Search results

Search for "quinolin" in Full Text gives 42 result(s) in Beilstein Journal of Organic Chemistry.

Chemical and biosynthetic potential of Penicillium shentong XL-F41

  • Ran Zou,
  • Xin Li,
  • Xiaochen Chen,
  • Yue-Wei Guo and
  • Baofu Xu

Beilstein J. Org. Chem. 2024, 20, 597–606, doi:10.3762/bjoc.20.52

Graphical Abstract
  • substructure at C-14 with a methine at C-16, indicated by the methoxy group. The position of the methoxy substituent was established by HMBC correlations, and the 13C NMR data suggested that compound 1 includes a 4-oxo-2,3-dihydro-(1H)-quinolin-3-yl fragment. The planar structure was established from HMBC
PDF
Album
Supp Info
Full Research Paper
Published 15 Mar 2024

Copper-promoted C5-selective bromination of 8-aminoquinoline amides with alkyl bromides

  • Changdong Shao,
  • Chen Ma,
  • Li Li,
  • Jingyi Liu,
  • Yanan Shen,
  • Chen Chen,
  • Qionglin Yang,
  • Tianyi Xu,
  • Zhengsong Hu,
  • Yuhe Kan and
  • Tingting Zhang

Beilstein J. Org. Chem. 2024, 20, 155–161, doi:10.3762/bjoc.20.14

Graphical Abstract
  • reaction of 8-aminoquinoline amides using activated and unactivated alkyl bromides as the bromine source (Scheme 1, reaction 4). Results and Discussion At the beginning of this investigation, N-(quinolin-8-yl)benzamide (1a) and ethyl bromoacetate (2a) were selected as model substrates to screen the
  • highly efficient C5-bromination protocol has been established. Having identified the optimal reaction conditions for the bromination of N-(quinolin-8-yl)benzamide (1a) with ethyl bromoacetate (2a) (Table 1, entry 12), we next examined the substrate scope and limitations of our method with an array of 8
PDF
Album
Supp Info
Full Research Paper
Published 23 Jan 2024

Synthetic approach to 2-alkyl-4-quinolones and 2-alkyl-4-quinolone-3-carboxamides based on common β-keto amide precursors

  • Yordanka Mollova-Sapundzhieva,
  • Plamen Angelov,
  • Danail Georgiev and
  • Pavel Yanev

Beilstein J. Org. Chem. 2023, 19, 1804–1810, doi:10.3762/bjoc.19.132

Graphical Abstract
  • sensing; Introduction Among the vast number of biologically active quinoline derivatives [1][2], the subclass of 4-quinolones (also referred to as 4-oxo-1,4-dihydroquinolines, quinolin-4(1H)-ones, or 4-hydroxyquinolines) is of great importance with its rich variety of bioactive compounds. Perhaps the
PDF
Album
Supp Info
Full Research Paper
Published 23 Nov 2023

Selectivity control towards CO versus H2 for photo-driven CO2 reduction with a novel Co(II) catalyst

  • Lisa-Lou Gracia,
  • Philip Henkel,
  • Olaf Fuhr and
  • Claudia Bizzarri

Beilstein J. Org. Chem. 2023, 19, 1766–1775, doi:10.3762/bjoc.19.129

Graphical Abstract
  • complex obtainable via a straightforward synthesis, with improved solubility, concerning our previous Co(II) complexes [21]. Thus, the new Co(II) complex bears two 1-benzyl-4-(quinolin-2-yl)-1H-1,2,3-triazole (BzQuTr) units, that were obtained through a copper-catalyzed alkyne–azide cycloaddition (CuAAC
  • maintaining high selectivity for carbon products. Results and Discussion Synthesis and characterization of the new Co(II)-based catalyst The novel cobalt(II) complex 1 was synthesized in dry methanol (MeOH) by mixing in a 2:1 ratio, the chelating diimine ligand, 1-benzyl-4-(quinolin-2-yl)-1H-1,2,3-triazole
PDF
Album
Supp Info
Full Research Paper
Published 17 Nov 2023

One-pot double annulations to confer diastereoselective spirooxindolepyrrolothiazoles

  • Juan Lu,
  • Bin Yao,
  • Desheng Zhan,
  • Zhuo Sun,
  • Yun Ji and
  • Xiaofeng Zhang

Beilstein J. Org. Chem. 2022, 18, 1607–1616, doi:10.3762/bjoc.18.171

Graphical Abstract
  • UMB32 and UMB136 [33][34]. Zhang developed 4-aminoquinolines for the synthesis of fluorinated analogues of acetylcholinesterase (AChE) inhibitors [35] in cascade reactions, such as one-step syntheses of quinolines. Quinolin-4-ols involving histone acetyltransferases (HAT) inhibitors [36][37], as well as
PDF
Album
Supp Info
Full Research Paper
Published 28 Nov 2022

Effect of a twin-emitter design strategy on a previously reported thermally activated delayed fluorescence organic light-emitting diode

  • Ettore Crovini,
  • Zhen Zhang,
  • Yu Kusakabe,
  • Yongxia Ren,
  • Yoshimasa Wada,
  • Bilal A. Naqvi,
  • Prakhar Sahay,
  • Tomas Matulaitis,
  • Stefan Diesing,
  • Ifor D. W. Samuel,
  • Wolfgang Brütting,
  • Katsuaki Suzuki,
  • Hironori Kaji,
  • Stefan Bräse and
  • Eli Zysman-Colman

Beilstein J. Org. Chem. 2021, 17, 2894–2905, doi:10.3762/bjoc.17.197

Graphical Abstract
  • )) (10 nm)/X wt % DICzTRZ or ICzTRZ: CzSi (20 nm)/PPF (2,8-bis(diphenylphosphoryl)dibenzo[b,d]furan) (5 nm)/TPBi (1,3,5-tris(1-phenyl-1H-benzo[d]imidazol-2-yl)benzene) (50 nm)/Liq (lithium quinolin-8-olate) (1 nm)/Al (80 nm), where X is 20 or 30. The PVK layer is applied to facilitate hole injection from
PDF
Album
Supp Info
Full Research Paper
Published 08 Dec 2021

Photophysical, photostability, and ROS generation properties of new trifluoromethylated quinoline-phenol Schiff bases

  • Inaiá O. Rocha,
  • Yuri G. Kappenberg,
  • Wilian C. Rosa,
  • Clarissa P. Frizzo,
  • Nilo Zanatta,
  • Marcos A. P. Martins,
  • Isadora Tisoco,
  • Bernardo A. Iglesias and
  • Helio G. Bonacorso

Beilstein J. Org. Chem. 2021, 17, 2799–2811, doi:10.3762/bjoc.17.191

Graphical Abstract
  • , Brazil Laboratório de Bioinorgânica e Materiais Porfirínicos, Departamento de Química, Universidade Federal de Santa Maria, Santa Maria, RS, 97105-900, Brazil 10.3762/bjoc.17.191 Abstract A new series of ten examples of Schiff bases, namely (E)-2-(((2-alkyl(aryl/heteroaryl)-4-(trifluoromethyl)quinolin-6
  • (Scheme 1). Results and Discussion Chemistry The synthetic routes and structures for the synthesis of (E)-2-(((2-alkyl(aryl/heteroaryl)-4-(trifluoromethyl)quinolin-6-yl)imino)methyl)phenols 3 are collected in Scheme 2 and Scheme 3. First, a series of six 6-amino-2-alkyl(aryl/heteroaryl)-4-(trifluoromethyl
  • reaction (TLC) and cooling the mixture to room temperature, the solid was filtered under reduced pressure. The crude compounds 3 were purified by recrystallization from ethanol to provide the desired (E)-2-(((4-(trifluoromethyl)quinolin-6-yl)imino)methyl) phenols 3 in 20–91% yield. Spectral data (E)-2-(((2
PDF
Album
Supp Info
Full Research Paper
Published 01 Dec 2021

Microwave-assisted multicomponent reactions in heterocyclic chemistry and mechanistic aspects

  • Shivani Gulati,
  • Stephy Elza John and
  • Nagula Shankaraiah

Beilstein J. Org. Chem. 2021, 17, 819–865, doi:10.3762/bjoc.17.71

Graphical Abstract
PDF
Album
Review
Published 19 Apr 2021

Styryl-based new organic chromophores bearing free amino and azomethine groups: synthesis, photophysical, NLO, and thermal properties

  • Anka Utama Putra,
  • Deniz Çakmaz,
  • Nurgül Seferoğlu,
  • Alberto Barsella and
  • Zeynel Seferoğlu

Beilstein J. Org. Chem. 2020, 16, 2282–2296, doi:10.3762/bjoc.16.189

Graphical Abstract
  • all dyes 3–7 which was collected by filtration and recrystallized from ethanol to obtain the pure dyes. ((E)-2-(1-(4-Aminophenyl)-3-(2,3,6,7-tetrahydro-1H,5H-pyrido[3,2,1-ij]quinolin-9-yl)allylidene)malononitrile) (3) Dark purple solid; yield: 64%; mp 236–238 °C; FTIR (cm−1): 3441, 3349, 3224, 2920
  • recrystallized from ethanol to obtain the pure dyes. (2-((E)-1-(4-(((E)-2-Hydroxybenzylidene)amino)phenyl)-3-(2,3,6,7-tetrahydro-1H,5H-pyrido[3,2,1-ij]quinolin-9-yl)allylidene)malononitrile) (8) Dark purple solid; yield 94%; mp 202–203 °C; FTIR (cm−1): 3479 (broad), 3062, 2943, 2835, 2208, 1614, 1560, 1510
PDF
Album
Supp Info
Full Research Paper
Published 14 Sep 2020

When metal-catalyzed C–H functionalization meets visible-light photocatalysis

  • Lucas Guillemard and
  • Joanna Wencel-Delord

Beilstein J. Org. Chem. 2020, 16, 1754–1804, doi:10.3762/bjoc.16.147

Graphical Abstract
  • perfluoroalkyl benzoic acid derivatives. A plausible mechanism for the perfluoroalkylation of N-(quinolin-8-yl)benzamides is proposed in Figure 34. First, C–H activation of the benzamide substrate with copper produces a cyclometalated complex. Meanwhile, perfluoroalkyl radicals are generated by electron transfer
PDF
Album
Review
Published 21 Jul 2020

Azidophosphonium salt-directed chemoselective synthesis of (E)/(Z)-cinnamyl-1H-triazoles and regiospecific access to bromomethylcoumarins from Morita–Baylis–Hillman adducts

  • Soundararajan Karthikeyan,
  • Radha Krishnan Shobana,
  • Kamarajapurathu Raju Subimol,
  • J. Helen Ratna Monica and
  • Ayyanoth Karthik Krishna Kumar

Beilstein J. Org. Chem. 2020, 16, 1579–1587, doi:10.3762/bjoc.16.130

Graphical Abstract
  • -lactams [6], quinolin-5-ones [7], spirobisglutarimides [8], indolizines [9], and spiro carbocyclic frameworks [10]. However, most of the reported synthetic transformations utilize either allylic hydroxy-protected or allyl halide-substituted MBH adducts [11][12][13][14][15][16][17][18][19][20][21][22][23
PDF
Album
Supp Info
Full Research Paper
Published 01 Jul 2020

Synthesis and anticancer activity of bis(2-arylimidazo[1,2-a]pyridin-3-yl) selenides and diselenides: the copper-catalyzed tandem C–H selenation of 2-arylimidazo[1,2-a]pyridine with selenium

  • Mio Matsumura,
  • Tsutomu Takahashi,
  • Hikari Yamauchi,
  • Shunsuke Sakuma,
  • Yukako Hayashi,
  • Tadashi Hyodo,
  • Tohru Obata,
  • Kentaro Yamaguchi,
  • Yasuyuki Fujiwara and
  • Shuji Yasuike

Beilstein J. Org. Chem. 2020, 16, 1075–1083, doi:10.3762/bjoc.16.94

Graphical Abstract
  • variety of methods [14][15], and many of the targets exhibited biological activity (Figure 1). For example, bis(2-pyridyl) diselenide I has the potential to mitigate oxidative stress and inhibits the AChE activity [16], bis(quinolin-8-yl) diselenide (II) exhibited antioxidant activity in a skin cell model
PDF
Album
Supp Info
Full Research Paper
Published 20 May 2020

Regioselective Pd-catalyzed direct C1- and C2-arylations of lilolidine for the access to 5,6-dihydropyrrolo[3,2,1-ij]quinoline derivatives

  • Hai-Yun Huang,
  • Haoran Li,
  • Thierry Roisnel,
  • Jean-François Soulé and
  • Henri Doucet

Beilstein J. Org. Chem. 2019, 15, 2069–2075, doi:10.3762/bjoc.15.204

Graphical Abstract
  • containing two different aryl groups at α- and β-positions via sequential Pd-catalyzed C–H bond functionalization steps was studied (Scheme 4). The reaction of 1 equiv of 4-(5,6-dihydropyrrolo[3,2,1-ij]quinolin-2-yl)benzonitrile 2 and 1.5 equiv of a set of aryl bromides using again 2 mol % PdCl(C3H5)(dppb
  • , the use of a longer reaction time (48 h) allowed to reach an almost complete conversion of 2, and the carbazole 27 was isolated in 62% yield. A slightly lower yield in the carbazole 28 was obtained from (4-(5,6-dihydropyrrolo[3,2,1-ij]quinolin-2-yl)phenyl)(phenyl)methanone 5 and 1,2-dibromobenzene
PDF
Album
Supp Info
Full Research Paper
Published 29 Aug 2019

Recent advances on the transition-metal-catalyzed synthesis of imidazopyridines: an updated coverage

  • Gagandeep Kour Reen,
  • Ashok Kumar and
  • Pratibha Sharma

Beilstein J. Org. Chem. 2019, 15, 1612–1704, doi:10.3762/bjoc.15.165

Graphical Abstract
PDF
Album
Review
Published 19 Jul 2019

Recent advances in phosphorescent platinum complexes for organic light-emitting diodes

  • Cristina Cebrián and
  • Matteo Mauro

Beilstein J. Org. Chem. 2018, 14, 1459–1481, doi:10.3762/bjoc.14.124

Graphical Abstract
  • Bebq2 host were employed instead, where Bebq2 is bis(benzo[h]quinolin-10-olato-κN,κO)beryllium(II). In spite of that, much lower LT97 values were observed most likely due to a higher charge and exciton concentration in the host layer at such low doping concentration. Such compound represents the most
PDF
Album
Review
Published 18 Jun 2018

Two new 2-alkylquinolones, inhibitory to the fish skin ulcer pathogen Tenacibaculum maritimum, produced by a rhizobacterium of the genus Burkholderia sp.

  • Dandan Li,
  • Naoya Oku,
  • Atsumi Hasada,
  • Masafumi Shimizu and
  • Yasuhiro Igarashi

Beilstein J. Org. Chem. 2018, 14, 1446–1451, doi:10.3762/bjoc.14.122

Graphical Abstract
  • -1 Yanagido, Gifu 501-1193, Japan 10.3762/bjoc.14.122 Abstract Exploration of rhizobacteria of the genus Burkholderia as an under-tapped resource of bioactive molecules resulted in the isolation of two new antimicrobial 2-alkyl-4-quinolones. (E)-2-(Hept-2-en-1-yl)quinolin-4(1H)-one (1) and (E)-2
  • -(non-2-en-1-yl)quinolin-4(1H)-one (3) were isolated from the culture broth of strain MBAF1239 together with four known alkylquinolones (2 and 4–6), pyrrolnitrin (7), and BN-227 (8). The structures of 1 and 3 were unambiguously characterized using NMR spectroscopy and mass spectrometry. Compounds 1–8
  • ) [15] (Figure 3). Thus, the structure of 3 was concluded to be (E)-2-(non-2-en-1-yl)quinolin-4(1H)-one. The molecular ions of 1 were observed at m/z 242 and m/z 240 in the positive and negative modes, respectively, revealing a 28 Da smaller molecular weight for 1 relative to 3. The 1H NMR spectra of
PDF
Album
Supp Info
Letter
Published 14 Jun 2018

[3 + 2]-Cycloaddition reaction of sydnones with alkynes

  • Veronika Hladíková,
  • Jiří Váňa and
  • Jiří Hanusek

Beilstein J. Org. Chem. 2018, 14, 1317–1348, doi:10.3762/bjoc.14.113

Graphical Abstract
  • -2-yl, quinolin-2-yl, 5,6-dihydro-4H-1,3-oxazin-2-yl). Such sydnones reacted with potassium 2-substituted acetylene trifluoroborates under boron trifluoride diethyl etherate catalysis to give corresponding pyrazolo[3',4':4,5][1,2]azaborolo[2,3-a]pyridin-5-ium-4-uides (or quinolin-5-ium-4-uide) in
PDF
Album
Review
Published 05 Jun 2018

Halogen-containing thiazole orange analogues – new fluorogenic DNA stains

  • Aleksey A. Vasilev,
  • Meglena I. Kandinska,
  • Stanimir S. Stoyanov,
  • Stanislava B. Yordanova,
  • David Sucunza,
  • Juan J. Vaquero,
  • Obis D. Castaño,
  • Stanislav Baluschev and
  • Silvia E. Angelova

Beilstein J. Org. Chem. 2017, 13, 2902–2914, doi:10.3762/bjoc.13.283

Graphical Abstract
  • -Chloro-1-methyl-4-((3-methylbenzo[d]thiazol-2(3H)-ylidene)methyl)quinolin-1-ium iodide (TO-7Cl) Procedures A1 and A2: 2,3-Dimethylbenzo[d]thiazolium methyl sulfate (2a, 1 mmol) and the appropriate 4,7-dichloro-1-methylquinolinium methyl sulfate (4a, 1 mmol) were finely ground together in a mortar and the
  • , 1450, 1370, 1315, 1110, 974, 780, 750, 725 cm−1; GC–MS (m/z): 324 (100%, [M+] − CH2Ph); elemental analysis (%) for C25H20ClIN2S Mw = 542.86, calcd for N 5.16; found: 5.53. 2-((1-Benzyl-7-(trifluoromethyl)quinolin-4(1H)-ylidene)methyl)-3-methylbenzo[d]thiazol-3-ium iodide (5b): Yield 68%; mp 284–285 °C
  • ) νmax: 1600, 1520, 1450, 1455, 1375, 1325, 1280, 1210, 1150, 1120, 885, 865, 790, 725, 610, 550, 401 cm−1; GC–MS (m/z): 480 (100%, [M+] – CH2Ph); elemental analysis (%) for C25H19BrClIN2S Mw = 621.76, calcd for N, 4.51; found: 4.95. 2-((1-Benzyl-7-(trifluoromethyl)quinolin-4(1H)-ylidene)methyl)-5-bromo
PDF
Album
Supp Info
Full Research Paper
Published 28 Dec 2017

A novel approach to oxoisoaporphine alkaloids via regioselective metalation of alkoxy isoquinolines

  • Benedikt C. Melzer and
  • Franz Bracher

Beilstein J. Org. Chem. 2017, 13, 1564–1571, doi:10.3762/bjoc.13.156

Graphical Abstract
  • , and is of considerable pharmacological interest due to the significant cytotoxicity of numerous representatives [3]. A unique subclass of the aporphinoid alkaloids are the oxoisoaporphines (7H-dibenzo[de,h]quinolin-7-ones, e.g., menisporphine, (2)), which at the first glance appear to be not derived
PDF
Album
Supp Info
Full Research Paper
Published 08 Aug 2017

A novel method for heterocyclic amide–thioamide transformations

  • Walid Fathalla,
  • Ibrahim A. I. Ali and
  • Pavel Pazdera

Beilstein J. Org. Chem. 2017, 13, 174–181, doi:10.3762/bjoc.13.20

Graphical Abstract
  • phthalizin-1-thiones C7 and C8a. Synthesis of quinolin-2-thiones C9 and quinoxalin-2-thiones C10–C13a. Supporting Information Supporting Information File 60: Additional experimental and analytical data. Acknowledgements We would like to thank the Department of Organic Chemistry, Faculty of Science, Masaryk
PDF
Album
Supp Info
Full Research Paper
Published 26 Jan 2017

Direct arylation catalysis with chloro[8-(dimesitylboryl)quinoline-κN]copper(I)

  • Sem Raj Tamang and
  • James D. Hoefelmeyer

Beilstein J. Org. Chem. 2016, 12, 2757–2762, doi:10.3762/bjoc.12.272

Graphical Abstract
  • featuring an ambiphilic ligand, (quinolin-8-yl)dimesitylborane. Direct arylation could be achieved with 0.2 mol % catalyst and 3 equivalents of base (KO(t-Bu)) at 80 °C to afford TON ≈160–190 over 40 hours. Keywords: catalysis; C–C coupling; C–H activation; copper; direct arylation; Introduction Coupling
PDF
Album
Supp Info
Full Research Paper
Published 15 Dec 2016

From betaines to anionic N-heterocyclic carbenes. Borane, gold, rhodium, and nickel complexes starting from an imidazoliumphenolate and its carbene tautomer

  • Ming Liu,
  • Jan C. Namyslo,
  • Martin Nieger,
  • Mika Polamo and
  • Andreas Schmidt

Beilstein J. Org. Chem. 2016, 12, 2673–2681, doi:10.3762/bjoc.12.264

Graphical Abstract
  • –Ccarbene bonds have lengths between 184.06(19) pm and 184.82(19) pm, respectively. These values correspond to literature-known bond lengths of cis arranged bidentate ligands around Ni [42][43][44], but, as expected, they differ from those of [(PEt3)(Ph)Ni(imidazo[1,5-a]quinolin-9-olate-1-ylidene)] [45] as
PDF
Album
Supp Info
Full Research Paper
Published 08 Dec 2016
Graphical Abstract
  • dihydropyridine, hydantoin, imidazole, indole, isoquinoline, isoxazole, oxazole, 4H-pyran, pyrazine, pyridazine, pyridine, pyridinone, pyrimidine, pyrimidone, pyrrole, 3H-quinazolin-4-one, quinoline, 1H-quinolin-4-one, and thiophene. For heterocycles that are composed of a fused aromatic ring, such as
PDF
Album
Supp Info
Full Research Paper
Published 16 Nov 2016

Practical synthetic strategies towards lipophilic 6-iodotetrahydroquinolines and -dihydroquinolines

  • David R. Chisholm,
  • Garr-Layy Zhou,
  • Ehmke Pohl,
  • Roy Valentine and
  • Andrew Whiting

Beilstein J. Org. Chem. 2016, 12, 1851–1862, doi:10.3762/bjoc.12.174

Graphical Abstract
  • substituent, each with a different means of cyclisation. A versatile and stable quinolin-2-one intermediate was identified, which could be reduced to the corresponding THQ with borane reagents, or to the DHQ with diisobutylaluminium hydride via a novel elimination that is more favourable at higher
  • also use Lewis acids [7]. The resultant quinolin-2-one is then reduced using strong hydride reducing agents such as LiAlH4 [8]. Similar THQs have also been prepared by a reductive Beckmann rearrangement of an oxime using diisobutylaluminium hydride (DIBAL) [9]. In contrast to this variety, the
  • considered (Scheme 6). The quinolin-2-one 13 was predicted to be a more amenable alkylation partner than the THQ 14 due to the likely lower pKa of the amide proton. To assess this, 13 was reacted with NaH and 2-iodopropane in DMF at 80 °C overnight. However, 13 displayed a marked lack of reactivity towards
PDF
Album
Supp Info
Full Research Paper
Published 16 Aug 2016

Simple activation by acid of latent Ru-NHC-based metathesis initiators bearing 8-quinolinolate co-ligands

  • Julia Wappel,
  • Roland C. Fischer,
  • Luigi Cavallo,
  • Christian Slugovc and
  • Albert Poater

Beilstein J. Org. Chem. 2016, 12, 154–165, doi:10.3762/bjoc.12.17

Graphical Abstract
  • towards the control of polymer functionalization and living or switchable polymerizations. Keywords: acid; activation by acid; metathesis; polymer; quinolin; ruthenium; triggerable; Introduction The modulation of the activity of enzymes by chemical triggers, e.g., by allosteric binding is ubiquitous in
PDF
Album
Supp Info
Full Research Paper
Published 28 Jan 2016
Other Beilstein-Institut Open Science Activities