Search results

Search for "doping" in Full Text gives 375 result(s) in Beilstein Journal of Nanotechnology. Showing first 200.

Polarization-dependent strong coupling between silver nanorods and photochromic molecules

  • Gwénaëlle Lamri,
  • Alessandro Veltri,
  • Jean Aubard,
  • Pierre-Michel Adam,
  • Nordin Felidj and
  • Anne-Laure Baudrion

Beilstein J. Nanotechnol. 2018, 9, 2657–2664, doi:10.3762/bjnano.9.247

Graphical Abstract
  • change in the refractive index or the doping ability of these materials allows the plasmonic system’s environment to be actively changed and the plasmonic properties to be controlled. Another way to control LSPR is to use photochromic molecules. These molecules can switch their conformation from a
PDF
Album
Full Research Paper
Published 08 Oct 2018

Impact of the anodization time on the photocatalytic activity of TiO2 nanotubes

  • Jesús A. Díaz-Real,
  • Geyla C. Dubed-Bandomo,
  • Juan Galindo-de-la-Rosa,
  • Luis G. Arriaga,
  • Janet Ledesma-García and
  • Nicolas Alonso-Vante

Beilstein J. Nanotechnol. 2018, 9, 2628–2643, doi:10.3762/bjnano.9.244

Graphical Abstract
  • photooxidation of methylene blue. Keywords: fluorine doping; nanotubes; photocatalytic activity; photoelectrochemistry; titanium(IV) oxide (TiO2); Introduction TiO2 started to attract great interest after Fujishima and Honda reported [1] on its photoelectrochemical (PEC) properties in 1972. Numerous features
  • ] observed that a water-based electrolyte containing NH4F induced a co-doping with F and N in the TNTs. Their study suggested that a combination of applied potential and annealing temperature were responsible for the high photocatalytic activity (PCA) of their materials in the oxidation of methyl orange. In
  • is supported by the fact that atomic radii for O (48 pm) and F (42 pm) are similar enough to allow for the replacement of the former, effectively doping the material by creating oxygen vacancies and different energy states [29]. XPS To characterize the surface chemistry, high-resolution XPS
PDF
Album
Supp Info
Full Research Paper
Published 04 Oct 2018

Improved catalytic combustion of methane using CuO nanobelts with predominantly (001) surfaces

  • Qingquan Kong,
  • Yichun Yin,
  • Bing Xue,
  • Yonggang Jin,
  • Wei Feng,
  • Zhi-Gang Chen,
  • Shi Su and
  • Chenghua Sun

Beilstein J. Nanotechnol. 2018, 9, 2526–2532, doi:10.3762/bjnano.9.235

Graphical Abstract
  • by Hu et al. [22] and Jin et al. [28]. According to this understanding, the catalysis performance may be further improved by adding alloy elements or surface doping to reduce the barrier. Conclusion In summary, Cu(001) was identified as being the most promising among six low-index surfaces tested for
PDF
Album
Supp Info
Full Research Paper
Published 24 Sep 2018

Thickness-dependent photoelectrochemical properties of a semitransparent Co3O4 photocathode

  • Malkeshkumar Patel and
  • Joondong Kim

Beilstein J. Nanotechnol. 2018, 9, 2432–2442, doi:10.3762/bjnano.9.228

Graphical Abstract
  • respect to the water redox potential [3][9][10]. The spinel Co3O4 is interesting because of its dual bandgap (1.5 and 2.2 eV), high absorption coefficient, intrinsic p-type doping and chemical stability. It has found application as a light-absorbing entity in all-metal-oxide photovoltaic cells [11][12][13
PDF
Album
Supp Info
Full Research Paper
Published 12 Sep 2018

SERS active Ag–SiO2 nanoparticles obtained by laser ablation of silver in colloidal silica

  • Cristina Gellini,
  • Francesco Muniz-Miranda,
  • Alfonso Pedone and
  • Maurizio Muniz-Miranda

Beilstein J. Nanotechnol. 2018, 9, 2396–2404, doi:10.3762/bjnano.9.224

Graphical Abstract
  • calculations, can also explain the SERS effect obtained by NIR excitation, even if the excitation radiation does not match the plasmonic band of the silver nanoparticles. In conclusion, a simple method is proposed to obtain Ag-doping of silica colloidal nanoparticles, avoiding complicated procedures and
PDF
Album
Supp Info
Full Research Paper
Published 06 Sep 2018

Hierarchical heterostructures of Bi2MoO6 microflowers decorated with Ag2CO3 nanoparticles for efficient visible-light-driven photocatalytic removal of toxic pollutants

  • Shijie Li,
  • Wei Jiang,
  • Shiwei Hu,
  • Yu Liu,
  • Yanping Liu,
  • Kaibing Xu and
  • Jianshe Liu

Beilstein J. Nanotechnol. 2018, 9, 2297–2305, doi:10.3762/bjnano.9.214

Graphical Abstract
  • obstacle, various methods have been developed, including doping [20][21] and the construction of heterojunctions [22][23][24][25][26][27][28][29][30][31][32][33]. Particularly, the combination of Bi2MoO6 with other semiconductors to construct heterojunction photocatalysts leads to an enhanced activity of
PDF
Album
Supp Info
Full Research Paper
Published 27 Aug 2018

Intrinsic ultrasmall nanoscale silicon turns n-/p-type with SiO2/Si3N4-coating

  • Dirk König,
  • Daniel Hiller,
  • Noël Wilck,
  • Birger Berghoff,
  • Merlin Müller,
  • Sangeeta Thakur,
  • Giovanni Di Santo,
  • Luca Petaccia,
  • Joachim Mayer,
  • Sean Smith and
  • Joachim Knoch

Beilstein J. Nanotechnol. 2018, 9, 2255–2264, doi:10.3762/bjnano.9.210

Graphical Abstract
  • Aachen University, 52074, Germany Elettra Sincrotrone Trieste, Strada Statale 14 km 163.5, 34149 Trieste, Italy National Compute Infrastructure (NCI), The Australian National University, ACT 2601, Australia 10.3762/bjnano.9.210 Abstract Impurity doping of ultrasmall nanoscale (usn) silicon (Si
  • doping to fail for Si nano-crystals (NCs) showing quantum confinement. To introduce electron- (n-) or hole- (p-) type conductivity, usn-Si may not require doping, but an energy shift of electronic states with respect to the vacuum energy between different regions of usn-Si. We show in theory and
  • doping for ULSI, provide new opportunities for ultralow power electronics and open a whole new vista on the introduction of p- and n-type conductivity into usn-Si. Keywords: energy offset; impurity doping alternative; ultrasmall nanoscale silicon crystals; wires and devices; Introduction Impurity
PDF
Album
Supp Info
Full Research Paper
Published 23 Aug 2018

Lead-free hybrid perovskites for photovoltaics

  • Oleksandr Stroyuk

Beilstein J. Nanotechnol. 2018, 9, 2209–2235, doi:10.3762/bjnano.9.207

Graphical Abstract
  • this material as compared to planar films of the same composition [122]. It was found that of the three “homologs” of CsSnX3 HPs (X = Cl, Br, I) the bromide-based compound shows an exceptionally high photochemical and chemical stability, which can further be enhanced by doping with SnF2 [110]. The
  • stability of MASnI3-based cells can also be strongly enhanced by doping with SnF2 [118][123][124]. The doped materials showed a remarkable stability when illuminated under ambient air conditions without additional encapsulation (Figure 4c). Additionally, the SnF2 doping results in a decrease of the HP
  • bandgap down to 1.25 eV, which is highly beneficial for the cell performance. This redshift effect was attributed to the Burstein–Moss effect arising from a significant doping of the absorber material with holes [118]. The SnF2 doping was found to almost double the radiative lifetime of charge carriers
PDF
Album
Review
Published 21 Aug 2018

Electrospun one-dimensional nanostructures: a new horizon for gas sensing materials

  • Muhammad Imran,
  • Nunzio Motta and
  • Mahnaz Shafiei

Beilstein J. Nanotechnol. 2018, 9, 2128–2170, doi:10.3762/bjnano.9.202

Graphical Abstract
  • and/or calcination temperature [130]. The most effective approach to improve the gas sensing response of pure MOx 1D nanostructures is by functionalizing with different catalytic metals, MOx or noble metals [11][146]. Doping changes the reaction kinetics and electronic characteristics as well as the
  • electronic sensitization. Traditionally, the doping is done by noble metals like Au [109][146][153][154][155][156], Ag [157][158][159][160][161], Pt [162][163][164][165][166][167][168], or Pd [75][107][148][169][170][171][172][173][174][175][176]. Moreover, noble metals can catalyse the gas sensing response
  • ]. Doping with Ae metals exhibits an advantage in grain growth control [86]. For example, after thermal treatment, nanoparticle/nanograins show necked connections for each type of Ae-doped SnO2 NF. Therefore, a conduction channel can be established within each aggregate due to the space-charge layer region
PDF
Album
Supp Info
Review
Published 13 Aug 2018

Phosphorus monolayer doping (MLD) of silicon on insulator (SOI) substrates

  • Noel Kennedy,
  • Ray Duffy,
  • Luke Eaton,
  • Dan O’Connell,
  • Scott Monaghan,
  • Shane Garvey,
  • James Connolly,
  • Chris Hatem,
  • Justin D. Holmes and
  • Brenda Long

Beilstein J. Nanotechnol. 2018, 9, 2106–2113, doi:10.3762/bjnano.9.199

Graphical Abstract
  • Applied Materials, Gloucester, Massachusetts, USA CRANN@AMBER, Trinity College Dublin, Dublin 2, Ireland 10.3762/bjnano.9.199 Abstract This paper details the application of phosphorus monolayer doping of silicon on insulator substrates. There have been no previous publications dedicated to the topic of
  • MLD on SOI, which allows for the impact of reduced substrate dimensions to be probed. The doping was done through functionalization of the substrates with chemically bound allyldiphenylphosphine dopant molecules. Following functionalization, the samples were capped and annealed to enable the diffusion
  • of dopant atoms into the substrate and their activation. Electrical and material characterisation was carried out to determine the impact of MLD on surface quality and activation results produced by the process. MLD has proven to be highly applicable to SOI substrates producing doping levels in
PDF
Album
Supp Info
Full Research Paper
Published 06 Aug 2018

Metal-free catalysis based on nitrogen-doped carbon nanomaterials: a photoelectron spectroscopy point of view

  • Mattia Scardamaglia and
  • Carla Bittencourt

Beilstein J. Nanotechnol. 2018, 9, 2015–2031, doi:10.3762/bjnano.9.191

Graphical Abstract
  • have addressed in the last decades are described, in particular the enduring debate on the role of the different nitrogen functionalities in the catalytic activity of nitrogen-doped carbon nanotubes and graphene. Keywords: catalysis; carbon nanotubes; graphene; metal-free; nitrogen doping
  • system. The most common nitrogen doping techniques and how the doping activates the surface are described, and the spectroscopic differences regarding the nitrogen incorporation in graphene and CNTs are discussed. Review Heteroatom-doped carbon nanostructures Carbon nanotubes and graphene share many
  • zero-gap semiconductor). This peculiarity represents one of the biggest challenges for its use in concrete applications, because it results in a very low density of states (DOS) at the Fermi level for typical doping levels, making graphene an intrinsically inert material. To overcome these issues
PDF
Album
Review
Published 18 Jul 2018

A differential Hall effect measurement method with sub-nanometre resolution for active dopant concentration profiling in ultrathin doped Si1−xGex and Si layers

  • Richard Daubriac,
  • Emmanuel Scheid,
  • Hiba Rizk,
  • Richard Monflier,
  • Sylvain Joblot,
  • Rémi Beneyton,
  • Pablo Acosta Alba,
  • Sébastien Kerdilès and
  • Filadelfo Cristiano

Beilstein J. Nanotechnol. 2018, 9, 1926–1939, doi:10.3762/bjnano.9.184

Graphical Abstract
  • %. Scattering correction must be accounted for when extracting Hall effect parameters. The measured values of Hall carrier concentration and Hall mobility are therefore corrected by using the Hall scattering factor, rH, [33][34][35] which depends on the studied material, i.e., on Ge content, doping type and
  • -uniform doping profiles, the depletion width (and the related correction) will vary with depth. For example, in the particular case discussed in this section, the investigated 20 nm thick SiGe layer is uniformly doped at 1019 cm−3. For typical silicon-dioxide charge densities of 1012 cm−2·eV−1, simple
  • calculations provide a depletion width of about 2 nm. Consequently, in this case, a depth-scale translation is necessary. However, for the higher carrier concentrations typically investigated in source/drain doping studies, such as those discussed in the next section (1020 cm−3 and above), and considering the
PDF
Album
Supp Info
Full Research Paper
Published 05 Jul 2018

Nonlinear effect of carrier drift on the performance of an n-type ZnO nanowire nanogenerator by coupling piezoelectric effect and semiconduction

  • Yuxing Liang,
  • Shuaiqi Fan,
  • Xuedong Chen and
  • Yuantai Hu

Beilstein J. Nanotechnol. 2018, 9, 1917–1925, doi:10.3762/bjnano.9.183

Graphical Abstract
  • center of the forbidden band. Hence, the electric field E2 induced only by the piezoelectric characteristics is symmetrical with regard to the neutral axis, as shown in Figure 5. After n-type doping, the Fermi level moves upwards from the center of the forbidden band. The deformation-induced electric
PDF
Album
Full Research Paper
Published 04 Jul 2018

The role of the Ge mole fraction in improving the performance of a nanoscale junctionless tunneling FET: concept and scaling capability

  • Hichem Ferhati,
  • Fayçal Djeffal and
  • Toufik Bentrcia

Beilstein J. Nanotechnol. 2018, 9, 1856–1862, doi:10.3762/bjnano.9.177

Graphical Abstract
  • Figure 1, L is the channel length, tch refers to the channel thickness, Nd is the doping concentration of the channel, and Ls and Ld denote the extension lengths of source and drain, respectively. The accurate modeling of the nanoscale DG-HJ-JL TFET requires taking into account quantum-confinement
  • temperatures in the current equations [25]. Moreover, models for carrier recombination (Shockley–Read–Hall (SRH), Auger and surface recombination) are also adopted [26]. In fact, the carrier mobility mainly depends on three quantities, transverse and parallel electric field, doping and temperature, which were
PDF
Album
Full Research Paper
Published 22 Jun 2018

Numerical analysis of single-point spectroscopy curves used in photo-carrier dynamics measurements by Kelvin probe force microscopy under frequency-modulated excitation

  • Pablo A. Fernández Garrillo,
  • Benjamin Grévin and
  • Łukasz Borowik

Beilstein J. Nanotechnol. 2018, 9, 1834–1843, doi:10.3762/bjnano.9.175

Graphical Abstract
  • associated to SPV decay. Here, the number of build-up and decay time constants can be determined in advance from accessible literature by taking to account the type and properties of materials, e.g., doping level and type, defects concentration and gap energy. Types of recombination mechanisms for silicon
PDF
Album
Full Research Paper
Published 20 Jun 2018

A visible-light-controlled platform for prolonged drug release based on Ag-doped TiO2 nanotubes with a hydrophobic layer

  • Caihong Liang,
  • Jiang Wen and
  • Xiaoming Liao

Beilstein J. Nanotechnol. 2018, 9, 1793–1801, doi:10.3762/bjnano.9.170

Graphical Abstract
  • exhibit promising application as a localized, prolonged drug delivery platform. Keywords: Ag doping; drug delivery; hydrophobic layer; prolonged drug release; TiO2 nanotubes; visible-light-controlled release; Introduction Titanium dioxide nanotubes (TNTs) are often employed as drug carriers, owing to
  • light by doping AuNPs onto the nanotubes to improve the photocatalysis of the TNTs, which feasibly allows drug release under visible light. However, controlled drug release in combination with extended release delivery via a TiO2 nanotube platform has been rarely investigated. As a trace element
  • electric field [33] and results in the generation of e− and h+ even under irradiation with lower energy light. Thus, doping with AgNPs has evidently enhanced the TiO2 photocatalysis under visible-light irradiation. However, after loading with the Zn2+-based drug and coating with the NDM layer, the
PDF
Album
Full Research Paper
Published 14 Jun 2018

Nitrogen-doped carbon nanotubes coated with zinc oxide nanoparticles as sulfur encapsulator for high-performance lithium/sulfur batteries

  • Yan Zhao,
  • Zhengjun Liu,
  • Liancheng Sun,
  • Yongguang Zhang,
  • Yuting Feng,
  • Xin Wang,
  • Indira Kurmanbayeva and
  • Zhumabay Bakenov

Beilstein J. Nanotechnol. 2018, 9, 1677–1685, doi:10.3762/bjnano.9.159

Graphical Abstract
  • ” or ”confine” the S atoms in the cathode, and, therefore, reduce any losses of S. As an excellent conductive agent, carbon-based materials, e.g., carbon black, graphene and carbon nanotubes (CNTs), have been widely used in Li/S composite cathode materials [3]. In addition, by doping with N and a
  • of nucleation sites in NCNT allows ZnO to uniformly grow on its surface with a small size. Also, NCNT has a higher electrical conductivity due to its additional free electron pairs compared to CNT without nitrogen doping. The ZnO@NCNT composite showed excellent electrochemical properties in lithium
  • :3 by ball-milling at 350 min−1 for 3 h to obtain the sulfur composite precursor. The S/ZnO@NCNT composite was obtained by heating the precursor at 155 °C for 10 h, in argon flow with a heating rate of 5 °C·min−1. The sulfur-doping method was described in our previous study [33]. Materials
PDF
Album
Full Research Paper
Published 06 Jun 2018

Free-radical gases on two-dimensional transition-metal disulfides (XS2, X = Mo/W): robust half-metallicity for efficient nitrogen oxide sensors

  • Chunmei Zhang,
  • Yalong Jiao,
  • Fengxian Ma,
  • Sri Kasi Matta,
  • Steven Bottle and
  • Aijun Du

Beilstein J. Nanotechnol. 2018, 9, 1641–1646, doi:10.3762/bjnano.9.156

Graphical Abstract
  • could be uses in spintronics. But the lack of suitable materials limits the development of spintronic applications. Doping semiconductors may be applied to achieve spin-polarized currents, but this requires a complicated process. Although many materials have been predicted in theory for this purpose
PDF
Album
Supp Info
Full Research Paper
Published 05 Jun 2018

Sulfur-, nitrogen- and platinum-doped titania thin films with high catalytic efficiency under visible-light illumination

  • Boštjan Žener,
  • Lev Matoh,
  • Giorgio Carraro,
  • Bojan Miljević and
  • Romana Cerc Korošec

Beilstein J. Nanotechnol. 2018, 9, 1629–1640, doi:10.3762/bjnano.9.155

Graphical Abstract
  • and subsequent degradation was used to fit the experimental data. The results have shown an increase in photocatalytic activity under visible-light illumination of nonmetal and metal doped and co-doped titania thin films compared to an undoped sample. Keywords: doping; photocatalysis; sol–gel
  • photocatalytic activity under a broader solar spectrum: doping with metals [23][24][25][26], nonmetals [27][28][29][30] and co-doping [31][32]. When doping with metals, they act as a free electron trap and thereby prevent electron–hole recombination, which results in enhanced photocatalytic activity of the
  • material system [33][34]. Nitrogen has been shown to be an effective doping element in increasing the response of TiO2 during visible-light illumination. When the material is doped with nitrogen, a linear combination of 2p orbitals of N and O results in the formation of hybrid orbitals, causing a narrowing
PDF
Album
Full Research Paper
Published 04 Jun 2018

Absence of free carriers in silicon nanocrystals grown from phosphorus- and boron-doped silicon-rich oxide and oxynitride

  • Daniel Hiller,
  • Julian López-Vidrier,
  • Keita Nomoto,
  • Michael Wahl,
  • Wolfgang Bock,
  • Tomáš Chlouba,
  • František Trojánek,
  • Sebastian Gutsch,
  • Margit Zacharias,
  • Dirk König,
  • Petr Malý and
  • Michael Kopnarski

Beilstein J. Nanotechnol. 2018, 9, 1501–1511, doi:10.3762/bjnano.9.141

Graphical Abstract
  • –voltage (I–V) measurements. The results clearly show that no free carriers, neither from P- nor from B-doping, exist in the Si NCs, although in some configurations charge carriers can be generated by electric field ionization. The absence of free carriers in Si NCs ≤5 nm in diameter despite the presence
  • of P- or B-atoms has severe implications for future applications of conventional impurity doping of Si in sub-10 nm technology nodes. Keywords: atom probe tomography; doping; photoluminescence; silicon nanocrystals; transient transmission; Introduction The conductivity type and free carrier
  • concentration of a semiconductor can be controlled via doping. Conventional impurity doping requires the incorporation of a suitable foreign atom on a lattice site and its ionization by thermal energy. Therefore, the energetic position of a dopant in the bandgap has to be close to the respective band edges. For
PDF
Album
Supp Info
Full Research Paper
Published 18 May 2018

Cr(VI) remediation from aqueous environment through modified-TiO2-mediated photocatalytic reduction

  • Rashmi Acharya,
  • Brundabana Naik and
  • Kulamani Parida

Beilstein J. Nanotechnol. 2018, 9, 1448–1470, doi:10.3762/bjnano.9.137

Graphical Abstract
  • nanostructured TiO2 to agglomerate results in difficulties during the separation process [84]. The detailed mechanism for photocatalytic reduction of Cr(VI) by neat TiO2 is presented in Figure 3. To overcome these limitations, researchers have adopted several modifications such as (i) doping with metals
  • , nonmetals and co-doping [85][86][87][88], (ii) coupling of photosensitized nanomaterials [89], (iii) combination of heterojunction materials [90] and (iv) introduction of plasmonic photocatalysts for hot electron generation [62][76]. The modification of TiO2 induces the enhancement of photocatalytic
  • studies. Optical studies such as ultraviolet–visible diffuse reflectance spectroscopy (UV–vis DRS) and photoluminescence spectroscopy (PL) explain the shift of the absorption range to the visible region and prohibition of recombination of charge carriers, respectively. The doping of nonmetals such as N, S
PDF
Album
Review
Published 16 May 2018

Formation mechanisms of boron oxide films fabricated by large-area electron beam-induced deposition of trimethyl borate

  • Aiden A. Martin and
  • Philip J. Depond

Beilstein J. Nanotechnol. 2018, 9, 1282–1287, doi:10.3762/bjnano.9.120

Graphical Abstract
  • structural properties similar to those of tetraethyl orthosilicate (TEOS, Si(C2H5O)4), which has been well characterized as a precursor for EBID of silica films [14]. TMB has previously been used for boron doping of SiO2 [15] and diamond [16], and the deposition of BCN fibres [17], BN nanotubes [18] and BN
PDF
Album
Supp Info
Letter
Published 24 Apr 2018

Artifacts in time-resolved Kelvin probe force microscopy

  • Sascha Sadewasser,
  • Nicoleta Nicoara and
  • Santiago D. Solares

Beilstein J. Nanotechnol. 2018, 9, 1272–1281, doi:10.3762/bjnano.9.119

Graphical Abstract
  • function [3][4][5]. (ii) The CPD can reflect spatial variations in the charge density [6][7][8], individual localized charges [9], or even partial charge densities within a single molecule [10][11]. Finally, (iii) doping type and charge-carrier concentration in semiconductors will control the position of
PDF
Album
Full Research Paper
Published 24 Apr 2018

Theoretical study of strain-dependent optical absorption in a doped self-assembled InAs/InGaAs/GaAs/AlGaAs quantum dot

  • Tarek A. Ameen,
  • Hesameddin Ilatikhameneh,
  • Archana Tankasala,
  • Yuling Hsueh,
  • James Charles,
  • Jim Fonseca,
  • Michael Povolotskyi,
  • Jun Oh Kim,
  • Sanjay Krishna,
  • Monica S. Allen,
  • Jeffery W. Allen,
  • Rajib Rahman and
  • Gerhard Klimeck

Beilstein J. Nanotechnol. 2018, 9, 1075–1084, doi:10.3762/bjnano.9.99

Graphical Abstract
  • nm. The wetting layer is two monolayers. The measured system has been doped with sheet doping of two electrons per dot. The strain controlling layer is made of In0.15Ga0.85As and is sandwiched between two layers of GaAs each with a thickness of 1 nm. Next, there are two layers of Al0.22Ga0.78As, each
  • states in valence and conduction bands, Fi = 1, while Ff depends on the energy level and doping. Normally, quantum dots are occupied by a number of electrons equal to the average number of dopants per dot [34]. This approach is reasonable for quantum dots that are far from heavily doped regions. However
  • attributed to idealizing the quantum dot shape, ignoring the slight uncertainty in the material compositions and the variations in the quantum dot dimensions. The doping is 1.5 electrons per dot. The inclusion of many-particle configuration interaction (CI) in calculating the energy transitions significantly
PDF
Album
Full Research Paper
Published 04 Apr 2018

Electro-optical interfacial effects on a graphene/π-conjugated organic semiconductor hybrid system

  • Karolline A. S. Araujo,
  • Luiz A. Cury,
  • Matheus J. S. Matos,
  • Thales F. D. Fernandes,
  • Luiz G. Cançado and
  • Bernardo R. A. Neves

Beilstein J. Nanotechnol. 2018, 9, 963–974, doi:10.3762/bjnano.9.90

Graphical Abstract
  • of the RA SAM, even at room temperature. Additionally, photo-assisted electrical force microscopy, photo-assisted scanning Kelvin probe microscopy and Raman spectroscopy indicate a RA-induced graphene doping and photo-charge generation. Finally, the optical excitation of the RA monolayer generates
  • of graphene-based devices, SAM surface functionalization is employed for both doping level control and work function tuning [14][15][16]. The present work brings these two fronts together by investigating a graphene/retinoic acid (RA) – a π-conjugated organic semiconductor – hybrid system and its
  • influences: graphene-promoted high photoluminescence efficiency of RA and RA-induced doping and charge modulation of graphene. The results suggest that low-dimensional hybrid systems, with reciprocal modifications of the constituents’ original properties, may tailor the desired properties in future device
PDF
Album
Supp Info
Full Research Paper
Published 23 Mar 2018
Other Beilstein-Institut Open Science Activities