Search results

Search for "organocatalysis" in Full Text gives 173 result(s) in Beilstein Journal of Organic Chemistry.

N-Sulfinylpyrrolidine-containing ureas and thioureas as bifunctional organocatalysts

  • Viera Poláčková,
  • Dominika Krištofíková,
  • Boglárka Némethová,
  • Renata Górová,
  • Mária Mečiarová and
  • Radovan Šebesta

Beilstein J. Org. Chem. 2021, 17, 2629–2641, doi:10.3762/bjoc.17.176

Graphical Abstract
  • aldehydes and hydrogen-bond activation of nitroalkenes. Keywords: asymmetric organocatalysis; hydrogen bond; Michael addition; pyrrolidine; thiourea; urea; Introduction Asymmetric organocatalysis became one of the strategic ways for the efficient synthesis of chiral compounds [1]. Bifunctional catalysis
  • has proven to be a successful concept in asymmetric organocatalysis [2][3][4][5][6][7][8]. An amine unit with a hydrogen-bond donating skeleton is highly efficient from among various possible combinations of catalytic moieties within an organocatalyst. This idea has been inspired by proline catalysis
  • organocatalysis can benefit and accommodate many sustainability techniques [29]. Mechanochemistry can increase the sustainability profile of a chemical process by reducing potentially harmful organic solvents and bring other benefits such as substantially shortened reaction times. A handful of asymmetric
PDF
Album
Supp Info
Full Research Paper
Published 25 Oct 2021

Recent advances in organocatalytic asymmetric aza-Michael reactions of amines and amides

  • Pratibha Sharma,
  • Raakhi Gupta and
  • Raj K. Bansal

Beilstein J. Org. Chem. 2021, 17, 2585–2610, doi:10.3762/bjoc.17.173

Graphical Abstract
  • organocatalysts in asymmetric aza-MR. Keywords: asymmetric aza-Michael reaction; covalent bonding catalysis; nitrogen heterocycles; non-covalent bonding catalysis; organocatalysis; Introduction The Michael reaction though discovered about 135 years ago [1][2] continues to attract attention of the chemists owing
  • the non-covalent and covalent organocatalysis. It is intended to overview the literature of the last 10 years, i.e., from 2011 through 2020 only. Nevertheless, wherever necessary, earlier references may also be cited to maintain coherence. Furthermore, nitrogen nucleophiles comprise a large variety of
  • -2,3-dihydro-4-quinolones 99 were obtained in good yields of up to 95% and good ee (58–72%) (Table 22) [61]. 2. Covalent-bonding organocatalysis of aza-Michael reactions This category of organocatalysts includes N-heterocyclic carbenes and pyrrolidine derivatives. 2.1 Catalysis by N-heterocyclic
PDF
Album
Review
Published 18 Oct 2021

Enantioselective PCCP Brønsted acid-catalyzed aminalization of aldehydes

  • Martin Kamlar,
  • Robert Reiberger,
  • Martin Nigríni,
  • Ivana Císařová and
  • Jan Veselý

Beilstein J. Org. Chem. 2021, 17, 2433–2440, doi:10.3762/bjoc.17.160

Graphical Abstract
  • stereogenic carbon center with good enantioselectivity (ee up to 80%) and excellent yields (up to 97%). Keywords: aminalization; Brønsted acid; organocatalysis; PCCP; pentacarboxycyclopentadiene; Introduction Nitrogen-containing heterocyclic compounds are commonly occurring in nature and constitute the core
PDF
Album
Supp Info
Full Research Paper
Published 16 Sep 2021

Halides as versatile anions in asymmetric anion-binding organocatalysis

  • Lukas Schifferer,
  • Martin Stinglhamer,
  • Kirandeep Kaur and
  • Olga García Macheño

Beilstein J. Org. Chem. 2021, 17, 2270–2286, doi:10.3762/bjoc.17.145

Graphical Abstract
  • development of the research area of asymmetric anion-binding organocatalysis. Key early elucidation studies with chloride as counter-anion confirmed this type of alternative activation, which was then exploited in several processes and contributed to the advance and consolidation of anion-binding catalysis as
  • catalysts’ designs Basic/nucleophilic – H-donor bifunctional catalysts: Over the past decades, chiral bifunctional catalysts bearing a thiourea as HB-donor and a basic or nucleophilic group such as an amine have emerged as a powerful tool in organocatalysis by assisting to enhance the catalyst performance
PDF
Album
Review
Published 01 Sep 2021

Asymmetric organocatalyzed synthesis of coumarin derivatives

  • Natália M. Moreira,
  • Lorena S. R. Martelli and
  • Arlene G. Corrêa

Beilstein J. Org. Chem. 2021, 17, 1952–1980, doi:10.3762/bjoc.17.128

Graphical Abstract
  • , the advances in asymmetric organocatalyzed synthesis of coumarin derivatives are discussed in this review, according to the mode of activation of the catalyst. Keywords: asymmetric synthesis; green chemistry; 2H-chromen-2-one; organocatalysis; Introduction Coumarins are important naturally occurring
  • a specific target, i.e., it gives access to a greater diversity of compounds to be explored [26]. In this work, a compilation of the enantioselective synthesis of coumarin derivatives using asymmetric organocatalysis is presented, highlighting the proposed mechanism pathways for the formation of the
  • described by Herrera et al. for the first time using primary aromatic diamines 31 as organocatalysts. The application of this class of catalysts for the Michael asymmetric addition of 4-hydroxycoumarins 1 to enones 2 is interesting from the point of view of organocatalysis, since the presence of two primary
PDF
Album
Review
Published 03 Aug 2021

Electron-rich triarylphosphines as nucleophilic catalysts for oxa-Michael reactions

  • Susanne M. Fischer,
  • Simon Renner,
  • A. Daniel Boese and
  • Christian Slugovc

Beilstein J. Org. Chem. 2021, 17, 1689–1697, doi:10.3762/bjoc.17.117

Graphical Abstract
  • Susanne M. Fischer Simon Renner A. Daniel Boese Christian Slugovc Institute for Chemistry and Technology of Materials, Graz University of Technology, Stremayrgasse 9, 8010 Graz, Austria Christian Doppler Laboratory for Organocatalysis in Polymerization, Stremayrgasse 9, 8010 Graz, Austria
  • chemistry; organocatalysis; phosphine; solvent-free synthesis; Introduction Phosphines are potent nucleophiles that are used as catalysts in many reactions, like Rauhut–Currier, Morita–Baylis–Hillman or Michael reactions [1][2][3]. The first step of these reactions is a conjugate addition of the phosphine
PDF
Album
Supp Info
Full Research Paper
Published 21 Jul 2021

One-step synthesis of imidazoles from Asmic (anisylsulfanylmethyl isocyanide)

  • Louis G. Mueller,
  • Allen Chao,
  • Embarek AlWedi and
  • Fraser F. Fleming

Beilstein J. Org. Chem. 2021, 17, 1499–1502, doi:10.3762/bjoc.17.106

Graphical Abstract
  • etomidate [4] and the antileukemia agent nilotinib [5]. The outstanding and diverse bioactivity of imidazole-containing pharmaceuticals [6], as well as their role as ligands for transition metals [7], and organocatalysis [8], has stimulated an array of creative syntheses [9][10]. Among the numerous routes
PDF
Album
Supp Info
Full Research Paper
Published 24 Jun 2021

Organocatalytic asymmetric Michael/acyl transfer reaction between α-nitroketones and 4-arylidenepyrrolidine-2,3-diones

  • Chandrakanta Parida and
  • Subhas Chandra Pan

Beilstein J. Org. Chem. 2021, 17, 1447–1452, doi:10.3762/bjoc.17.100

Graphical Abstract
  • reported. A bifunctional thiourea catalyst was found to be effective for this reaction. With 10 mol % of the catalyst, good results were attained for a variety of 1,5-dihydro-2H-pyrrol-2-ones under mild reaction conditions. Keywords: acyl transfer; enantioselectivity; Michael reaction; organocatalysis
  • ; pyrrolidine-2,3-dione; Introduction The Michael reaction is a powerful reaction that has been so far applied for the formation of carbon–carbon and carbon–heteroatom bonds in organic synthesis [1][2]. After the renaissance of organocatalysis in the year 2000, this field has been applied tremendously for the
PDF
Album
Supp Info
Full Research Paper
Published 14 Jun 2021

A comprehensive review of flow chemistry techniques tailored to the flavours and fragrances industries

  • Guido Gambacorta,
  • James S. Sharley and
  • Ian R. Baxendale

Beilstein J. Org. Chem. 2021, 17, 1181–1312, doi:10.3762/bjoc.17.90

Graphical Abstract
PDF
Album
Review
Published 18 May 2021
Graphical Abstract
  • %) catalyst loading. Selected enantiomerically enriched sulfa-Michael addition products were subjected to oxidation to obtain the corresponding sulfones. Keywords: asymmetric synthesis; bifunctional catalysis; cinchona alkaloids; organocatalysis; sulfa-Michael reaction; Introduction Derivatives of the
PDF
Album
Supp Info
Full Research Paper
Published 18 Feb 2021

Synthesis, crystal structures and properties of carbazole-based [6]helicenes fused with an azine ring

  • Daria I. Tonkoglazova,
  • Anna V. Gulevskaya,
  • Konstantin A. Chistyakov and
  • Olga I. Askalepova

Beilstein J. Org. Chem. 2021, 17, 11–21, doi:10.3762/bjoc.17.2

Graphical Abstract
  • have led to promising applications of helicenes. The latter have been studied with respect to conductivity [12][13][14][15], nonlinear optics [16][17], circularly polarized luminescence [18][19][20][21][22][23][24], organocatalysis [25][26][27][28][29], conformational analysis [30], chirality sensing
PDF
Album
Supp Info
Full Research Paper
Published 04 Jan 2021

Synthetic approaches to bowl-shaped π-conjugated sumanene and its congeners

  • Shakeel Alvi and
  • Rashid Ali

Beilstein J. Org. Chem. 2020, 16, 2212–2259, doi:10.3762/bjoc.16.186

Graphical Abstract
  • ][22][23]. On the other hands, further extension of these molecules leads to homochiral carbon nanotubes which can produce innovative perception in chiral sensing, chiral catalysis, separation techniques and chiral ligands for organocatalysis [24]. Additionally, control on the bowl-to-bowl inversion
PDF
Album
Review
Published 09 Sep 2020

Polarity effects in 4-fluoro- and 4-(trifluoromethyl)prolines

  • Vladimir Kubyshkin

Beilstein J. Org. Chem. 2020, 16, 1837–1852, doi:10.3762/bjoc.16.151

Graphical Abstract
  • ], organocatalysis [102], drug discovery [103] and more. A) Three types of the backbone amino acid structures that are included in protein translation: glycine, alanine, and the set of its structural derivatives, proline. B) The portfolio of the fluorinated amino acids developed to date. The set of amino acids
PDF
Album
Supp Info
Full Research Paper
Published 23 Jul 2020

When metal-catalyzed C–H functionalization meets visible-light photocatalysis

  • Lucas Guillemard and
  • Joanna Wencel-Delord

Beilstein J. Org. Chem. 2020, 16, 1754–1804, doi:10.3762/bjoc.16.147

Graphical Abstract
  • catalysis with a second catalytic system has sparked significant interest from the scientific community. Accordingly, numerous unprecedented reactions involving photoredox catalysis in synergy with other activation modes including Brønsted/Lewis acid catalysis, organocatalysis, enzymatic biocatalysis, or
PDF
Album
Review
Published 21 Jul 2020

Fluorohydration of alkynes via I(I)/I(III) catalysis

  • Jessica Neufeld,
  • Constantin G. Daniliuc and
  • Ryan Gilmour

Beilstein J. Org. Chem. 2020, 16, 1627–1635, doi:10.3762/bjoc.16.135

Graphical Abstract
  • suppressed catalysis. The prerequisite for this substructure was established by molecular editing and was complemented with a physical organic investigation of possible determinants. Keywords: α-fluoroketone; alkyne; fluorination; hypervalent iodine; organocatalysis; Introduction The venerable role of
PDF
Album
Supp Info
Full Research Paper
Published 10 Jul 2020

Heterogeneous photocatalysis in flow chemical reactors

  • Christopher G. Thomson,
  • Ai-Lan Lee and
  • Filipe Vilela

Beilstein J. Org. Chem. 2020, 16, 1495–1549, doi:10.3762/bjoc.16.125

Graphical Abstract
PDF
Album
Review
Published 26 Jun 2020

Photocatalysis with organic dyes: facile access to reactive intermediates for synthesis

  • Stephanie G. E. Amos,
  • Marion Garreau,
  • Luca Buzzetti and
  • Jerome Waser

Beilstein J. Org. Chem. 2020, 16, 1163–1187, doi:10.3762/bjoc.16.103

Graphical Abstract
PDF
Album
Review
Published 29 May 2020

Asymmetric synthesis of CF2-functionalized aziridines by combined strong Brønsted acid catalysis

  • Xing-Fa Tan,
  • Fa-Guang Zhang and
  • Jun-An Ma

Beilstein J. Org. Chem. 2020, 16, 638–644, doi:10.3762/bjoc.16.60

Graphical Abstract
  • no enantioselectivity at all. As arylboronic acids have been harnessed to enhance the Brønsted acidity in asymmetric organocatalysis in combination with chiral diols or chiral aminoalcohols [40][41][42][43][44], we envisioned that the simultaneous use of arylboronic acids and chiral Brønsted acids
PDF
Album
Supp Info
Full Research Paper
Published 07 Apr 2020

Recent developments in photoredox-catalyzed remote ortho and para C–H bond functionalizations

  • Rafia Siddiqui and
  • Rashid Ali

Beilstein J. Org. Chem. 2020, 16, 248–280, doi:10.3762/bjoc.16.26

Graphical Abstract
  • functionalization has been done either using transition metal catalysis or organocatalysis, through the installation of directing groups next to the targeted C–H bond, or by employing radical tactics based on single-electron transfer (SET) [15][16][17][18][19][20][21][22][23][24][25][26][27]. Although
PDF
Album
Review
Published 26 Feb 2020

Halogen-bonding-induced diverse aggregation of 4,5-diiodo-1,2,3-triazolium salts with different anions

  • Xingyu Xu,
  • Shiqing Huang,
  • Zengyu Zhang,
  • Lei Cao and
  • Xiaoyu Yan

Beilstein J. Org. Chem. 2020, 16, 78–87, doi:10.3762/bjoc.16.10

Graphical Abstract
  • chemistry, anion recognition, organocatalysis, materials science and tuning of biomolecular systems [17][18][19][20][21][22][23][24][25][26][27]. 1,2,3-Triazole-based XB-donors, such as 5-iodo-1,2,3-triazoles A [28][29][30][31][32][33] and 5-iodo-1,2,3-triazolium B [34][35][36][37] (Figure 1), are promising
PDF
Album
Supp Info
Full Research Paper
Published 13 Jan 2020

A review of asymmetric synthetic organic electrochemistry and electrocatalysis: concepts, applications, recent developments and future directions

  • Munmun Ghosh,
  • Valmik S. Shinde and
  • Magnus Rueping

Beilstein J. Org. Chem. 2019, 15, 2710–2746, doi:10.3762/bjoc.15.264

Graphical Abstract
  • chiral enolates. Organocatalysts: From the outset of electroorganic chemistry, chemists have devoted substantial effort towards applying organocatalysts in electroorganic synthesis. Recent advances integrating organocatalysis and electroorganic synthesis were elegantly presented by Boydston and Ogawa in
PDF
Album
Review
Published 13 Nov 2019

Chiral terpene auxiliaries V: Synthesis of new chiral γ-hydroxyphosphine oxides derived from α-pinene

  • Anna Kmieciak and
  • Marek P. Krzemiński

Beilstein J. Org. Chem. 2019, 15, 2493–2499, doi:10.3762/bjoc.15.242

Graphical Abstract
  • ], conjugated additions to enones [7], and allylic alkylations [8][9]. Another direction of research is the use of phosphines in organocatalysis [10][11] and bifunctional catalysis [12]. Several methods were developed to introduce the phosphine functionality to organic molecules. The reaction of organometallics
PDF
Album
Supp Info
Full Research Paper
Published 22 Oct 2019

α-Photooxygenation of chiral aldehydes with singlet oxygen

  • Dominika J. Walaszek,
  • Magdalena Jawiczuk,
  • Jakub Durka,
  • Olga Drapała and
  • Dorota Gryko

Beilstein J. Org. Chem. 2019, 15, 2076–2084, doi:10.3762/bjoc.15.205

Graphical Abstract
  • dichroism (ECD) and TD-DFT methods. Keywords: 1,2-diols; ECD; enamines; organocatalysis; porphyrins; silyl ethers of diarylprolinols; singlet oxygen; Introduction Carbonyl compounds are one of the most important building blocks in organic synthesis. As a consequence, there is a constant need for new
PDF
Album
Supp Info
Full Research Paper
Published 30 Aug 2019

Naphthalene diimides with improved solubility for visible light photoredox catalysis

  • Barbara Reiß and
  • Hans-Achim Wagenknecht

Beilstein J. Org. Chem. 2019, 15, 2043–2051, doi:10.3762/bjoc.15.201

Graphical Abstract
  • ) is one of the benchmark reactions for photoredox catalysis because it combines photoredox catalysis with organocatalysis [53]. Initially, [Ru(bpy)3]Cl2 was applied by MacMillan et al. as photoredox catalyst together with the chiral imidazolidinone 15 as organocatalyst to achieve enantioselectivity
PDF
Album
Supp Info
Full Research Paper
Published 27 Aug 2019

Ugi reaction-derived prolyl peptide catalysts grafted on the renewable polymer polyfurfuryl alcohol for applications in heterogeneous enamine catalysis

  • Alexander F. de la Torre,
  • Gabriel S. Scatena,
  • Oscar Valdés,
  • Daniel G. Rivera and
  • Márcio W. Paixão

Beilstein J. Org. Chem. 2019, 15, 1210–1216, doi:10.3762/bjoc.15.118

Graphical Abstract
  • ; multicomponent reactions; organocatalysis; polyfurfuryl alcohol; Introduction The immobilization of secondary amine-based catalysts onto organic polymers and silica gel has emerged as an effective strategy that combines the power of heterogeneous and organocatalysis [1][2][3]. Asymmetric catalysis using polymer
PDF
Album
Supp Info
Full Research Paper
Published 04 Jun 2019
Other Beilstein-Institut Open Science Activities