Search results

Search for "magnetic field" in Full Text gives 317 result(s) in Beilstein Journal of Nanotechnology. Showing first 200.

Magnetic properties of Fe3O4 antidot arrays synthesized by AFIR: atomic layer deposition, focused ion beam and thermal reduction

  • Juan L. Palma,
  • Alejandro Pereira,
  • Raquel Álvaro,
  • José Miguel García-Martín and
  • Juan Escrig

Beilstein J. Nanotechnol. 2018, 9, 1728–1734, doi:10.3762/bjnano.9.164

Graphical Abstract
  • NanoMOKE3 from Quantum Design with the applied magnetic field applied parallel to the substrate plane and reaching a maximum value of 1.5 kOe. The laser spot was placed into each antidot array and, in order to check that the spot was located in the right position, the longitudinal reflectivity was measured
  • . Magnetic field was applied along the 0° and 45° directions when measuring the square arrays (i.e., the first and second neighbors directions, respectively) and along 0° and 30° direction when measuring the hexagonal arrays (first and second neighbors directions in this case, respectively). Additionally
  • lattice parameters are slightly larger than those of the arrays with smaller lattice parameters (i.e., the curves exhibit a wider and more vertical shape), regardless of whether we treat square or hexagonal arrays. Small differences exist between the loops obtained with the external magnetic field applied
PDF
Album
Full Research Paper
Published 11 Jun 2018

A zero-dimensional topologically nontrivial state in a superconducting quantum dot

  • Pasquale Marra,
  • Alessandro Braggio and
  • Roberta Citro

Beilstein J. Nanotechnol. 2018, 9, 1705–1714, doi:10.3762/bjnano.9.162

Graphical Abstract
  • [14][15][16][17][18][19][20]. The simplest realization of a topological superconductor is the well-known Kitaev chain [3], which can be implemented in a one-dimensional system proximized by a conventional superconductor in the presence of a magnetic field and spin–orbit coupling [21][22][23][24][25
  • consider a semiconducting quantum dot in a magnetic field B and coupled with two superconducting leads, as shown in Figure 1. We assume that the only effect of the magnetic field is the lifting of the spin degeneracy via the Zeeman effect, and we neglect orbital effects of the field. Moreover, we assume
  • the critical current by varying the magnetic field, or by varying, e.g., the energy level ε in a constant field B. Figure 4b shows the critical current of the junction as a function of the Zeeman field. As one can see, the critical current is finite in the trivial P = 1 state when |B| < Bmin (i.e., λ
PDF
Album
Full Research Paper
Published 08 Jun 2018

Josephson effect in junctions of conventional and topological superconductors

  • Alex Zazunov,
  • Albert Iks,
  • Miguel Alvarado,
  • Alfredo Levy Yeyati and
  • Reinhold Egger

Beilstein J. Nanotechnol. 2018, 9, 1659–1676, doi:10.3762/bjnano.9.158

Graphical Abstract
  • magnetic impurity in a local magnetic field. We here analyze the S–QD–TS setup in Figure 1a in some detail, where a quantum dot (QD) is present within the S–TS junction region. The QD is modeled as an Anderson impurity [36], which is equivalent to a spin-1/2 quantum impurity over a wide parameter regime
  • . Once spin mixing is induced by the magnetic impurity and the local magnetic field, we predict that a finite Josephson current flows even in the deep topological limit. In particular, in the cotunneling regime, we find an anomalous Josephson effect with finite supercurrent at vanishing phase difference
  • vanishing phase difference ( = 0) [45][46][72]. One can equivalently view this effect as a φ0-shift in the CPR, I() = Ic sin( + φ0). An observation of this φ0-junction behavior could then provide additional evidence for MBSs (see also [47]), where Equation 23 shows that the local magnetic field is required
PDF
Album
Full Research Paper
Published 06 Jun 2018

Nanocomposites comprised of homogeneously dispersed magnetic iron-oxide nanoparticles and poly(methyl methacrylate)

  • Sašo Gyergyek,
  • David Pahovnik,
  • Ema Žagar,
  • Alenka Mertelj,
  • Rok Kostanjšek,
  • Miloš Beković,
  • Marko Jagodič,
  • Heinrich Hofmann and
  • Darko Makovec

Beilstein J. Nanotechnol. 2018, 9, 1613–1622, doi:10.3762/bjnano.9.153

Graphical Abstract
  • with the methyl methacrylate (MMA) monomer. The resulting suspension of magnetic nanoparticles decorated with poly(methyl methacrylate) (PMMA) chains in toluene were colloidal, even in the presence of a magnetic field gradient. Nanocomposites were precipitated from these suspensions. The transmission
  • coercivity in the absence of an external magnetic field [1][2]. Their colloidal suspensions are vital in a variety of technological [3] and biomedical applications [4], such as contrast agents in magnetic resonance imaging (MRI) [5][6], targeted drug delivery [6] and magnetic hyperthermia based on the
  • selective heating of magnetic nanoparticles using an external AC magnetic field [7][8]. While magnetic nanoparticles exhibit unique physico-chemical properties, they also tend to agglomerate, leading to the loss of their interesting properties and their potential for applications. Organic/inorganic
PDF
Album
Supp Info
Full Research Paper
Published 01 Jun 2018

Closed polymer containers based on phenylboronic esters of resorcinarenes

  • Tatiana Yu. Sergeeva,
  • Rezeda K. Mukhitova,
  • Irek R. Nizameev,
  • Marsil K. Kadirov,
  • Polina D. Klypina,
  • Albina Y. Ziganshina and
  • Alexander I. Konovalov

Beilstein J. Nanotechnol. 2018, 9, 1594–1601, doi:10.3762/bjnano.9.151

Graphical Abstract
  • pulsed gradient unit capable of producing magnetic-field pulse gradients in the z-direction of about 56 G/cm. D2O was used as solvent in all experiments. Chemical shifts were reported relative to H2O (δ = 4.7 ppm) as an internal standard. Measurements by the DSC and TGA methods were carried out with a
PDF
Album
Supp Info
Full Research Paper
Published 29 May 2018

Interaction-tailored organization of large-area colloidal assemblies

  • Silvia Rizzato,
  • Elisabetta Primiceri,
  • Anna Grazia Monteduro,
  • Adriano Colombelli,
  • Angelo Leo,
  • Maria Grazia Manera,
  • Roberto Rella and
  • Giuseppe Maruccio

Beilstein J. Nanotechnol. 2018, 9, 1582–1593, doi:10.3762/bjnano.9.150

Graphical Abstract
  • properties of cobalt nanoholes were investigated by the magneto-optical Kerr effect technique in longitudinal configuration. The samples were placed between the poles of a GMW 3470 electromagnet, where the magnetic field intensity was measured by a Group3 Teslameter probe. A He–Ne laser beam (wavelength 633
  • their possible applications in plasmonic and magnonic fields. In both cases, nanoparticle size, distribution and nanostructure mesospacing are key parameters for the control of the electric or magnetic field distribution and intensity on the investigated area. Concerning plasmonic applications, the
PDF
Album
Full Research Paper
Published 29 May 2018

Solid-state Stern–Gerlach spin splitter for magnetic field sensing, spintronics, and quantum computing

  • Kristofer Björnson and
  • Annica M. Black-Schaffer

Beilstein J. Nanotechnol. 2018, 9, 1558–1563, doi:10.3762/bjnano.9.147

Graphical Abstract
  • ferromagnetic leads, the device can be used for sensitive measurements of magnetic field strengths. The same setup can also be used to implement a spintronic switch. Instead using normal metallic leads, we show that a switchable spintronics NOT-gate can be constructed. Finally, we also demonstrate how a
  • coordinate x1 = r(2π − θ) and x2 = rθ along the upper and lower edges, respectively. The eigenvalue equations along the two edges are then and the corresponding eigenstates can be written as We now thread a magnetic flux of magnetic field strength B through the hole. To describe this we choose the vector
  • spin-up electrons, the only relevant matrix element for the scattering matrix is The conductance is therefore given by It is clear that the very strong dependence of the current on the magnetic flux Br2π makes this setup ideal for measuring magnetic field strength, as a potential alternative to
PDF
Album
Full Research Paper
Published 25 May 2018

Robust topological phase in proximitized core–shell nanowires coupled to multiple superconductors

  • Tudor D. Stanescu,
  • Anna Sitek and
  • Andrei Manolescu

Beilstein J. Nanotechnol. 2018, 9, 1512–1526, doi:10.3762/bjnano.9.142

Graphical Abstract
  • Science and Engineering, Reykjavik University, Menntavegur 1, IS-101 Reykjavik, Iceland 10.3762/bjnano.9.142 Abstract We consider core–shell nanowires with prismatic geometry contacted with two or more superconductors in the presence of a magnetic field applied parallel to the wire. In this geometry, the
  • lowest energy states are localized on the outer edges of the shell, which strongly inhibits the orbital effects of the longitudinal magnetic field that are detrimental to Majorana physics. Using a tight-binding model of coupled parallel chains, we calculate the topological phase diagram of the hybrid
  • longitudinal magnetic field. The system is predicted to host zero-energy Majorana modes localized at the two ends of the nanowire [5][7][8]. These zero-energy states combine equal proportions of electrons and holes and are created by second quantized operators satisfying the “Majorana condition” γ† = γ. The
PDF
Album
Full Research Paper
Published 22 May 2018

Excitation of nonradiating magnetic anapole states with azimuthally polarized vector beams

  • Aristeidis G. Lamprianidis and
  • Andrey E. Miroshnichenko

Beilstein J. Nanotechnol. 2018, 9, 1478–1490, doi:10.3762/bjnano.9.139

Graphical Abstract
  • useful applications in biosensing, i.e., in the detection of molecules that interact strongly once exposed to magnetic field hotspots, which nanoparticles in a magnetic anapole state can offer in their near field. Moreover, the signal-to-noise ratio of an MRI machine, that is defined as the ratio of the
  • , leading to a scattering dip of less than −30 dB between two, hexadecapolar and quadrupolar, resonances. In Supporting Information File 1, one can find a plot with the proposed phase-modulation mask, together with some electric and magnetic field plots that correspond to the illumination of a silicon
  • wave and the formulas with which the elements of the T-matrix are calculated based on the EBCM method. It also includes a plot of the proposed phase mask for Figure 1c, electric and magnetic field plots corresponding to the anapole condition discussed in Figure 1b and Figure 1c, and some extra 2D plots
PDF
Album
Supp Info
Full Research Paper
Published 17 May 2018

Cr(VI) remediation from aqueous environment through modified-TiO2-mediated photocatalytic reduction

  • Rashmi Acharya,
  • Brundabana Naik and
  • Kulamani Parida

Beilstein J. Nanotechnol. 2018, 9, 1448–1470, doi:10.3762/bjnano.9.137

Graphical Abstract
  • overlap of the TiO2 band with that of Fe3O4 and (iii) efficient separation and recyclability of the catalyst under application of an external magnetic field because of the presence of magnetic Fe3O4. Therefore, the composite photocatalysts exhibited a higher rate of photoreduction of Cr(VI) as compared to
PDF
Album
Review
Published 16 May 2018

Tailoring polarization and magnetization of absorbing terahertz metamaterials using a cut-wire sandwich structure

  • Hadi Teguh Yudistira,
  • Shuo Liu,
  • Tie Jun Cui and
  • Han Zhang

Beilstein J. Nanotechnol. 2018, 9, 1437–1447, doi:10.3762/bjnano.9.136

Graphical Abstract
  • relative permeability can be defined as μr = 1 + M / H, where E, H, P, and M are the electric field, magnetic field, polarization, and magnetization [12], respectively. Magnetization and polarization are two factors that can be used to tailor the relative permeability and relative permittivity
  • existence of a high absorption when the high electric field and magnetic field are stored on the metamaterial structure. The electric and magnetic field distributions are presented in the inset of Figure 6. The electric field distribution showed that the maximum value of the electric field was at the gap
  • between two unit cells. The magnetic field distribution showed that the maximum value of the magnetic field was between layers 1 and 2. The anti-parallel surface in the gold metallic bars on layers 1 and 2 generated magnetization. The maximum value of the electric and magnetic fields was found here, while
PDF
Album
Full Research Paper
Published 16 May 2018

Robust midgap states in band-inverted junctions under electric and magnetic fields

  • Álvaro Díaz-Fernández,
  • Natalia del Valle and
  • Francisco Domínguez-Adame

Beilstein J. Nanotechnol. 2018, 9, 1405–1413, doi:10.3762/bjnano.9.133

Graphical Abstract
  • up to stage once again with the theoretical prediction by Bernevig et al. [3] of a topological insulating behaviour in a HgTe/CdTe quantum well. The difference between the latter and the quantum Hall system lies in the fact that the quantum well required no magnetic field at all, but just
  • symmetry allow us to define a topological index given by the sign of the Dirac mass [21]. In 1994, Agassi studied the case of a band-inverted junction with a magnetic field applied parallel to the junction [23]. This author showed that the Dirac point remains robust upon the application of a magnetic field
  • of arbitrary strengths and that the Landau levels in the continuum split for non-zero values of the in-plane momentum in the direction perpendicular to the magnetic field. By means of the modern theory of symmetry-protected topological phases, the protection of the Dirac point can be understood in
PDF
Album
Full Research Paper
Published 14 May 2018

Interplay between pairing and correlations in spin-polarized bound states

  • Szczepan Głodzik,
  • Aksel Kobiałka,
  • Anna Gorczyca-Goraj,
  • Andrzej Ptok,
  • Grzegorz Górski,
  • Maciej M. Maśka and
  • Tadeusz Domański

Beilstein J. Nanotechnol. 2018, 9, 1370–1380, doi:10.3762/bjnano.9.129

Graphical Abstract
  • aligned perpendicularly to the wire and the magnetic field parallel to it, leading to the effective intersite pairing of identical spins and (under specific conditions) inducing zero-energy end modes resembling Majorana quasiparticles. This issue has been recently studied very intensively but here we
  • the spin-dependent spectrum ρiσ(ω) as a function of a varying magnetic field. At a critical value (B ≈ 0.2) we observe the emergence of zero-energy quasiparticles, whose spectral weights strongly depend on the spin σ. For a better understanding of the polarized zero-energy quasiparticles, we present
  • recently observed by STM spectroscopy with use of a polarized tip [42]. We have studied here the evolution of the polarized quasiparticle states with respect to the magnetic field (Figure 4) and investigated the spatial oscillations of the Majorana zero-energy modes near the chain edges (Figure 5). Finally
PDF
Album
Full Research Paper
Published 07 May 2018

Disorder-induced suppression of the zero-bias conductance peak splitting in topological superconducting nanowires

  • Jun-Tong Ren,
  • Hai-Feng Lü,
  • Sha-Sha Ke,
  • Yong Guo and
  • Huai-Wu Zhang

Beilstein J. Nanotechnol. 2018, 9, 1358–1369, doi:10.3762/bjnano.9.128

Graphical Abstract
  • several experiments since 2012 [23][24][25][26][27][28][29][30]. As an important signature of MBSs in the semiconductor nanowires which are proximity-coupled to s-wave superconductors, the zero-bias conductance peak has been observed in the tunneling spectra in the presence of a finite magnetic field [23
  • Coulomb island. It is illustrated that the energy splitting is exponentially suppressed with increasing wire length. For short wires with a typical length of a few hundred nanometers, the Majorana energies oscillate as the magnetic field varies. These observations are consistent with previous theoretical
  • ][41][42][43]. Secondly, theory predicts an increasing oscillation magnitude of Majorana energy splitting with the increase of magnetic field [36][44], while the experiment indicates the damped oscillation with increasing field. Similar discrepancy was also shown in the Majorana-quantum dot hybrid
PDF
Album
Full Research Paper
Published 04 May 2018

Andreev spectrum and supercurrents in nanowire-based SNS junctions containing Majorana bound states

  • Jorge Cayao,
  • Annica M. Black-Schaffer,
  • Elsa Prada and
  • Ramón Aguado

Beilstein J. Nanotechnol. 2018, 9, 1339–1357, doi:10.3762/bjnano.9.127

Graphical Abstract
  • Hamiltonian of which is given by [38][39][40][41][42][43] where is the momentum operator, μ the chemical potential that determines the filling of the nanowire, αR represents the strength of Rashba spin–orbit coupling, is the Zeeman energy as a result of the applied magnetic field in the x-direction along
  • Anderson’s theorem [47]. A finite magnetic field induces a so-called Zeeman depairing, which results in a complete closing of the induced superconducting gap when B exceeds Δ. This is indeed observed in Figure 2b (magenta dash-dot line). Further increasing of the Zeeman field in this normal state gives rise
  • is subjected to an external magnetic field (denoted by the black arrow). Superconducting correlations are induced into the nanowire via proximity effect, thus becoming superconducting with the induced pairing potential ΔS < ΔS′. Low-energy spectrum of a superconducting nanowire as function of the
PDF
Album
Supp Info
Full Research Paper
Published 03 May 2018

New 2D graphene hybrid composites as an effective base element of optical nanodevices

  • Olga E. Glukhova,
  • Igor S. Nefedov,
  • Alexander S. Shalin and
  • Мichael М. Slepchenkov

Beilstein J. Nanotechnol. 2018, 9, 1321–1327, doi:10.3762/bjnano.9.125

Graphical Abstract
  • and magnetic field strength, respectively. The host medium is vacuum. In this configuration the wave is p-polarized (or E-wave). To determine the coefficient of reflection, transmission and absorption, Maxwell's equations for the electric and magnetic fields in a vacuum with the 2D CNT–graphene
  • composite as an interface have been considered. Assuming a plane-wave solution, Maxwell's equations can be written in the form where E and H are the electric and the magnetic field strength, respectively, k is the wave vector and ω is the frequency of the incident electromagnetic radiation. The following
  • of a p-polarized wave: where R and T are the reflection and the transmission coefficient, respectively. Due to continuity of the tangent components of the electric field at the composite surface one can write: For the tangent components of the magnetic field at the composite surface one can write
PDF
Album
Letter
Published 30 Apr 2018

Induced smectic phase in binary mixtures of twist-bend nematogens

  • Anamarija Knežević,
  • Irena Dokli,
  • Marin Sapunar,
  • Suzana Šegota,
  • Ute Baumeister and
  • Andreja Lesac

Beilstein J. Nanotechnol. 2018, 9, 1297–1307, doi:10.3762/bjnano.9.122

Graphical Abstract
  • . The assignment of the NTB phase was further supported by small-angle X-ray diffraction studies on the mixture containing 18 mol % BB as shown in Figure 3. X-ray diffraction measurements of the sample were performed under a magnetic field of 1 T upon cooling (1 K/min) from the isotropic liquid. A
  • between adjacent layers [34]. The induction of the smectic phase was confirmed by the presence of an additional peak in the DSC trace and by X-ray diffraction analysis performed on the mixture containing 73 mol % of BB. The diffraction pattern obtained in magnetic field of 1 T upon cooling at 73 °C shows
  • texture after shearing the sample at 82 °C, d) 2D XRD patterns for a sample of 73 mol % BB mixture aligned in the magnetic field obtained on cooling from the isotropic liquid at 73 °C. IR spectra of pure BB (red), pure CBI (green) and a 73 mol % BB mixture (blue) at room temperature. IR spectra in the CH2
PDF
Album
Supp Info
Full Research Paper
Published 26 Apr 2018

Formation and development of nanometer-sized cybotactic clusters in bent-core nematic liquid crystalline compounds

  • Yuri P. Panarin,
  • Sithara P. Sreenilayam,
  • Jagdish K. Vij,
  • Anne Lehmann and
  • Carsten Tschierske

Beilstein J. Nanotechnol. 2018, 9, 1288–1296, doi:10.3762/bjnano.9.121

Graphical Abstract
  • (POM) [25], Raman scattering [26][27], XRD [28][29], photon correlation spectroscopy (PCS) [27][30][31] and NMR [32][33]. Recently Kim et al. [29] carried out X-ray experiments on a bent-core system in its nematic phase. They aligned the long molecular axes by applying a strong magnetic field parallel
  • around the long axes needs to be broken by aligning one of the short axes or if the long axes need to be subjected to such a strong magnetic field. Can such a large field induce the orientational order parameter greater than its thermodynamic value? Nevertheless it is now clear that many of the
PDF
Album
Full Research Paper
Published 25 Apr 2018

Proximity effect in a two-dimensional electron gas coupled to a thin superconducting layer

  • Christopher Reeg,
  • Daniel Loss and
  • Jelena Klinovaja

Beilstein J. Nanotechnol. 2018, 9, 1263–1271, doi:10.3762/bjnano.9.118

Graphical Abstract
  • the application of an out-of-plane magnetic field [4][5] (though orbital effects are not incorporated here) or due to the proximity of a magnetic insulator [8]. Also, it is possible to apply an in-plane magnetic field (to avoid unwanted orbital effects) to reach the topological phase if the 2DEG has a
  • finite Dresselhaus SOI, as shown in [9]. An in-plane magnetic field in the presence of only Rashba SOI is not sufficient to reach the topological phase because it does not open a gap in the Rashba spectrum. The spectrum in the presence of the Zeeman splitting, which again is determined by poles in the
PDF
Album
Full Research Paper
Published 23 Apr 2018

Circular dichroism of chiral Majorana states

  • Javier Osca and
  • Llorenç Serra

Beilstein J. Nanotechnol. 2018, 9, 1194–1199, doi:10.3762/bjnano.9.110

Graphical Abstract
  • , to the hybrid devices of [17], consisting of a quantum-anomalous Hall insulator and a superconductor material. In such systems, chiral Majorana modes propagating along the edges in a clockwise or anticlockwise manner, depending on the orientation of a perpendicular magnetic field, are formed at the
  • negative. In the limit of a long 2D ribbon there is a preferred CD sign, depending on the magnetic field orientation. For a disc geometry the generalized angular momentum Jz becomes a good quantum number. Then, the combination of circular and particle–hole symmetries in a disc causes a vanishing absorption
  • of any chirality preference exactly vanishes. Results and Discussion Chiral bands Figure 1 shows the evolution of the eigenvalue spectrum as a function of the magnetic field parameter ΔB. The results reproduce already known results [17]. At vanishing ΔB the spectrum around zero energy is gapped, a
PDF
Album
Full Research Paper
Published 16 Apr 2018

Inverse proximity effect in semiconductor Majorana nanowires

  • Alexander A. Kopasov,
  • Ivan M. Khaymovich and
  • Alexander S. Mel'nikov

Beilstein J. Nanotechnol. 2018, 9, 1184–1193, doi:10.3762/bjnano.9.109

Graphical Abstract
  • separates the regimes with trivial and nontrivial topological properties of the system [3][4][18]. Further increase in the magnetic field is known to suppress the proximity effect since in the absence of the spin–orbit coupling the Fermi level crosses the only energy branch with a complete spin polarization
  • along the magnetic field direction. The nonzero spin–orbit coupling destroys this spin polarization mixing different spin projections and resulting in a nonzero induced superconducting gap in the wire of approximately αΔind/gβH, where Δind is the induced superconducting order parameter in the wire, and
  • α is the spin–orbit coupling constant. Still, even in the presence of the spin–orbit coupling the increasing magnetic field suppresses the induced superconductivity, which definitely restores the superconducting order parameter in the S film. This reentrant superconductivity stimulated by the
PDF
Album
Supp Info
Full Research Paper
Published 16 Apr 2018

Thermoelectric current in topological insulator nanowires with impurities

  • Sigurdur I. Erlingsson,
  • Jens H. Bardarson and
  • Andrei Manolescu

Beilstein J. Nanotechnol. 2018, 9, 1156–1161, doi:10.3762/bjnano.9.107

Graphical Abstract
  • charge current generated by maintaining a temperature difference over a nanowire at zero voltage bias. For topological insulator nanowires in a perpendicular magnetic field the current can change sign as the temperature of one end is increased. Here we study how this thermoelectric current sign reversal
  • depends on the magnetic field and how impurities affect the size of the thermoelectric current. We consider both scalar and magnetic impurities and show that their influence on the current are quite similar, although the magnetic impurities seem to be more effective in reducing the effect. For moderate
  • insulator material, such as BiSe, is formed into a nanowire, topological states can appear on its surface. Recently, such wires in a magnetic field have been studied extensively both theoretically [20][21][22][23][24] and experimentally [5][6][7][8][9][10][25]. When the nanowires are of circular cross
PDF
Album
Full Research Paper
Published 12 Apr 2018

Field-controlled ultrafast magnetization dynamics in two-dimensional nanoscale ferromagnetic antidot arrays

  • Anulekha De,
  • Sucheta Mondal,
  • Sourav Sahoo,
  • Saswati Barman,
  • Yoshichika Otani,
  • Rajib Kumar Mitra and
  • Anjan Barman

Beilstein J. Nanotechnol. 2018, 9, 1123–1134, doi:10.3762/bjnano.9.104

Graphical Abstract
  • micromagnetic simulations have been exploited to study the magnetization precession and spin-wave modes of the antidot lattice with varying lattice constant and in-plane orientation of the bias-magnetic field. A remarkable variation in the spin-wave modes with the orientation of in-plane bias magnetic field is
  • ], spin-wave filters [14], spin-logic [15] and reprogrammable magnonic devices [16]. The edges of the antidots lead to quantization of SW modes due to lateral confinement as well as the generation of a periodically modulated internal magnetic field due to the demagnetization effect. A number of parameters
  • mode structures as well as the anisotropy in the frequency spectra [25]. Quantized SW modes have been found to be transformed to propagating ones and vice versa in rhombic antidot lattices with the variation of the in-plane orientation of the bias-magnetic field [26]. A particular study showed the
PDF
Album
Supp Info
Full Research Paper
Published 09 Apr 2018

Review on nanoparticles and nanostructured materials: history, sources, toxicity and regulations

  • Jaison Jeevanandam,
  • Ahmed Barhoum,
  • Yen S. Chan,
  • Alain Dufresne and
  • Michael K. Danquah

Beilstein J. Nanotechnol. 2018, 9, 1050–1074, doi:10.3762/bjnano.9.98

Graphical Abstract
  • magnets, so-called ferrofluids, are ultrastable suspensions of small magnetic NPs with superparamagnetic properties [36]. Upon applying a magnetic field, the liquid will macroscopically magnetize, which leads to the alignment of NPs along the magnetic field direction [37]. Recent research has focused on
PDF
Album
Review
Published 03 Apr 2018

Magnetic characterization of cobalt nanowires and square nanorings fabricated by focused electron beam induced deposition

  • Federico Venturi,
  • Gian Carlo Gazzadi,
  • Amir H. Tavabi,
  • Alberto Rota,
  • Rafal E. Dunin-Borkowski and
  • Stefano Frabboni

Beilstein J. Nanotechnol. 2018, 9, 1040–1049, doi:10.3762/bjnano.9.97

Graphical Abstract
  • using beam energies of 5 and 15 keV have the characteristics of magnetic dipoles, with larger magnetic moments observed for NWs deposited at lower energy. L-TEM is used to image magnetic domain walls in NWs and nanorings and their motion as a function of applied magnetic field. The NWs are found to have
  • holography (EH) [22]. Here, we use different techniques and different magnetization conditions to investigate the magnetic states of NWs and square nanorings formed from four NWs. The magnetization states of the square nanorings are studied both in the presence of an applied magnetic field and at remanence
  • images were taken underfocus in low magnification mode, using the objective mini-lens as the imaging lens, with the objective lens slightly excited (at 10% of the value used for eucentric focus), in order to impart a specimen-tilt-angle-dependent magnetic field to the sample. Off-axis electron holography
PDF
Album
Full Research Paper
Published 03 Apr 2018
Other Beilstein-Institut Open Science Activities