Search results

Search for "functionalization" in Full Text gives 786 result(s) in Beilstein Journal of Organic Chemistry. Showing first 200.

Unveiling the regioselectivity of rhodium(I)-catalyzed [2 + 2 + 2] cycloaddition reactions for open-cage C70 production

  • Cristina Castanyer,
  • Anna Pla-Quintana,
  • Anna Roglans,
  • Albert Artigas and
  • Miquel Solà

Beilstein J. Org. Chem. 2024, 20, 272–279, doi:10.3762/bjoc.20.28

Graphical Abstract
  • Cristina Castanyer Anna Pla-Quintana Anna Roglans Albert Artigas Miquel Sola Institut de Química Computacional i Catàlisi (IQCC) and Departament de Química, Universitat de Girona (UdG), Girona 17003 Catalunya, Spain 10.3762/bjoc.20.28 Abstract The regioselective functionalization of fullerenes
  • applications are still in various stages of research and development. The functionalization of fullerenes makes them versatile materials, broadening the range of potential applications [17][18]. It allows the properties of these carbon cages to be tuned, making them more soluble (especially in water for
  • medical applications) and improving their stability, among other desirable properties. The most common reactions used to functionalize fullerenes are Diels–Alder and 1,3-dipolar cycloadditions and Bingel–Hirsch cyclopropanations [19][20]. In most cases, functionalization occurs while preserving the carbon
PDF
Album
Supp Info
Full Research Paper
Published 13 Feb 2024

Nucleophilic functionalization of thianthrenium salts under basic conditions

  • Xinting Fan,
  • Duo Zhang,
  • Xiangchuan Xiu,
  • Bin Xu,
  • Yu Yuan,
  • Feng Chen and
  • Pan Gao

Beilstein J. Org. Chem. 2024, 20, 257–263, doi:10.3762/bjoc.20.26

Graphical Abstract
  • -free conditions. This strategy exhibits good functional-group tolerance, operational simplicity, and an extensive range of compatible substrates. Keywords: amination; functionalization of alcohol; metal-free; S-(alkyl)thianthrenium salts; thioetherification; Introduction Sulfonium salts [1][2][3][4
  • ][5][6][7][8][9][10] have been extensively utilized as readily accessible synthetic building blocks in organic synthesis, particularly in the ipso-functionalization of C–S bonds. Of the sulfonium salts, organothianthrenium salts exhibit distinct structural properties and reactivities, thereby offering
  • -stage C–H functionalization of arenes, Wickens’s group has introduced an oxidative alkene aziridination strategy that relies on thianthrenation of an alkene under electrochemical conditions [27]. Subsequently, cyclopropanation, [28] aziridination, [29] allylic C–H functionalization, [30][31] transition
PDF
Album
Supp Info
Full Research Paper
Published 08 Feb 2024

Substitution reactions in the acenaphthene analog of quino[7,8-h]quinoline and an unusual synthesis of the corresponding acenaphthylenes by tele-elimination

  • Ekaterina V. Kolupaeva,
  • Narek A. Dzhangiryan,
  • Alexander F. Pozharskii,
  • Oleg P. Demidov and
  • Valery A. Ozeryanskii

Beilstein J. Org. Chem. 2024, 20, 243–253, doi:10.3762/bjoc.20.24

Graphical Abstract
  • , Pushkin str. 1a, 355017 Stavropol, Russian Federation 10.3762/bjoc.20.24 Abstract The possibility of functionalization of dipyrido[3,2-e:2′,3′-h]acenaphthene containing a quino[7,8-h]quinoline fragment and being a highly basic diazine analog of 1,8-bis(dimethylamino)naphthalene (“proton sponge”) has been
  • make molecule 5 (and derivatives) more rigid and flat when compared to compound 3 but it will also affect its reactivity and the sites of functionalization. This work is devoted to the clarification of this circumstance with substitution and elimination reactions chosen as the key transformations. The
  • structure of compound 15 was confirmed by a combination of spectral methods, in particular, the disappearance of a singlet from H-5,8 protons at 7.8–7.9 ppm in the starting material 5 during functionalization (nitration, bromination), unambiguously indicates the occurrence of substituents precisely in these
PDF
Album
Supp Info
Full Research Paper
Published 08 Feb 2024

Chiral phosphoric acid-catalyzed transfer hydrogenation of 3,3-difluoro-3H-indoles

  • Yumei Wang,
  • Guangzhu Wang,
  • Yanping Zhu and
  • Kaiwu Dong

Beilstein J. Org. Chem. 2024, 20, 205–211, doi:10.3762/bjoc.20.20

Graphical Abstract
  • great attention in organic synthesis. Various methods [9], including reductive hydrogenation [10][11], kinetic resolution [12][13][14], functionalization of indole [15], and de novo construction of chiral 2-substituted indolines, have been developed [16][17][18][19][20]. In recent years, the metal
PDF
Album
Supp Info
Letter
Published 01 Feb 2024
Graphical Abstract
  • . This endeavor aims to delineate new directions for prospective applications of push–pull chromophores. Notably, in polymer chemistry, significant progress has been made in employing [2 + 2] CA–RE reactions for polymers as a valuable post-functionalization treatment [9][10]. However, this topic lies
  • through scanning tunneling microscopy [85]. For TCBDs bearing unsubstituted anilino (p-H2NC6H4–) groups, their conversion into the p-iodophenyl derivatives via the Sandmeyer reaction and subsequent post-functionalization via the Suzuki and Sonogashira coupling reactions are achieved [86]. In the reaction
PDF
Album
Review
Published 22 Jan 2024

Multi-redox indenofluorene chromophores incorporating dithiafulvene donor and ene/enediyne acceptor units

  • Christina Schøttler,
  • Kasper Lund-Rasmussen,
  • Line Broløs,
  • Philip Vinterberg,
  • Ema Bazikova,
  • Viktor B. R. Pedersen and
  • Mogens Brøndsted Nielsen

Beilstein J. Org. Chem. 2024, 20, 59–73, doi:10.3762/bjoc.20.8

Graphical Abstract
  • with one of the exocyclic enediyne units removed) [17][18] is a particularly good electron acceptor as it gains 14π-aromaticity upon reduction. In this work, we also want to further explore pyrrolo-annelated IF-DTFs with different substituents on the nitrogen atom, and the functionalization at the
  • as a mixture of E and Z isomers (ca. 4:1). Further functionalization of the IF-DTF ketone 11 was obtained by Ramirez/Corey–Fuchs dibromo-olefination and Knoevenagel condensation to yield vinylic dibromide 14 and diester 15, respectively, as illustrated in Scheme 2. We noted that the dibromo
  • compound is shown below, in which the hydrogen atoms are omitted for clarity. Atoms are colored grey (carbon), white (hydrogen), brown (bromine), pale-yellow (silicon). Labels of bonds within five-membered ring. Synthesis of IF-DTF ketones 9–12 and dimer 13. Further functionalization of the IF-DTF ketone
PDF
Album
Supp Info
Full Research Paper
Published 15 Jan 2024

Facile access to pyridinium-based bent aromatic amphiphiles: nonionic surface modification of nanocarbons in water

  • Lorenzo Catti,
  • Shinji Aoyama and
  • Michito Yoshizawa

Beilstein J. Org. Chem. 2024, 20, 32–40, doi:10.3762/bjoc.20.5

Graphical Abstract
  • )m was roughly estimated to be 0.1 mg mL−1. The DLS measurement of (PA-Im)n·(C60)m displayed an average particle diameter of ≈2 nm, which, in combination with molecular modeling, indicated a noncovalent surface functionalization of a single C60 molecule by five PA-Im amphiphiles (Figure 4d,e
PDF
Album
Supp Info
Full Research Paper
Published 08 Jan 2024

Controlling the reactivity of La@C82 by reduction: reaction of the La@C82 anion with alkyl halide with high regioselectivity

  • Yutaka Maeda,
  • Saeka Akita,
  • Mitsuaki Suzuki,
  • Michio Yamada,
  • Takeshi Akasaka,
  • Kaoru Kobayashi and
  • Shigeru Nagase

Beilstein J. Org. Chem. 2023, 19, 1858–1866, doi:10.3762/bjoc.19.138

Graphical Abstract
  • benzyl bromide under photolytic conditions affords eight monoadducts [19]. Therefore, one-electron reduction and the subsequent thermal reaction of La@C2v-C82 were effective for its functionalization in terms of both regioselectivity and reactivity compared to the thermal and photoreactions of La@C2v-C82
PDF
Album
Supp Info
Full Research Paper
Published 11 Dec 2023

Synthetic approach to 2-alkyl-4-quinolones and 2-alkyl-4-quinolone-3-carboxamides based on common β-keto amide precursors

  • Yordanka Mollova-Sapundzhieva,
  • Plamen Angelov,
  • Danail Georgiev and
  • Pavel Yanev

Beilstein J. Org. Chem. 2023, 19, 1804–1810, doi:10.3762/bjoc.19.132

Graphical Abstract
  • ]. Despite the variety of synthetic approaches to the construction and functionalization of the 4-quinolone ring system, most of the recent studies related to microbial 2-alkyl-4-quinolones relied on variations of the age-old Conrad–Limpach and Camps methods for the construction of the heterocyclic quinolone
PDF
Album
Supp Info
Full Research Paper
Published 23 Nov 2023

Recent advancements in iodide/phosphine-mediated photoredox radical reactions

  • Tinglan Liu,
  • Yu Zhou,
  • Junhong Tang and
  • Chengming Wang

Beilstein J. Org. Chem. 2023, 19, 1785–1803, doi:10.3762/bjoc.19.131

Graphical Abstract
  • active natural products. The direct functionalization of C–H bonds in enamides offers a convenient and versatile approach to access a wide range of functionalized enamides. In 2021, Fu and his colleagues successfully developed a novel method for the stereoselective alkylation of enamides 14 using iodine
  •  15) [27]. This method involved a series of steps, including the formation of an EDA complex, decarboxylation, radical addition, C–H functionalization, and annulation. Various primary, secondary, and tertiary alkyl N-hydroxyphthalimide esters 33 showed potential as viable substrates for the synthesis
PDF
Album
Review
Published 22 Nov 2023

Charge carrier transport in perylene-based and pyrene-based columnar liquid crystals

  • Alessandro L. Alves,
  • Simone V. Bernardino,
  • Carlos H. Stadtlober,
  • Edivandro Girotto,
  • Giliandro Farias,
  • Rodney M. do Nascimento,
  • Sergio F. Curcio,
  • Thiago Cazati,
  • Marta E. R. Dotto,
  • Juliana Eccher,
  • Leonardo N. Furini,
  • Hugo Gallardo,
  • Harald Bock and
  • Ivan H. Bechtold

Beilstein J. Org. Chem. 2023, 19, 1755–1765, doi:10.3762/bjoc.19.128

Graphical Abstract
  • derivatives are among the most investigated due to their easy functionalization, high chemical and thermal stability, strong photoluminescence, and n-type semiconductor character. They tend to adopt columnar organization due to the strong π–π interaction of the rigid cores, providing a path for the efficient
PDF
Album
Supp Info
Full Research Paper
Published 16 Nov 2023

Quinoxaline derivatives as attractive electron-transporting materials

  • Zeeshan Abid,
  • Liaqat Ali,
  • Sughra Gulzar,
  • Faiza Wahad,
  • Raja Shahid Ashraf and
  • Christian B. Nielsen

Beilstein J. Org. Chem. 2023, 19, 1694–1712, doi:10.3762/bjoc.19.124

Graphical Abstract
  • electron transport material (ETM), is largely dependent on its functionalization. Although the Qx material has primarily been recognized for its effectiveness in hole transport, several studies have unveiled its significant potential as an ETM [6][7][11][12], exhibiting desirable characteristics such as
PDF
Album
Review
Published 09 Nov 2023

A series of perylene diimide cathode interlayer materials for green solvent processing in conventional organic photovoltaics

  • Kathryn M. Wolfe,
  • Shahidul Alam,
  • Eva German,
  • Fahad N. Alduayji,
  • Maryam Alqurashi,
  • Frédéric Laquai and
  • Gregory C. Welch

Beilstein J. Org. Chem. 2023, 19, 1620–1629, doi:10.3762/bjoc.19.119

Graphical Abstract
  • our group has included N-annulated PDI materials, as seen in Figure 1b, where modifications to the PDIN-H CIL material include installation of a nitrile functional group on an open bay position for electrochemical tuning, and N-functionalization to provide several different side chains to study the
  • the previously reported N-annulated PDI (PDIN-H) and nitrile functionalized N-annulated PDI (CN-PDIN-H) compounds (Figure 1c) as the scaffolds for modification [18]. The PDIN-H scaffold was modified by N-functionalization with a benzyl (PDIN-B) or pentafluorobenzyl group (PDIN-FB). Similarly, the CN
  • -PDIN-H scaffold was functionalized with a benzyl (CN-PDIN-B) or pentafluorobenzyl group (CN-PDIN-FB). Addition of the benzyl and pentafluorobenzyl groups was to enhance solubility in green solvents, while nitrile functionalization was done to further stabilize the LUMO of the compounds. These materials
PDF
Album
Supp Info
Full Research Paper
Published 26 Oct 2023

Radical chemistry in polymer science: an overview and recent advances

  • Zixiao Wang,
  • Feichen Cui,
  • Yang Sui and
  • Jiajun Yan

Beilstein J. Org. Chem. 2023, 19, 1580–1603, doi:10.3762/bjoc.19.116

Graphical Abstract
  • functionalization of optically active polymers [106]. Theato and co-workers introduced vinyl/alkyne-bearing poly(vinyl ether)s [107], poly(vinylcyclopropanes) [108], and poly(allyl 2-ylideneacetate) [109] as promising new platforms compatible to thiol–ene chemistry. Atom transfer radical addition (ATRA) is another
PDF
Album
Review
Published 18 Oct 2023

C–H bond functionalization: recent discoveries and future directions

  • Indranil Chatterjee

Beilstein J. Org. Chem. 2023, 19, 1568–1569, doi:10.3762/bjoc.19.114

Graphical Abstract
  • Indranil Chatterjee Department of Chemistry, Indian Institute of Technology Ropar, Nangal Road, Rupnagar, Punjab 140001, India 10.3762/bjoc.19.114 Keywords: C–H bond functionalization; The process of C–H bond functionalization can be defined as the replacement of an activated or nonactivated C−H
  • the abstraction of intramolecular hydrogen atoms. Radical chemistry is a viable alternative to the two-electron process, involving C–H bond functionalization in the absence of any ligand and using low-cost redox-active metals (Fe, Cu, Mn, etc.) rather than heavy metals (Rh, Ir, etc.). Although radical
  • its combination with organometallic chemistry for site-selective C−H bond functionalization [3][4]. Recent years have witnessed many viable strategies for the synthesis of complex targets utilizing photoredox catalysis, electroorganic catalysis, Lewis acid catalysis, and transition-metal-free
PDF
Editorial
Published 17 Oct 2023

Morpholine-mediated defluorinative cycloaddition of gem-difluoroalkenes and organic azides

  • Tzu-Yu Huang,
  • Mario Djugovski,
  • Sweta Adhikari,
  • Destinee L. Manning and
  • Sudeshna Roy

Beilstein J. Org. Chem. 2023, 19, 1545–1554, doi:10.3762/bjoc.19.111

Graphical Abstract
  • ; gem-difluoroalkenes; organic azides; Introduction gem-Difluoroalkenes and their synthetic preparations soared in the last decade, driven by the high demand for carbonyl mimics in medicinal chemistry and drug discovery [1]. Although a wide array of functionalization strategies for gem-difluoroalkenes
  • are typically accessed in two ways: (1) direct synthesis using metal or metal-free catalysis and (2) post-functionalization of disubstituted-1,2,3-triazoles [17][18]. The direct synthesis of fully substituted triazoles entails either metal-free carbonyl-based [19][20][21] or metal-mediated and strain
  • to access a set of fully decorated 1,2,3-triazoles. Functionalization of gem-difluoroalkenes with 1,3-dipoles and N-nucleophiles. Substrate scope. Reaction conditions: 1 (1 equiv), 2 (1.5 equiv) 0.4 equiv of LiHMDS (1 M in THF), morpholine (0.34–0.4 M), 75 °C, 48 h. Isolated yields are reported. a1
PDF
Album
Supp Info
Letter
Published 05 Oct 2023

Synthesis of 5-arylidenerhodanines in L-proline-based deep eutectic solvent

  • Stéphanie Hesse

Beilstein J. Org. Chem. 2023, 19, 1537–1544, doi:10.3762/bjoc.19.110

Graphical Abstract
  • Stephanie Hesse Université de Lorraine, LCP-A2MC, F-57000, Metz, France 10.3762/bjoc.19.110 Abstract Rhodanines and their derivatives are known to have many pharmacological activities that can be modulated through different functionalization sites. One of the most studied modification in those
PDF
Album
Supp Info
Full Research Paper
Published 04 Oct 2023

N-Sulfenylsuccinimide/phthalimide: an alternative sulfenylating reagent in organic transformations

  • Fatemeh Doraghi,
  • Seyedeh Pegah Aledavoud,
  • Mehdi Ghanbarlou,
  • Bagher Larijani and
  • Mohammad Mahdavi

Beilstein J. Org. Chem. 2023, 19, 1471–1502, doi:10.3762/bjoc.19.106

Graphical Abstract
  • of aryl sulfides by using the catalyst and the base. A catalytic cycle is shown in Scheme 4. Firstly, electrophilic Pd(TFA)2 generated from Pd(OAc)2 and TFA, which (by C–H functionalization of arene 4) led to intermediate II. Oxidative insertion of intermediate II into the N–S bond of 1 afforded
  • this work. In 2018, Anbarasan and Chaitanya developed an efficient approach for the C–H bond functionalization of aryl compounds containing a directing group using N-(thioaryl)phthalimides 14 in the presence of a palladium catalyst (Scheme 15) [53]. The thiolation occurred in the presence of Pd(OAc)2
  • of N‑arylpropynamides with N‑sulfanylsuccinimides. Sulfenoamination of alkenes with sulfonamides and N-sulfanylsuccinimides. Lewis acid/Brønsted acid controlled Pd-catalyzed functionalization of aryl C(sp2)–H bonds. Possible mechanism for Lewis acid/Brønsted acid controlled Pd-catalyzed
PDF
Album
Review
Published 27 Sep 2023

Application of N-heterocyclic carbene–Cu(I) complexes as catalysts in organic synthesis: a review

  • Nosheen Beig,
  • Varsha Goyal and
  • Raj K. Bansal

Beilstein J. Org. Chem. 2023, 19, 1408–1442, doi:10.3762/bjoc.19.102

Graphical Abstract
  • and the use of a ketone was necessary to induce C–H functionalization selectivity in preference to C=C functionalization. The products were obtained in moderate to high yields (Scheme 67). 2.6 N–H and C(sp2)–H carboxylation The application of the [(IPr)CuOH] complex as catalyst for the N–H/C(sp2)–H
PDF
Album
Review
Published 20 Sep 2023

Synthesis of ether lipids: natural compounds and analogues

  • Marco Antônio G. B. Gomes,
  • Alicia Bauduin,
  • Chloé Le Roux,
  • Romain Fouinneteau,
  • Wilfried Berthe,
  • Mathieu Berchel,
  • Hélène Couthon and
  • Paul-Alain Jaffrès

Beilstein J. Org. Chem. 2023, 19, 1299–1369, doi:10.3762/bjoc.19.96

Graphical Abstract
PDF
Album
Review
Published 08 Sep 2023

Non-noble metal-catalyzed cross-dehydrogenation coupling (CDC) involving ether α-C(sp3)–H to construct C–C bonds

  • Hui Yu and
  • Feng Xu

Beilstein J. Org. Chem. 2023, 19, 1259–1288, doi:10.3762/bjoc.19.94

Graphical Abstract
  • become a major strategy for ether functionalization. This review covers C–H/C–H cross-coupling reactions of ether derivatives with various C–H bond substrates via non-noble metal catalysts (Fe, Cu, Co, Mn, Ni, Zn, Y, Sc, In, Ag). We discuss advances achieved in these CDC reactions and hope to attract
  • significantly different reactivity and chemical selectivity from noble metals (Ru, Rh, Pd). Compared with noble metals, copper catalysts are cheaper and easier to obtain, making Cu more advantageous for industrial applications of C–H functionalization reactions. The Glaser–Hay reaction may be one of the oldest
  • Cu-catalyzed oxidative coupling reactions [43]. However, due to complex mechanisms, Cu-catalyzed C–H functionalization reactions developed only slowly in the last decade. Since recently the Cu-catalyzed oxidative coupling has emerged as a powerful synthetic strategy due to the development of CDC
PDF
Album
Review
Published 06 Sep 2023

Radical ligand transfer: a general strategy for radical functionalization

  • David T. Nemoto Jr,
  • Kang-Jie Bian,
  • Shih-Chieh Kao and
  • Julian G. West

Beilstein J. Org. Chem. 2023, 19, 1225–1233, doi:10.3762/bjoc.19.90

Graphical Abstract
  • , such as hydrogen atom transfer (HAT), alkene addition, and decarboxylation. At least as important has been innovation in radical functionalization methods, including radical–polar crossover (RPC), enabling these intermediates to be engaged in productive and efficient bond-forming steps. However, direct
  • engagement of alkyl radicals remains challenging. Among these functionalization approaches, a bio-inspired mechanistic paradigm known as radical ligand transfer (RLT) has emerged as a particularly promising and versatile means of forming new bonds catalytically to alkyl radicals. This development has been
  • functionalization of alkyl radicals, with successful synthetic reactions requiring efficiency and selectivity in both of these processes and inherent compatibility between each. Radical generation has benefitted from many general mechanistic approaches, including hydrogen atom transfer (HAT) [5], alkene addition [6
PDF
Album
Perspective
Published 15 Aug 2023

Exploring the role of halogen bonding in iodonium ylides: insights into unexpected reactivity and reaction control

  • Carlee A. Montgomery and
  • Graham K. Murphy

Beilstein J. Org. Chem. 2023, 19, 1171–1190, doi:10.3762/bjoc.19.86

Graphical Abstract
  • subject to photoirradiation with N-methylpyrrole, products corresponding to both β-dicarbonyl- (77, expected) and arene- (78, unexpected) functionalization were observed. When malonate-derived ylide 76a was reacted with N-methylpyrrole, it produced 77a in 61% yield. This presumably occurred via a reaction
  • an example of β-dicarbonyl functionalization. Metal-free cyclopropanations of iodonium ylides, either as intermolecular (a) or intramolecular processes (b, c). Metal-free intramolecular cyclopropanation of iodonium ylides. Reaction of ylide 6 with diphenylketene to form lactone 24 and 25. Indoline
PDF
Album
Review
Published 07 Aug 2023

Selective and scalable oxygenation of heteroatoms using the elements of nature: air, water, and light

  • Damiano Diprima,
  • Hannes Gemoets,
  • Stefano Bonciolini and
  • Koen Van Aken

Beilstein J. Org. Chem. 2023, 19, 1146–1154, doi:10.3762/bjoc.19.82

Graphical Abstract
  • on the rate than acids and bases and both the anion and cation appear to influence the reaction kinetics. A deliberate choice of salt can either significantly improve the kinetics or quench the reaction. The latter might be exploited e.g., in late-stage functionalization strategies in order to
  • applicability of the reaction conditions in a late-stage functionalization of APIs, the method was carried out on albendazole, and albendazole oxide (2t) was obtained with very good yield. Flow The photochemical protocol was then transferred to a flow setup in order to obtain a scalable and thus industrially
PDF
Album
Supp Info
Full Research Paper
Published 31 Jul 2023

Photoredox catalysis harvesting multiple photon or electrochemical energies

  • Mattia Lepori,
  • Simon Schmid and
  • Joshua P. Barham

Beilstein J. Org. Chem. 2023, 19, 1055–1145, doi:10.3762/bjoc.19.81

Graphical Abstract
  • late-stage functionalization (17i and 17j) (Figure 12A). Interestingly, sodium oxalate could be used as the electron donor provided a catalytic loading of 4-cyanopyridine was added. Although the role of the latter species was not proposed by authors, it is more facile to reduce than an aryl chloride so
PDF
Album
Review
Published 28 Jul 2023
Other Beilstein-Institut Open Science Activities