

  • İlknur Polat,
  • Selçuk Eşsiz,
  • Uğur Bozkaya and
  • Emine Salamci

Beilstein J. Org. Chem. 2022, 18, 77–85, doi:10.3762/bjoc.18.7

Graphical Abstract
  • . Results and Discussion Initially, we focused on the synthesis of β-lactam 2, which was prepared by the cycloaddition of chlorosulfonyl isocyanate (CSI) to cis,cis-1,3-cyclooctadiene, as described in the literature [26]. β-Lactam 2 was transformed into cis-amino ester 3 by cleavage of the lactam ring with
PDF
Album
Supp Info
Full Research Paper
Published 06 Jan 2022

Bifunctional thiourea-catalyzed asymmetric [3 + 2] annulation reactions of 2-isothiocyanato-1-indanones with barbiturate-based olefins

  • Jiang-Song Zhai and
  • Da-Ming Du

Beilstein J. Org. Chem. 2022, 18, 25–36, doi:10.3762/bjoc.18.3

Graphical Abstract
  • construction of bispirobarbiturates [30][31]. In 2019, for example, An and co-workers reported an asymmetric Michael/Mannich [3 + 2] cycloaddition reaction between N-(2,2,2-trifluoroethyl)isatin ketimines and barbiturate-based olefins (Scheme 1a) [32]. Based on the current knowledge, the construction of
PDF
Album
Supp Info
Full Research Paper
Published 04 Jan 2022

Iron-catalyzed domino coupling reactions of π-systems

  • Austin Pounder and
  • William Tam

Beilstein J. Org. Chem. 2021, 17, 2848–2893, doi:10.3762/bjoc.17.196

Graphical Abstract
PDF
Album
Review
Published 07 Dec 2021

Biological properties and conformational studies of amphiphilic Pd(II) and Ni(II) complexes bearing functionalized aroylaminocarbo-N-thioylpyrrolinate units

  • Samet Poyraz,
  • Samet Belveren,
  • Sabriye Aydınoğlu,
  • Mahmut Ulger,
  • Abel de Cózar,
  • Maria de Gracia Retamosa,
  • Jose M. Sansano and
  • H. Ali Döndaş

Beilstein J. Org. Chem. 2021, 17, 2812–2821, doi:10.3762/bjoc.17.192

Graphical Abstract
  • -dipolar cycloaddition [16][21][22], were submitted to the reaction with benzoyl isothiocyanate in refluxing acetonitrile to obtain compounds L1, L2 and L3 in good yields [16][21]. Due to the very low biological activity of these ligands by themselves, the chelation with nickel(II) and palladium(II) was
PDF
Album
Supp Info
Full Research Paper
Published 02 Dec 2021

The PIFA-initiated oxidative cyclization of 2-(3-butenyl)quinazolin-4(3H)-ones – an efficient approach to 1-(hydroxymethyl)-2,3-dihydropyrrolo[1,2-a]quinazolin-5(1H)-ones

  • Alla I. Vaskevych,
  • Nataliia O. Savinchuk,
  • Ruslan I. Vaskevych,
  • Eduard B. Rusanov,
  • Oleksandr O. Grygorenko and
  • Mykhailo V. Vovk

Beilstein J. Org. Chem. 2021, 17, 2787–2794, doi:10.3762/bjoc.17.189

Graphical Abstract
  • well as by Sm(OTf)3-catalyzed stereoselective [3 + 2] cycloaddition of bis-silyldienediolate and imines, in turn synthesized from anthranylamides and benzaldehydes [32]. A promising approach to the synthesis of 2,3-dihydropyrrolo[1,2-a]quinazolin-5(1H)-one derivatives substituted at the pyrrolidine
PDF
Album
Supp Info
Letter
Published 25 Nov 2021

Me3Al-mediated domino nucleophilic addition/intramolecular cyclisation of 2-(2-oxo-2-phenylethyl)benzonitriles with amines; a convenient approach for the synthesis of substituted 1-aminoisoquinolines

  • Krishna M. S. Adusumalli,
  • Lakshmi N. S. Konidena,
  • Hima B. Gandham,
  • Krishnaiah Kumari,
  • Krishna R. Valluru,
  • Satya K. R. Nidasanametla,
  • Venkateswara R. Battula and
  • Hari K. Namballa

Beilstein J. Org. Chem. 2021, 17, 2765–2772, doi:10.3762/bjoc.17.186

Graphical Abstract
  • cycloaddition reactions and also serves as a precursor for the generation of important functional groups like amines, aldehydes, ketones and carboxylic acids. Even though the nitrile functional group is prevalent in the transformation into different functional groups, the synthetic approaches that incorporate
PDF
Album
Supp Info
Letter
Published 16 Nov 2021

Recent advances in the asymmetric phosphoric acid-catalyzed synthesis of axially chiral compounds

  • Alemayehu Gashaw Woldegiorgis and
  • Xufeng Lin

Beilstein J. Org. Chem. 2021, 17, 2729–2764, doi:10.3762/bjoc.17.185

Graphical Abstract
  • axial chiral compounds has been paid much attention [6], and great progress has been made in recent years. For example, many remarkable activities have been undertaken to develop strategies such as dynamic kinetic resolution, atroposelective coupling, cycloaddition, and chirality conversion for the
  • ]. Zhou and co-workers published an excellent paper in 2019 on the conversion of central to axial chirality in an enantioselective [3 + 2] annulation of 1-styrylnaphthols 32 with azonaphthalenes 33. Under defined conditions, the cycloaddition product 34 was prepared in high yield (99%) with exclusive
  • diastereoselectivity and 99% ee in the presence of the chiral phosphoric acid CPA 2. Subsequently, using the chiral phosphoric acid-catalyzed [3 + 2] formal cycloaddition and a moderate DDQ oxidation method over 34, enantiomerically enriched 2,3-diarylbenzoindoles 35 were successfully prepared by performing a central
PDF
Album
Review
Published 15 Nov 2021

Synthesis of highly substituted fluorenones via metal-free TBHP-promoted oxidative cyclization of 2-(aminomethyl)biphenyls. Application to the total synthesis of nobilone

  • Ilya A. P. Jourjine,
  • Lukas Zeisel,
  • Jürgen Krauß and
  • Franz Bracher

Beilstein J. Org. Chem. 2021, 17, 2668–2679, doi:10.3762/bjoc.17.181

Graphical Abstract
  • radical cyclizations [22], Pschorr reactions [23], and diverse cycloaddition protocols [24][25]. Especially transition-metal-catalyzed cross-coupling reactions starting from benzophenones, benzoic acids, dihalogenated benzene building blocks and others have emerged as new approaches in recent years [26
PDF
Album
Supp Info
Correction
Full Research Paper
Published 02 Nov 2021

Synthesis of new bile acid-fused tetrazoles using the Schmidt reaction

  • Dušan Đ. Škorić,
  • Olivera R. Klisurić,
  • Dimitar S. Jakimov,
  • Marija N. Sakač and
  • János J. Csanádi

Beilstein J. Org. Chem. 2021, 17, 2611–2620, doi:10.3762/bjoc.17.174

Graphical Abstract
  • ]. The main approach in the synthesis of the tetrazoles is 1,3-dipolar cycloaddition between azide and nitrile. These reactions often follow the principles of “click” chemistry [20]. Although the formation of tetrazole in the Schmidt reaction of ketones was noted in the original study by Schmidt himself
  • , derivatives of bile acid, androstene, and cholestane were prepared, with the tetrazole ring not being fused to the steroid core [30][31][32][33]. Some fused steroidal tetrazole derivatives were obtained by intramolecular 1,3-dipolar cycloaddition [34][35]. It should be noted that the Schmidt reaction
PDF
Album
Supp Info
Full Research Paper
Published 20 Oct 2021

α-Ketol and α-iminol rearrangements in synthetic organic and biosynthetic reactions

  • Scott Benz and
  • Andrew S. Murkin

Beilstein J. Org. Chem. 2021, 17, 2570–2584, doi:10.3762/bjoc.17.172

Graphical Abstract
  • episilvestrol (35), natural products with potent anticancer properties. The step prior to the rearrangement involved a photoinduced [3 + 2] cycloaddition between hydroxyflavone 36 and methyl cinnamate (37), resulting in the bicyclic α-ketol 38 as a mixture of diastereomers (Ph and CO2Me groups trans) (Figure 9
  • the mixture of 38 and 39 induced a second α-ketol rearrangement to 40 as a tautomeric mixture. The same research group later utilized the same [3 + 2] cycloaddition and α-ketol rearrangement approach to prepare the 2′′′-epimer of 35, which bears an inverted methyl acetal in the dioxane ring, but this
  • 44 through a vinylogous α-ketol rearrangement of 45 to 46. Tandem reaction consisting of a Diels–Alder cycloaddition followed by an α-ketol rearrangement, part of the total synthesis of delitschiapyrone A (49). Single-pot reaction consisting of Claisen and α-ketol rearrangements, part of the total
PDF
Album
Review
Published 15 Oct 2021

Recent advances in the tandem annulation of 1,3-enynes to functionalized pyridine and pyrrole derivatives

  • Yi Liu,
  • Puying Luo,
  • Yang Fu,
  • Tianxin Hao,
  • Xuan Liu,
  • Qiuping Ding and
  • Yiyuan Peng

Beilstein J. Org. Chem. 2021, 17, 2462–2476, doi:10.3762/bjoc.17.163

Graphical Abstract
  • esterified pyridines 29 in moderate to high yield. It is worth noting that 1,3-enynes 28 bearing internal alkyne moieties were not tolerated as substrates. In 2016, Aïssa and co-workers reported a nickel-catalyzed [4 + 2]-cycloaddition of 3-azetidinones 30 with 1,3-enynes 31 for the synthesis of 3‑hydroxy
  • -4,5-alkyl-substituted pyridines 33 (Scheme 11) [53]. The transformation involved a two-step sequence of successive reactions: Firstly, the nickel-catalyzed [4 + 2]-cycloaddition of 1,3-enynes 31 and N-Ts-substituted 3-azetidinone 30 afforded dihydropyridinones 32 in good yield. The next step involved
  • chalcogenoamination. The derivatization of 5‑selenyl- and 5-sulfenyl-substituted nicotinates. The tandem reaction of nitriles, Reformatsky reagents, and 1,3-enynes. Nickel-catalyzed [4 + 2]-cycloaddition of 3-azetidinones with 1,3-enynes. Electrophilic iodocyclization of 2-nitro-1,3-enynes to pyrroles. Electrophilic
PDF
Album
Review
Published 22 Sep 2021

Efficient synthesis of polyfunctionalized carbazoles and pyrrolo[3,4-c]carbazoles via domino Diels–Alder reaction

  • Ren-Jie Fang,
  • Chen Yan,
  • Jing Sun,
  • Ying Han and
  • Chao-Guo Yan

Beilstein J. Org. Chem. 2021, 17, 2425–2432, doi:10.3762/bjoc.17.159

Graphical Abstract
  • that this acid-catalyzed cycloaddition reaction proceeded through a concerted Diels–Alder reaction mechanism. The acid-catalyzed Diels–Alder reaction afforded a mixture of two diastereoisomers, which decreased the synthetic value of the reaction. Thus, after the first step reaction, a DDQ
PDF
Album
Supp Info
Full Research Paper
Published 16 Sep 2021

Synthesis and antimicrobial activity of 1H-1,2,3-triazole and carboxylate analogues of metronidazole

  • Satya Kumar Avula,
  • Syed Raza Shah,
  • Khdija Al-Hosni,
  • Muhammad U. Anwar,
  • Rene Csuk,
  • Biswanath Das and
  • Ahmed Al-Harrasi

Beilstein J. Org. Chem. 2021, 17, 2377–2384, doi:10.3762/bjoc.17.154

Graphical Abstract
  • . The structure of metronidazide 3 was unambiguously confirmed by single crystal X-ray analysis (Figure 3). The next step was carried out by using “click” chemistry involving the 1,3-dipolar cycloaddition reaction between metronidazide 3 and alkyne derivative 4a in the presence of CuI and Hünig’s base
PDF
Album
Supp Info
Full Research Paper
Published 09 Sep 2021

Synthesis of phenanthridines via a novel photochemically-mediated cyclization and application to the synthesis of triphaeridine

  • Songeziwe Ntsimango,
  • Kennedy J. Ngwira,
  • Moira L. Bode and
  • Charles B. de Koning

Beilstein J. Org. Chem. 2021, 17, 2340–2347, doi:10.3762/bjoc.17.152

Graphical Abstract
  • ], rhodium-mediated alkyne [2 + 2 + 2] cycloaddition reactions [3], and the palladium-catalysed aerobic domino Suzuki coupling/Michael addition reaction [4]. The most attractive and common strategies to phenanthridines rely on intramolecular cyclizations of various ortho-functionalized biaryl precursors
PDF
Album
Supp Info
Full Research Paper
Published 08 Sep 2021

Synthesis of O6-alkylated preQ1 derivatives

  • Laurin Flemmich,
  • Sarah Moreno and
  • Ronald Micura

Beilstein J. Org. Chem. 2021, 17, 2295–2301, doi:10.3762/bjoc.17.147

Graphical Abstract
  • -diaminopyrimidin-4-one to the nitroolefin 2-[(2E)-3-nitroprop-2-en-1-yl]-1H-isoindole-1,3(2H)-dione [23]. Finally, Carell reported a cycloaddition route relying on α-brominated 3-phthalimidopropanal and diaminopyrimidin-4-one [24][25]. We further optimized this path for the synthesis of 15N-labeled prequeuosine
PDF
Album
Supp Info
Full Research Paper
Published 02 Sep 2021

(Phenylamino)pyrimidine-1,2,3-triazole derivatives as analogs of imatinib: searching for novel compounds against chronic myeloid leukemia

  • Luiz Claudio Ferreira Pimentel,
  • Lucas Villas Boas Hoelz,
  • Henayle Fernandes Canzian,
  • Frederico Silva Castelo Branco,
  • Andressa Paula de Oliveira,
  • Vinicius Rangel Campos,
  • Floriano Paes Silva Júnior,
  • Rafael Ferreira Dantas,
  • Jackson Antônio Lamounier Camargos Resende,
  • Anna Claudia Cunha,
  • Nubia Boechat and
  • Mônica Macedo Bastos

Beilstein J. Org. Chem. 2021, 17, 2260–2269, doi:10.3762/bjoc.17.144

Graphical Abstract
  • )pyrimidine-pyridine (PAPP) group as a pharmacophoric fragment, and these compounds were biologically evaluated. The synthesis of twelve new compounds was performed in three steps and assisted by microwave irradiation in a 1,3-dipolar cycloaddition to obtain 1,2,3-triazole derivatives substituted on carbon C
  • in the docking studies. Keywords: chronic myeloid leukemia; 1,3-dipolar cycloaddition; imatinib; (phenylamino)pyrimidine-pyridine; 1,2,3-triazole; Introduction Changes in tyrosine kinase proteins (TKPs), either by mutation or chromosomal translocation, can turn them into potent oncogenes
  • developed by Sharpless and collaborators, to the Huisgen cycloaddition (a 1,3-dipolar cycloaddition reaction to obtain this heterocycle) allowed the regiospecific synthesis of the 1,4-disubstituted isomers with good yields in the presence of copper(I) salts [15][16][17]. Since then, medicinal chemists used
PDF
Album
Supp Info
Full Research Paper
Published 01 Sep 2021

Facile and innovative catalytic protocol for intramolecular Friedel–Crafts cyclization of Morita–Baylis–Hillman adducts: Synergistic combination of chiral (salen)chromium(III)/BF3·OEt2 catalysis

  • Karthikeyan Soundararajan,
  • Helen Ratna Monica Jeyarajan,
  • Raju Subimol Kamarajapurathu and
  • Karthik Krishna Kumar Ayyanoth

Beilstein J. Org. Chem. 2021, 17, 2186–2193, doi:10.3762/bjoc.17.140

Graphical Abstract
  • arrangement would facilitate the intramolecular Friedel–Crafts cyclization of the MBH adducts. Cycloaddition of azomethine imine 7a with 2-substituted-1H-indenes 6b and 6c was attempted to ascertain the structure of the synthesized 1H-indenes (Scheme 3). The azomethine imine, 1-benzylidene-3-oxopyrazolidin-1
  • -ium-2-ide (7a) was synthesised at room temperature by treating methyl acrylate, hydrazine hydrate and benzaldehyde in a yield of 67%. On treating the synthesised azomethine imine 7a (1.2 mM) and 2-substituted-1H-indenes 6b and 6c (1 mM) in toluene at 70 °C affords 8a and 8b via [3 + 2] cycloaddition
  • reaction at a yield of 61% and 72%, respectively. Encouraged by the outcome of this non-catalytic cycloaddition reaction, similar studies using 2-substituted-1H-indenes (6a–f) with azomethine imines are underway. Conclusion In summary we have developed an efficient synthetic protocol for intramolecular
PDF
Album
Supp Info
Letter
Published 26 Aug 2021

Enantioenriched α-substituted glutamates/pyroglutamates via enantioselective cyclopropenimine-catalyzed Michael addition of amino ester imines

  • Zara M. Seibel,
  • Jeffrey S. Bandar and
  • Tristan H. Lambert

Beilstein J. Org. Chem. 2021, 17, 2077–2084, doi:10.3762/bjoc.17.134

Graphical Abstract
  • Michael adduct to cycloaddition product (Table 1, entry 2). Interestingly, the larger ring-containing catalyst 6 improved this ratio somewhat to 6:1 while retaining the enantiomeric ratio, albeit at the expense of reactivity (Table 1, entry 3). Incorporation of additional unsaturation (catalyst 7
  • , stereoselectivity, and selectivity for the Michael addition versus cycloaddition (Figure 2). The optimal substituent in this regard proved to be p-chlorophenyl 1, which resulted in the yield and selectivities using catalyst 5 as already discussed in Table 1. The o-chlorophenyl imine 12 was equally reactive, but led
  • carbon, either in a concerted fashion or via subsequent addition of a putative acrylate enolate intermediate, would lead to the cycloaddition byproduct 11 (path b, red and blue dashed lines). It should be noted that cyclopropenimine catalysts do not promote the cyclization of 10 to 11. From this model
PDF
Album
Supp Info
Letter
Published 17 Aug 2021

A study on selective transformation of norbornadiene into fluorinated cyclopentane-fused isoxazolines

  • Zsanett Benke,
  • Attila M. Remete and
  • Loránd Kiss

Beilstein J. Org. Chem. 2021, 17, 2051–2066, doi:10.3762/bjoc.17.132

Graphical Abstract
  • Abstract This work presents an examination of the selective functionalization of norbornadiene through nitrile oxide 1,3-dipolar cycloaddition/ring-opening metathesis (ROM)/cross-metathesis (CM) protocols. Functionalization of commercially available norbornadiene provided novel bicyclic scaffolds with
  • selective functionalization of readily available norbornadiene across nitrile oxide cycloaddition/ROM/CM protocols in view of the access of various fluorine-containing molecular entities as well as to explore the chemical behavior of olefin bonds in the reaction with some fluorinated alkene derivatives in
  • cycloaddition according to the Mukaiyama method followed by ROM of the major product. All five catalysts provided the desired products to some extent, but HG-1 gave the highest yield of (±)-4: 76%, (±)-5: 75% and (±)-6: 87% [41]. Further functionalization of compounds (±)-4–6 was attempted via CM with a high
PDF
Album
Supp Info
Full Research Paper
Published 13 Aug 2021

Recent advances in the syntheses of anthracene derivatives

  • Giovanni S. Baviera and
  • Paulo M. Donate

Beilstein J. Org. Chem. 2021, 17, 2028–2050, doi:10.3762/bjoc.17.131

Graphical Abstract
  • -cyclotrimerization reaction catalyzed by a cobalt/zinc reagent [40]. With regard to substituted anthracenes, this method consisted of a [2 + 2 + 2] cycloaddition reaction of 1,6-diynes 27 with 4-aryl-2-butyn-1-ols 28 (Scheme 6). The authors converted the resulting benzylic alcohols 29 to the corresponding aldehydes
  • substituents on the benzaldeydes 169 [72]. Cycloaddition reactions In 2014, Gao, Li, and their co-workers published a facile strategy to synthesize polysubstituted aromatic compounds from the reaction of quinones or maleimides with β-enamino esters (Scheme 39) [73]. They synthesized anthraquinone derivatives
  • 173 in good yield (62–94%) via a cycloaddition/oxidative aromatization sequence involving quinone 171 and substituted β-enamino esters 172 as precursors. They prepared anthraquinone 173a starting from three different β-enamino esters; a less bulky β-enamino ester favored the reaction. The scope of the
PDF
Album
Review
Published 10 Aug 2021

Asymmetric organocatalyzed synthesis of coumarin derivatives

  • Natália M. Moreira,
  • Lorena S. R. Martelli and
  • Arlene G. Corrêa

Beilstein J. Org. Chem. 2021, 17, 1952–1980, doi:10.3762/bjoc.17.128

Graphical Abstract
  • -hydroxycoumarin (1) with the chiral catalyst 48, as shown in Scheme 15 [48]. The enantioselective synthesis of dihydrocoumarins 51 from an inverse demand [4 + 2] cycloaddition of ketenes 50 with o-quinone methides 49 using carbene catalyst (NHC) 52 was described by Ye and co-workers [49].This transformation
  • oxidative [4 + 2] cycloaddition with unsaturated aldehydes 57 [51]. The methodology draws attention for the wide variety of products 58 obtained with moderate to excellent yields and enantiomeric excesses (Scheme 18). Activation via noncovalent bonding Besides the activation mode via a covalent bond, as
  • and colleagues proposed an asymmetric [3 + 2] cycloaddition employing a coumarin dipolarophile 43 with azomethine ylides 60 organocatalyzed by quinidine (62) for the formation of fused pyrrolidine compounds through activation of the coumarin substrate by hydrogen bonding [53]. The methodology enabled
PDF
Album
Review
Published 03 Aug 2021
Other Beilstein-Institut Open Science Activities