Search results

Search for "hydrazone" in Full Text gives 75 result(s) in Beilstein Journal of Organic Chemistry.

Functionalization of 4-bromobenzo[c][2,7]naphthyridine via regioselective direct ring metalation. A novel approach to analogues of pyridoacridine alkaloids

  • Benedikt C. Melzer,
  • Alois Plodek and
  • Franz Bracher

Beilstein J. Org. Chem. 2019, 15, 2304–2310, doi:10.3762/bjoc.15.222

Graphical Abstract
  • for 4-chlorobenzo[c][2,7]naphthyridine (9a) previously [10]. Alternatively, this SNAr could have taken place under anhydrous conditions directly from the aminoalkoxide. This latter mechanism is in analogy to an intramolecular reaction of a hydrazone derivative proposed by Guillier et al. [12
PDF
Album
Supp Info
Full Research Paper
Published 26 Sep 2019

Alkylation of lithiated dimethyl tartrate acetonide with unactivated alkyl halides and application to an asymmetric synthesis of the 2,8-dioxabicyclo[3.2.1]octane core of squalestatins/zaragozic acids

  • Herman O. Sintim,
  • Hamad H. Al Mamari,
  • Hasanain A. A. Almohseni,
  • Younes Fegheh-Hassanpour and
  • David M. Hodgson

Beilstein J. Org. Chem. 2019, 15, 1194–1202, doi:10.3762/bjoc.15.116

Graphical Abstract
  • Discussion The general viability of the α-ketoester to α-diazoester functional group interconversion envisaged in Scheme 2 (10 → 3) was readily established on a simpler but closely structurally-related system (Scheme 3). Thus, the known Z-hydrazone 12, previously prepared by us from α-ketoester 11 in 75
  • ); therefore, 20 and the derived tertiary TBS ether 21 were carried on directly to form hydrazone 22 (51% yield over 3 steps from hydroxy acetonide 19a). Unlike with hydrazone 12 (Scheme 3), application of NaOMe was not conducive to effective diazo formation from hydrazone 22, giving a mixture of unidentified
  • products; however, hydrazone 22 was cleanly converted into α-diazo ester 23 (88%) using Et3N [35][36]. TBDPS protection for the secondary alcohol had originally been selected principally for its likely tolerance to potential (hydroxy) acetonide removal conditions, and with the possibility [37][38] of its
PDF
Album
Supp Info
Full Research Paper
Published 31 May 2019

The LANCA three-component reaction to highly substituted β-ketoenamides – versatile intermediates for the synthesis of functionalized pyridine, pyrimidine, oxazole and quinoxaline derivatives

  • Tilman Lechel,
  • Roopender Kumar,
  • Mrinal K. Bera,
  • Reinhold Zimmer and
  • Hans-Ulrich Reissig

Beilstein J. Org. Chem. 2019, 15, 655–678, doi:10.3762/bjoc.15.61

Graphical Abstract
  • starting material. The efficient conversion of the acetyl group into the corresponding silyl enol ether moiety delivered OX18 that may be used for further transformations. Alternatively, OX7 and phenyl hydrazine afforded the corresponding hydrazone OX19 in excellent yield that was further treated with
PDF
Album
Review
Published 13 Mar 2019

Sigmatropic rearrangements of cyclopropenylcarbinol derivatives. Access to diversely substituted alkylidenecyclopropanes

  • Guillaume Ernouf,
  • Jean-Louis Brayer,
  • Christophe Meyer and
  • Janine Cossy

Beilstein J. Org. Chem. 2019, 15, 333–350, doi:10.3762/bjoc.15.29

Graphical Abstract
  • -Δ1-pyrazoline [39]) or by pyrolysis of the sodium salt of 3-propionyloxytetramethylcyclobutanone tosyl hydrazone [40]. It is also worth mentioning that completely divergent reactivities have also been reported for cyclopropenylcarbinyl esters in the presence of transition metal catalysts [41][42
PDF
Album
Review
Published 05 Feb 2019

Synthesis of a tubugi-1-toxin conjugate by a modulizable disulfide linker system with a neuropeptide Y analogue showing selectivity for hY1R-overexpressing tumor cells

  • Rainer Kufka,
  • Robert Rennert,
  • Goran N. Kaluđerović,
  • Lutz Weber,
  • Wolfgang Richter and
  • Ludger A. Wessjohann

Beilstein J. Org. Chem. 2019, 15, 96–105, doi:10.3762/bjoc.15.11

Graphical Abstract
  • disulfide linkage was chosen for the tubugi-1 coupling to the peptide moiety due to own promising preliminary work. Several linker chemistries were tested with tubulysin-like peptides – amongst them amide and ester linkers, hydrazone linker, VC linker etc. – the disulfide linker described herein, however
PDF
Album
Supp Info
Full Research Paper
Published 10 Jan 2019

Molecular iodine-catalyzed one-pot multicomponent synthesis of 5-amino-4-(arylselanyl)-1H-pyrazoles

  • Camila S. Pires,
  • Daniela H. de Oliveira,
  • Maria R. B. Pontel,
  • Jean C. Kazmierczak,
  • Roberta Cargnelutti,
  • Diego Alves,
  • Raquel G. Jacob and
  • Ricardo F. Schumacher

Beilstein J. Org. Chem. 2018, 14, 2789–2798, doi:10.3762/bjoc.14.256

Graphical Abstract
  • ) [8]. Attanasi and co-workers described the synthesis of 4-(phenylseleno)pyrazol-3-ones through α-(phenylseleno)hydrazone reagents under basic conditions [9]. In 2015, Yu and co-workers described one example for the condensation reaction of α-oxo ketene dithioacetal with hydrazine hydrate to produce
  • Lewis acid to generate the hydrazone intermediate A. Then, hydrazone A undergoes a cyclization reaction followed by an oxidative aromatization to yield 1H-pyrazol-5-amine 5. At the same time, the diaryl diselenide 3 reacts with the molecular iodine to generate an electrophilic selenium species B. The
PDF
Album
Supp Info
Full Research Paper
Published 06 Nov 2018

Novel photochemical reactions of carbocyclic diazodiketones without elimination of nitrogen – a suitable way to N-hydrazonation of C–H-bonds

  • Liudmila L. Rodina,
  • Xenia V. Azarova,
  • Jury J. Medvedev,
  • Dmitrij V. Semenok and
  • Valerij A. Nikolaev

Beilstein J. Org. Chem. 2018, 14, 2250–2258, doi:10.3762/bjoc.14.200

Graphical Abstract
  • %. Further irradiation of hydrazones derived from furan-fused tricyclic diazocyclopentanediones culminates in the cycloelimination of furans to yield 2-N-(alkyl)hydrazone of cyclopentene-1,2,3-trione. By contrast, the direct photolysis of carbocyclic diazodiketones gives only Wolff rearrangement products
  • in THF solutions with added sensitizers (Table 1). In the case of diazodiketone 1а the only isolated product was hydrazone 2а with 33–49% yields (Table 1, entries 1–3). Increasing the amount of sensitizer (up to 10:1) enhanced the yield of hydrazone 2а by 1/2 while reducing the irradiation time by 50
  • % (Table 1, entries 1 and 3). The irradiation of tricyclic diazodiketone 1b in the presence of 1 equiv of benzophenone in THF solution led to the formation of hydrazone 2b in a yield of 32% (Table 1, entry 4), whose structure was unambiguously established by X-ray analysis (Figure 2). To increase the
PDF
Album
Supp Info
Full Research Paper
Published 28 Aug 2018

Artificial bioconjugates with naturally occurring linkages: the use of phosphodiester

  • Takao Shoji,
  • Hiroki Fukutomi,
  • Yohei Okada and
  • Kazuhiro Chiba

Beilstein J. Org. Chem. 2018, 14, 1946–1955, doi:10.3762/bjoc.14.169

Graphical Abstract
  • –Alder reaction [41][42][43][44], and hydrazone/oxime formation [45][46][47][48], have developed selective conjugation reactions under mild conditions. Although these bond-forming reactions have proven to be truly powerful approaches and will remain as first options to create novel bioconjugates
PDF
Album
Supp Info
Full Research Paper
Published 27 Jul 2018

Synthesis of new tricyclic 5,6-dihydro-4H-benzo[b][1,2,4]triazolo[1,5-d][1,4]diazepine derivatives by [3+ + 2]-cycloaddition/rearrangement reactions

  • Lin-bo Luan,
  • Zi-jie Song,
  • Zhi-ming Li and
  • Quan-rui Wang

Beilstein J. Org. Chem. 2018, 14, 1826–1833, doi:10.3762/bjoc.14.155

Graphical Abstract
  • neutral tricyclic heterocycles. To this end, the phenylhydrazones 7 were replaced by the ethoxycarbonylhydrazone 11, in which the ethoxycarbonyl group was hoped to be removable by hydrolysis [34]. As presented in Scheme 4, ethyl carbazate was used to prepare the hydrazone 11 by condensation with 2,3
  • -dihydro-4(1H)-quinolone 6a [46]. However, it was odd that the oxidation using the hypervalent iodine(III) reagent PhI(OAc)2 as described for phenylhydrazones 7 failed to produce the expected α-acetoxy-ethoxycarbonyl compound 12. Instead, the hydrazone 11 remained intact and was recovered. Therefore, we
  • switched to a stronger oxidant, Pb(OAc)4. To our pleasure, hydrazone 11 was successfully oxidized to provide the required azoester 12. However, NMR analysis revealed that compound 12 was impure and contained also some cyclized byproduct [47]. Furthermore, it was discovered that compound 12 was quite
PDF
Album
Supp Info
Full Research Paper
Published 18 Jul 2018

One hundred years of benzotropone chemistry

  • Arif Dastan,
  • Haydar Kilic and
  • Nurullah Saracoglu

Beilstein J. Org. Chem. 2018, 14, 1120–1180, doi:10.3762/bjoc.14.98

Graphical Abstract
  • benzotropones 11 and 12 (Scheme 14 and Scheme 33) [78]. Diazo compound 76 was prepared from 4,5-benzotropone hydrazone under oxidative conditions. Irradiation of matrix-isolated 7-diazo-7H-benzo[7]annulene (76) afforded a mixture of triplet 7H-benzo[7]annulenylidene (77), 2,3-benzobicyclo[4.1.0]hepta-2,4,6
PDF
Album
Review
Published 23 May 2018

On the design principles of peptide–drug conjugates for targeted drug delivery to the malignant tumor site

  • Eirinaios I. Vrettos,
  • Gábor Mező and
  • Andreas G. Tzakos

Beilstein J. Org. Chem. 2018, 14, 930–954, doi:10.3762/bjoc.14.80

Graphical Abstract
  • , there are certain bonds like imine, oxime, hydrazone, orthoester, acetal, vinyl ether and polyketal [103] that are known to undergo hydrolysis at acidic pH, while being extremely stable during blood circulation. Therefore, acid-labile bonds could be hydrolyzed in the slightly acidic microenvironment and
PDF
Album
Review
Published 26 Apr 2018

Latest development in the synthesis of ursodeoxycholic acid (UDCA): a critical review

  • Fabio Tonin and
  • Isabel W. C. E. Arends

Beilstein J. Org. Chem. 2018, 14, 470–483, doi:10.3762/bjoc.14.33

Graphical Abstract
  • %. Wolff–Kishner reduction The Wolff–Kishner reaction is widely used by chemists to remove carbonyl moieties yielding unsubstituted alkyl chains. The reaction requires two steps: the hydrazine first reacts with the ketone forming a hydrazone; The addition of a strong base and heat then promote a
PDF
Album
Supp Info
Review
Published 20 Feb 2018

5-Aminopyrazole as precursor in design and synthesis of fused pyrazoloazines

  • Ranjana Aggarwal and
  • Suresh Kumar

Beilstein J. Org. Chem. 2018, 14, 203–242, doi:10.3762/bjoc.14.15

Graphical Abstract
  • aldehydes, benzoyl chloride and ethyl acetoacetate to append hydrazone, carbohydrazide and pyrazolone type moieties on pyrazolo[3,4-d]pyrimidine. Further, hydrazinyl derivative 189 provided various fused triazolylpyrazolo[3,4-d]pyrimidines on treatment with various reagents like aliphatic acids, benzoyl
PDF
Album
Review
Published 25 Jan 2018

Progress in copper-catalyzed trifluoromethylation

  • Guan-bao Li,
  • Chao Zhang,
  • Chun Song and
  • Yu-dao Ma

Beilstein J. Org. Chem. 2018, 14, 155–181, doi:10.3762/bjoc.14.11

Graphical Abstract
  • , copper(II) species A. The latter reacts with the hydrazone to the trifluoromethylated aminyl radical intermediate C which is stabilized by the lone pair of the adjacent nitrogen atom, and (2-iodobenzoyloxy)copper(II) chloride (B). Finally, intermediate C is oxidized by copper(II) to restore the hydrazone
PDF
Album
Review
Published 17 Jan 2018

Aminosugar-based immunomodulator lipid A: synthetic approaches

  • Alla Zamyatina

Beilstein J. Org. Chem. 2018, 14, 25–53, doi:10.3762/bjoc.14.3

Graphical Abstract
  • compounds using labeling reagents having a hydrazide group. A hydrophilic fluorescence group Alexa Fluor 568 and polyethylene glycol-linked biotin were introduced using hydrazone formation reaction between the aldehyde group of the glutaryl-Glc linker and the hydrazide group of the labeling reagent. In
PDF
Album
Review
Published 04 Jan 2018

Is the tungsten(IV) complex (NEt4)2[WO(mnt)2] a functional analogue of acetylene hydratase?

  • Matthias Schreyer and
  • Lukas Hintermann

Beilstein J. Org. Chem. 2017, 13, 2332–2339, doi:10.3762/bjoc.13.230

Graphical Abstract
  • , with no acetaldehyde hydrazone 9 present (Scheme 4a)! Retrospectively, this result could have been expected, since acetone is present as stabilizer in commercial acetylene pressure bottles [37]. The original report on 1-mediated acetylene hydration did not consider (and thus did not exclude) the
PDF
Album
Supp Info
Full Research Paper
Published 02 Nov 2017

Regiodivergent condensation of 5-alkoxycarbonyl-1H-pyrrol-2,3-diones with cyclic ketazinones en route to spirocyclic scaffolds

  • Alexey Yu. Dubovtsev,
  • Maksim V. Dmitriev,
  • Аndrey N. Maslivets and
  • Michael Rubin

Beilstein J. Org. Chem. 2017, 13, 2179–2185, doi:10.3762/bjoc.13.218

Graphical Abstract
  • between two alternative directions affording derivatives of partially hydrogenated indole or benzofurane. The control of this regioselectivity is efficiently governed by steric effects at the hydrazone moiety of the ketazinone reagent. Keywords: nitrogen heterocycles; oxygen heterocycles; pyrrolediones
  • spirocyclization via conversion of 1,3-diones 8 into mono-hydrazones. Indeed, while mono-imines of these ketones strongly prefer keto-enamine tautomeric form 13 over enol-imine form 14 (Scheme 4) [44][45], the corresponding hydrazones have been reported to favor enol-hydrazone tautomer 16 (Scheme 4) [46][47][48
  • ]. Keeping this in mind we decided to test the reactivity of ketazinones 17 that were obtained via condensation of cyclohexanediones 8 with hydrazone of acetophenone. We anticipated the formation of spirolactones 20 in this process, resulting from intramolecular transesterification involving the enol moiety
PDF
Album
Supp Info
Full Research Paper
Published 19 Oct 2017

The chemistry and biology of mycolactones

  • Matthias Gehringer and
  • Karl-Heinz Altmann

Beilstein J. Org. Chem. 2017, 13, 1596–1660, doi:10.3762/bjoc.13.159

Graphical Abstract
PDF
Album
Review
Published 11 Aug 2017

Construction of bis-, tris- and tetrahydrazones by addition of azoalkenes to amines and ammonia

  • Artem N. Semakin,
  • Aleksandr O. Kokuev,
  • Yulia V. Nelyubina,
  • Alexey Yu. Sukhorukov,
  • Petr A. Zhmurov,
  • Sema L. Ioffe and
  • Vladimir A. Tartakovsky

Beilstein J. Org. Chem. 2016, 12, 2471–2477, doi:10.3762/bjoc.12.241

Graphical Abstract
  • -tetraazaadamantane derivative was demonstrated. Keywords: azoalkenes; α-halogen hydrazones; heterocage compounds; hydrazone ligands; Michael addition; Introduction Hydrazones are extensively used as key structural units in the design of various functional molecular and supramolecular architectures [1][2][3][4][5
  • ][6][7][8][9][10][11][12][13][14][15][16][17]. The hydrazone group is a chemically stable, easily assembled motif with prospective coordination properties, which can be tuned by substitution at the carbon and nitrogen atoms. Furthermore, a reversible E/Z-isomerism of the C=N bond allows controllable
  • modulation of the molecular geometry, for example through coordination with metal cations, hydrogen bond formation or irradiation. These unique structural features of the hydrazone fragment have been successfully exploited in the design of various molecular switches, fluorophores and machines. Bis- and
PDF
Album
Supp Info
Full Research Paper
Published 21 Nov 2016

An effective one-pot access to polynuclear dispiroheterocyclic structures comprising pyrrolidinyloxindole and imidazothiazolotriazine moieties via a 1,3-dipolar cycloaddition strategy

  • Alexei N. Izmest’ev,
  • Galina A. Gazieva,
  • Natalya V. Sigay,
  • Sergei A. Serkov,
  • Valentina A. Karnoukhova,
  • Vadim V. Kachala,
  • Alexander S. Shashkov,
  • Igor E. Zanin,
  • Angelina N. Kravchenko and
  • Nina N. Makhova

Beilstein J. Org. Chem. 2016, 12, 2240–2249, doi:10.3762/bjoc.12.216

Graphical Abstract
  • aromatic aldehyde, similarly to the synthesis of compounds 1a–c. The reaction of aromatic aldehydes with imidazotriazinethiones without phenyl substituents in acidic media results in hydrazone formation and triazine-ring contraction [45]. The reaction of compounds 1d–f with sarcosine and isatins 3a,d,f
PDF
Album
Supp Info
Full Research Paper
Published 24 Oct 2016

Synthesis, fluorescence properties and the promising cytotoxicity of pyrene–derived aminophosphonates

  • Jarosław Lewkowski,
  • Maria Rodriguez Moya,
  • Anna Wrona-Piotrowicz,
  • Janusz Zakrzewski,
  • Renata Kontek and
  • Gabriela Gajek

Beilstein J. Org. Chem. 2016, 12, 1229–1235, doi:10.3762/bjoc.12.117

Graphical Abstract
  • properties. This expectation is supported by the biological activity of azomethine derivatives of pyrene-1-carboxaldehyde. They show antimicrobial action, e.g., 1-phenytoinylacetic acid hydrazone of pyrene-1-carboxaldehyde demonstrated a moderate antimicrobial activity towards Escherichia coli and
PDF
Album
Supp Info
Full Research Paper
Published 16 Jun 2016

Synthesis of a deuterated probe for the confocal Raman microscopy imaging of squalenoyl nanomedicines

  • Eric Buchy,
  • Branko Vukosavljevic,
  • Maike Windbergs,
  • Dunja Sobot,
  • Camille Dejean,
  • Simona Mura,
  • Patrick Couvreur and
  • Didier Desmaële

Beilstein J. Org. Chem. 2016, 12, 1127–1135, doi:10.3762/bjoc.12.109

Graphical Abstract
  • reaction of sulfonylhydrazone of acetone-d6 [34][35]. Thus condensation of trisylhydrazine with acetone-d6 (99.8% D) gave the expected hydrazone 14 in 55% yield. To our delight, upon treatment with two equivalents of n-BuLi and warming to 0 °C, the trisylhydrazone 14 afforded the vinyllithium reagent 15
PDF
Album
Supp Info
Full Research Paper
Published 06 Jun 2016

The synthesis of functionalized bridged polycycles via C–H bond insertion

  • Jiun-Le Shih,
  • Po-An Chen and
  • Jeremy A. May

Beilstein J. Org. Chem. 2016, 12, 985–999, doi:10.3762/bjoc.12.97

Graphical Abstract
  • major product, with the minor product coming from the predicted second-most preferred conformation 84. The May group also showed that the cascade reaction could be initiated from hydrazones. In the course of this work, it was discovered that NaOSiMe3 was a superior base for hydrazone to diazo conversion
  • (i.e., 86 to 87, Scheme 20) [89]. Surprisingly, no reaction was observed in the absence of the Rh catalyst, suggesting that it may be involved in the transformation of the hydrazone to 87. While the intermediate alkyl carbene 88 could potentially undergo a 1,2-hydride shift to give the alkene 90 in a
  • substrates with a 3-atom tether to the hydrazone and sterically large substituents allowed the isolation and characterization of mechanistic intermediates from the cascade reaction when it was conducted at 90 °C (Scheme 21). This confirmed some prior proposals of a cyclopropene intermediate [92], as the
PDF
Album
Review
Published 17 May 2016

The aminoindanol core as a key scaffold in bifunctional organocatalysts

  • Isaac G. Sonsona,
  • Eugenia Marqués-López and
  • Raquel P. Herrera

Beilstein J. Org. Chem. 2016, 12, 505–523, doi:10.3762/bjoc.12.50

Graphical Abstract
  • would coordinate and direct the hydrazone 28 to the Re face of the esters 26 in order to afford the absolute configuration found in the final products 29 of this process (Figure 7). Another example of the bifunctional action of the indanol-based thiourea 4 was reported by Sibi’s group. There, 100 mol
PDF
Album
Review
Published 14 Mar 2016

Supramolecular chemistry: from aromatic foldamers to solution-phase supramolecular organic frameworks

  • Zhan-Ting Li

Beilstein J. Org. Chem. 2015, 11, 2057–2071, doi:10.3762/bjoc.11.222

Graphical Abstract
  • ) precursors by forming dynamic hydrazone bonds [79] (Scheme 16). This dynamic covalent chemistry approach allowed for quick synthesis of viologen/TTF-alternating polymers. Driven by the intramolecular donor–acceptor interaction between the TTF and viologen units, the polymers folded into pleated conformations
PDF
Album
Review
Published 02 Nov 2015
Other Beilstein-Institut Open Science Activities