Search results

Search for "hydrogenation" in Full Text gives 473 result(s) in Beilstein Journal of Organic Chemistry. Showing first 200.

Mild and selective reduction of aldehydes utilising sodium dithionite under flow conditions

  • Nicole C. Neyt and
  • Darren L. Riley

Beilstein J. Org. Chem. 2018, 14, 1529–1536, doi:10.3762/bjoc.14.129

Graphical Abstract
  • reduction utilizing solid mixes of sodium borohydride, lithium chloride and celite [12], and the Ley group were able to demonstrate a green transfer hydrogenation of ketones under flow using catalytic lithium tert-butoxide in isopropanol [13]. We recently published a batch–flow hybrid synthesis of the
PDF
Album
Supp Info
Full Research Paper
Published 22 Jun 2018

Spectroelectrochemical studies on the effect of cations in the alkaline glycerol oxidation reaction over carbon nanotube-supported Pd nanoparticles

  • Dennis Hiltrop,
  • Steffen Cychy,
  • Karina Elumeeva,
  • Wolfgang Schuhmann and
  • Martin Muhler

Beilstein J. Org. Chem. 2018, 14, 1428–1435, doi:10.3762/bjoc.14.120

Graphical Abstract
  • activity relation is in good agreement with studies applying these catalysts in ethanol electrooxidation and olefin hydrogenation [34][35]. Analogous CV experiments were also carried out in NaOH and the obtained CVs are shown in Figure 2. The current densities recorded for Pd/OCNT are significantly lower
PDF
Album
Supp Info
Letter
Published 12 Jun 2018

Recent applications of chiral calixarenes in asymmetric catalysis

  • Mustafa Durmaz,
  • Erkan Halay and
  • Selahattin Bozkurt

Beilstein J. Org. Chem. 2018, 14, 1389–1412, doi:10.3762/bjoc.14.117

Graphical Abstract
  • reaction in the following order: phase-transfer catalysis, Henry reaction, Suzuki–Miyaura cross-coupling and Tsuji–Trost allylic substitution, hydrogenation, Michael addition, aldol and multicomponent Biginelli reactions, epoxidation, Meerwein−Ponndorf−Verley reduction, aza-Diels−Alder and epoxide ring
  • selectivity was the chiral oxazoline unit and not the inherent chirality of calixarene skeleton. Asymmetric hydrogenation Starting with distally O-dialkylated calixarene precursors, a series of BINOL-derived calix[4]arene-diphosphite ligands 40a–g were synthesized by Liu and Sandoval through phosphorylation
  • efficient ligands in asymmetric catalytic reactions, the Rh-catalyzed asymmetric hydrogenation of methyl acetamidoacrylate (41a) and the corresponding cinnamate (41b) was evaluated in the presence of ligands 40a–g (Scheme 11). The active catalyst was readily prepared in situ by mixing Rh(COD)2BF4 and
PDF
Album
Review
Published 08 Jun 2018

Oligonucleotide analogues with cationic backbone linkages

  • Melissa Meng and
  • Christian Ducho

Beilstein J. Org. Chem. 2018, 14, 1293–1308, doi:10.3762/bjoc.14.111

Graphical Abstract
  • route using Wittig–Horner olefination and catalytic asymmetric hydrogenation as key steps (reactions not shown) [86][87][90][91][92]. Using 'dimeric' building blocks (S)-49, (R)-49, (S)-50, and (R)-50 (Scheme 5), automated DNA synthesis under standard conditions enabled the preparation of partially
  • peptide synthesis using the monomeric 3'-amino-nucleosyl amino acids (S)-56 and (R)-56, respectively, as building blocks. The synthesis of thymidinyl amino acids 56 was again started from a corresponding 5'-aldehyde 57 using Wittig–Horner olefination and catalytic asymmetric hydrogenation as key steps
PDF
Album
Review
Published 04 Jun 2018

One hundred years of benzotropone chemistry

  • Arif Dastan,
  • Haydar Kilic and
  • Nurullah Saracoglu

Beilstein J. Org. Chem. 2018, 14, 1120–1180, doi:10.3762/bjoc.14.98

Graphical Abstract
  • -bromo-6-hydroxylamino-2,3-benzotropone oximes 262 were obtained. Hydrolysis of these oximes 262 with sulfuric acid gave 5-bromo-6-hydroxy-2,3-benzotropone and the 4-bromo isomer 263, which were debrominated with catalytic hydrogenation to give 239 (Scheme 41). Although 239 is capable of existing as two
  • of azo, nitro, and amino derivatives of 6-hydroxy-2,3-benzotropone (239) (Scheme 42) [164]. While 7-amino derivative 264 was prepared via diazo coupling of 239 with diazotized p-toluidine in a pyridine solution followed by hydrogenation, the nitration of 239 in acetic acid solution afforded nitro
  • ) [174]. Catalytic hydrogenation of 241 over Adams's catalyst (PtO2.H2) gave the diol 295 (Scheme 49) [162][165][174]. Treatment of 241 with alkaline hydrogen peroxide caused degradative fission to give o-carboxycinnamic acid (296) [165], while nitration of 241 with nitric acid in an acetic acid solution
PDF
Album
Review
Published 23 May 2018

Synthetic avenues towards a tetrasaccharide related to Streptococcus pneumonia of serotype 6A

  • Aritra Chaudhury,
  • Mana Mohan Mukherjee and
  • Rina Ghosh

Beilstein J. Org. Chem. 2018, 14, 1095–1102, doi:10.3762/bjoc.14.95

Graphical Abstract
  • conditions [41], followed by hydrogenation with H2/Pd-C in EtOH/EtOAc/AcOH solvent to give the deprotected tetrasaccharide 23 in 85% yield over two steps. 1H NMR in D2O of the target tetrasaccharide 23 showed the anomeric protons of the galactose, glucose, and rhamnose residues from the non-reducing end
PDF
Album
Supp Info
Full Research Paper
Published 17 May 2018

The first Pd-catalyzed Buchwald–Hartwig aminations at C-2 or C-4 in the estrone series

  • Ildikó Bacsa,
  • Dávid Szemerédi,
  • János Wölfling,
  • Gyula Schneider,
  • Lilla Fekete and
  • Erzsébet Mernyák

Beilstein J. Org. Chem. 2018, 14, 998–1003, doi:10.3762/bjoc.14.85

Graphical Abstract
  • several aminated steroids in the literature, but the efficient generation of a C(sp2)–N bond on the aromatic ring A of estrone derivatives still remains a challenge. Aminoestrones substituted at C-2 or C-4 are mainly produced by the reduction or hydrogenation of the corresponding nitro derivatives [5
PDF
Album
Supp Info
Full Research Paper
Published 04 May 2018

Recent advances in synthetic approaches for medicinal chemistry of C-nucleosides

  • Kartik Temburnikar and
  • Katherine L. Seley-Radtke

Beilstein J. Org. Chem. 2018, 14, 772–785, doi:10.3762/bjoc.14.65

Graphical Abstract
  • (compound 23) is shown in Figure 9, which involves installing an allyl group at C1' (20) and converting the C2'–CN to an aldehyde (21) followed by a Wittig reaction to install a second allyl group at C2' (22). Second generation Grubb’s catalyst was used for the ring formation, followed by hydrogenation to
  • reaction gave the unsaturated compounds (47 and 48), which, upon hydrogenation in presence of Crabtree’s catalyst, gave the saturated compounds with the desired diasteroselectivity (49 and 50). In the case of nitrogen containing heterocycles, Pd(OH)2 was found to be a suitable catalyst that gave a
  • hydrogenation afforded the optically pure carbocyclic tubercidine analogue (−)-53. This compound has shown potent activity against breast cancer cell lines and human foreskin fibroblasts [53]. Conclusion With increasing reports of emerging and reemerging infectious diseases globally, there is a need to develop
PDF
Album
Review
Published 05 Apr 2018

Nanoreactors for green catalysis

  • M. Teresa De Martino,
  • Loai K. E. A. Abdelmohsen,
  • Floris P. J. T. Rutjes and
  • Jan C. M. van Hest

Beilstein J. Org. Chem. 2018, 14, 716–733, doi:10.3762/bjoc.14.61

Graphical Abstract
  • reactions [95][97]. The first successful attempt was reported by Chung and Rhee, in which they showed the encapsulation of a bimetallic Pt–Pd catalyst in a highly branched PMAM-OH dendrimer corona [93]. These catalytic dendrimers were employed in partial hydrogenation of 1,3-cyclooctadiene into cyclooctene
  • . The utility of these dendrimers in hydrogenation reactions resulted in efficient reactions that proceeded with unprecedented selectivity of 99%. Moreover, this system is one of the first of bimetallic catalytic systems to be used for hydrogenation reactions in water. Water soluble dendrimer-stabilized
  • nanoparticles (DSN) have been shown to be highly efficient in the catalysis of olefin hydrogenation and in Suzuki coupling reactions [98][99]. Ornelas et al. entrapped a palladium catalyst with dendrimers containing triazole groups (DSN) (Figure 6) [100]. The aim here was to provide a platform to perform
PDF
Album
Review
Published 29 Mar 2018

Heterogeneous Pd catalysts as emulsifiers in Pickering emulsions for integrated multistep synthesis in flow chemistry

  • Katharina Hiebler,
  • Georg J. Lichtenegger,
  • Manuel C. Maier,
  • Eun Sung Park,
  • Renie Gonzales-Groom,
  • Bernard P. Binks and
  • Heidrun Gruber-Woelfler

Beilstein J. Org. Chem. 2018, 14, 648–658, doi:10.3762/bjoc.14.52

Graphical Abstract
  • interface populated by catalyst particles. They deposited metallic Pd onto carbon nanotube–inorganic oxide hybrid nanoparticles and used them in emulsions for the hydrodeoxygenation of a phenolic compound and the hydrogenation and etherification of an aldehyde. The advantages of such a system include a high
PDF
Album
Full Research Paper
Published 19 Mar 2018

High-yielding continuous-flow synthesis of antimalarial drug hydroxychloroquine

  • Eric Yu,
  • Hari P. R. Mangunuru,
  • Nakul S. Telang,
  • Caleb J. Kong,
  • Jenson Verghese,
  • Stanley E. Gilliland III,
  • Saeed Ahmad,
  • Raymond N. Dominey and
  • B. Frank Gupton

Beilstein J. Org. Chem. 2018, 14, 583–592, doi:10.3762/bjoc.14.45

Graphical Abstract
  • chemistry; hydrogenation; hydroiodic acid; hydroxychloroquine; Introduction Our research group has been focused on the development of new synthetic methods for the preparation of a variety of active pharmaceutical ingredients for global health applications by employing the principles of process
  • ). Continuous flow hydrogenation was performed using a FlowCAT instrument. Synthesis of 5-iodopentan-2-one (10) Two solutions, 2-acetylbutyrolactone (8, 1.176 mL, 10.35 mmol, 1.0 equiv) and hydroiodic acid (55% aqueous solution) were pumped at 1.0 mL min−1 using peristaltic pumps through a 10 mL coil
PDF
Album
Supp Info
Full Research Paper
Published 08 Mar 2018

An alternative to hydrogenation processes. Electrocatalytic hydrogenation of benzophenone

  • Cristina Mozo Mulero,
  • Alfonso Sáez,
  • Jesús Iniesta and
  • Vicente Montiel

Beilstein J. Org. Chem. 2018, 14, 537–546, doi:10.3762/bjoc.14.40

Graphical Abstract
  • Cristina Mozo Mulero Alfonso Saez Jesus Iniesta Vicente Montiel Instituto de Electroquímica, Universidad de Alicante, Apartado 99, 03080 Alicante, Spain 10.3762/bjoc.14.40 Abstract The electrocatalytic hydrogenation of benzophenone was performed at room temperature and atmospheric pressure using
  • electrochemically hydrogenated in EtOH/water (90/10 v/v) plus 0.1 M H2SO4. Current densities of 10, 15 and 20 mA cm−2 were analysed for the preparative electrochemical hydrogenation of benzophenone and such results led to the highest fractional conversion (XR) of around 30% and a selectivity over 90% for the
  • synthesis of diphenylmethanol upon the lowest current density. With regards to an increase by ten times the Pd electrocatalytic loading the electrocatalytic hydrogenation led neither to an increase in fractional conversion nor to a change in selectivity. Keywords: benzophenone; diphenylmethanol
PDF
Album
Full Research Paper
Published 01 Mar 2018

Latest development in the synthesis of ursodeoxycholic acid (UDCA): a critical review

  • Fabio Tonin and
  • Isabel W. C. E. Arends

Beilstein J. Org. Chem. 2018, 14, 470–483, doi:10.3762/bjoc.14.33

Graphical Abstract
  • used for the hydrogenation of fatty acids). In comparison to the Wolff–Kishner reaction, the use of hydrazine is replaced by the use of hydrogen gas, which can be seen as a double-bladed knife. The reduction step can also be performed with NaBH4 or other reductants. At the moment, a complete and clear
PDF
Album
Supp Info
Review
Published 20 Feb 2018

Synthetic and semi-synthetic approaches to unprotected N-glycan oxazolines

  • Antony J. Fairbanks

Beilstein J. Org. Chem. 2018, 14, 416–429, doi:10.3762/bjoc.14.30

Graphical Abstract
  • conditions for their cleavage. Secondly some glycosyl oxazolines are also prone to reductive cleavage by catalytic hydrogenation [41], presenting a significant further limitation as to which OH-protecting groups may be employed. Most of the reports in the literature have therefore used a protecting group
  • removed. Treatment with UDP-Gal and a β(1–4)-galactosyl transferase led to the addition of galactose residues to all of the 4-hydroxy groups of the GlcNAcs. Deprotection of the remaining benzyl protecting groups and removal of the SPh at the reducing terminus by catalytic hydrogenation gave the completely
PDF
Album
Review
Published 15 Feb 2018

Preparation of trinucleotide phosphoramidites as synthons for the synthesis of gene libraries

  • Ruth Suchsland,
  • Bettina Appel and
  • Sabine Müller

Beilstein J. Org. Chem. 2018, 14, 397–406, doi:10.3762/bjoc.14.28

Graphical Abstract
  • detritylation and coupling of the third monomer. The release of the trimer in fully protected form from the support was achieved by hydrogenation with Pd/C (10%) in tetrahydrofurane (THF) for 40 h at room temperature. Three fully protected trimers were prepared this way with isolated yields in the range of 44
  • reductive conditions (disulfide cleavage or hydrogenation) or under mild basic conditions leaving all protecting groups at the trimer undamaged. In particular, soluble support strategies have great potential for an efficient large scale synthesis of fully protected trinucleotides. The essential feature here
PDF
Album
Review
Published 13 Feb 2018

Diels–Alder cycloadditions of N-arylpyrroles via aryne intermediates using diaryliodonium salts

  • Huangguan Chen,
  • Jianwei Han and
  • Limin Wang

Beilstein J. Org. Chem. 2018, 14, 354–363, doi:10.3762/bjoc.14.23

Graphical Abstract
  • of this transformation are underway in our laboratory. Arylations of pyrrole derivatives with diaryliodonium salts. Formation of N-phenylamine derivatives 4 and 5 via ring opening reactions. Preparation of product 6 by hydrogenation. Optimization of reaction conditions.a Scope of diaryliodonium salts
PDF
Album
Supp Info
Letter
Published 06 Feb 2018

5-Aminopyrazole as precursor in design and synthesis of fused pyrazoloazines

  • Ranjana Aggarwal and
  • Suresh Kumar

Beilstein J. Org. Chem. 2018, 14, 203–242, doi:10.3762/bjoc.14.15

Graphical Abstract
  • the condensation of 5-aminopyrazole derivative 16 and sodium nitromalonaldehyde 171 followed by reduction of the nitro group by hydrogenation to give 6-aminopyrazolo[1,5-a]pyrimidines 172. 6-Aminopyrazolo[1,5-a]pyrimidines 172 thus obtained were coupled with variously substituted benzoic acids 173 to
PDF
Album
Review
Published 25 Jan 2018

Gram-scale preparation of negative-type liquid crystals with a CF2CF2-carbocycle unit via an improved short-step synthetic protocol

  • Tatsuya Kumon,
  • Shohei Hashishita,
  • Takumi Kida,
  • Shigeyuki Yamada,
  • Takashi Ishihara and
  • Tsutomu Konno

Beilstein J. Org. Chem. 2018, 14, 148–154, doi:10.3762/bjoc.14.10

Graphical Abstract
  • : through dehydration in the case of 1 or radical reduction through the corresponding bisxanthate derivative in the case of 2. The required diol 3 could be obtained through a simultaneous hydrogenation of both, the cyclohexene and vinyl moieties of 1-aryl-4-vinyl-5,5,6,6-tetrafluorocyclohex-2-ene-1,4-diol 4
  • steps less than the previous method. In addition, the present synthetic protocol involves several standard organic transformations, such as hydrogenation and dehydration, which are advantageous for a large-scale synthesis of the target compounds. Thus, we attempted a detailed examination of the short
  • compound 4a in hand, the successive hydrogenation in the presence of 20 mol % of Pd/C in methanol was performed for 1 d and generated the corresponding tetrafluorinated cyclohexane-1,4-diol 3a in quantitative yield. Compound 3a could be converted to the cyclohexadiene 1a in 82% isolated yield under the
PDF
Album
Supp Info
Full Research Paper
Published 15 Jan 2018
Graphical Abstract
  • material 3. Due to the very similar polarities of 3 and 4, chromatographic separation was very tedious, and only 34% of methyl compound 4 was isolated, accompanied by about 30% of starting material 3 and mixed fractions. Debenzylation of 4 by catalytic hydrogenation in methanol solution under palladium
  • hydrogenolysis experiments with 5, which were aimed at simultaneous O-debenzylation at the 7-position and conversion of the N,N-dimethylaminomethyl group at C1 into a methyl group. Hydrogenation in presence of palladium as catalyst at 1 bar in the presence or absence of small amounts of sulfuric acid gave the
  • highly reactive benzylammonium residue still takes place, but O-debenzylation is predominantly suppressed by this catalyst poison. Finally, poisoning of the catalyst was prevented by simply passing a solution of the methoiodide 7 through a chloride-loaded ion exchanger prior to catalytic hydrogenation
PDF
Album
Supp Info
Full Research Paper
Published 11 Jan 2018

Aminosugar-based immunomodulator lipid A: synthetic approaches

  • Alla Zamyatina

Beilstein J. Org. Chem. 2018, 14, 25–53, doi:10.3762/bjoc.14.3

Graphical Abstract
  • deprotection by catalytic hydrogenation furnished lipid A 31. Alternatively, the lactol 30 was phosphitylated by application of the phosphoramidite procedure with (benzyloxy)[(N-Cbz-3-aminopropyl)oxy](N,N-diisopropylamino)phosphine in the presence of 1H-tetrazole and subsequent oxidation with dimethyldioxirane
  • (DMDO) [91] to furnish protected lipid A derivative 32. Global deprotection by hydrogenation over Pd(OH)2/C in the presence of acetic acid afforded ethanolamine-modified H. pylori lipid A 33. To get deeper insight into the immunomodulatory potential of H. pylori lipid A, an access to synthetic H. pylori
PDF
Album
Review
Published 04 Jan 2018

The use of 4,4,4-trifluorothreonine to stabilize extended peptide structures and mimic β-strands

  • Yaochun Xu,
  • Isabelle Correia,
  • Tap Ha-Duong,
  • Nadjib Kihal,
  • Jean-Louis Soulier,
  • Julia Kaffy,
  • Benoît Crousse,
  • Olivier Lequin and
  • Sandrine Ongeri

Beilstein J. Org. Chem. 2017, 13, 2842–2853, doi:10.3762/bjoc.13.276

Graphical Abstract
  • -catalyzed selective hydrogenation, and oxidation. Zeng et al. described the synthesis of the enantiomer (2R,3S)-Boc-CF3-Thr(Bzl) in four steps from the (S)-Garner’s aldehyde [17][18]. The enantiomer (2S,3R)-Boc-CF3-Thr(Bzl) was not described by Zeng et al. However, we decided to follow this more
  • with TFA and then performing the coupling reaction with Boc-L-Ala-OH in the presence of HBTU/HOBt/DIPEA or DMTMM(Cl−)/NMM. Catalytic hydrogenation, using 10% Pd/C or Pd(OH)2, under H2 atmosphere, gave pentapeptides 1a–3a in moderate to quantitative yield. After acidic removal of the Boc group, the
PDF
Album
Supp Info
Full Research Paper
Published 21 Dec 2017

Regioselective decarboxylative addition of malonic acid and its mono(thio)esters to 4-trifluoromethylpyrimidin-2(1H)-ones

  • Sergii V. Melnykov,
  • Andrii S. Pataman,
  • Yurii V. Dmytriv,
  • Svitlana V. Shishkina,
  • Mykhailo V. Vovk and
  • Volodymyr A. Sukach

Beilstein J. Org. Chem. 2017, 13, 2617–2625, doi:10.3762/bjoc.13.259

Graphical Abstract
  • can be converted into saturated (2-oxohexahydropyrimidin-4-yl)acetic acid derivatives by mild hydrogenation of the endocyclic C=C double bond in the presence of Pd/C as catalyst. The cis-stereoisomers selectively formed upon reduction of the Michael-type products were structurally determined by X-ray
  • derivative 9d was synthesized from 9c in a good yield by using the general procedure for N1-PMB cleavage. Likewise, regioisomeric acids 5a,g,i and their phenyl esters 6a,g,i were reduced to the respective saturated compounds 10a–c and 11a–c. In this case a high hydrogenation cis-stereoselectivity is provided
  • hydrolysis has also confirmed the cis-geometry for acids 10a–c obtained by direct hydrogenation of compounds 5a,g,i (see Supporting Information File 1). N3-Unsubstituted compounds 10d and 11d with the preserved cis-configuration of the substituents were readily prepared from the corresponding N3-PMB
PDF
Album
Supp Info
Full Research Paper
Published 07 Dec 2017

A semisynthesis of 3'-O-ethyl-5,6-dihydrospinosyn J based on the spinosyn A aglycone

  • Kai Zhang,
  • Shenglan Liu,
  • Anjun Liu,
  • Hongxin Chai,
  • Jiarong Li and
  • Lamusi A

Beilstein J. Org. Chem. 2017, 13, 2603–2609, doi:10.3762/bjoc.13.257

Graphical Abstract
  • and trichloroacetonitrile with Cs2CO3 as catalyst. Finally, 3'-O-ethyl-5,6-dihydrospinosyn J was obtained through the selective hydrogenation of 12 catalyzed by 10% Pd/C. During the final reduction step, as ascertained by NMR and mass spectrometry, only the 5,6-double bond was reduced, and the other
  • semisynthesis of 3'-O-ethyl-5,6-dihydrospinosyn J based on spinosyn A with high yields in each step. With this synthetic route, we achieved a chemoselective hydrogenation of the 5,6-double bond under mild conditions, which is of great significance for future studies on the chemical modification of spinosyns
PDF
Album
Supp Info
Full Research Paper
Published 06 Dec 2017

A concise flow synthesis of indole-3-carboxylic ester and its derivatisation to an auxin mimic

  • Marcus Baumann,
  • Ian R. Baxendale and
  • Fabien Deplante

Beilstein J. Org. Chem. 2017, 13, 2549–2560, doi:10.3762/bjoc.13.251

Graphical Abstract
  • chemistry; heterocycle; hydrogenation; indole; multistep; Introduction Indoles are amongst the most important bioactive heterocyclic structures being commonly encountered in the amino acid tryptophan (1), the related neurotransmitter serotonin (2) as well as numerous complex alkaloid natural products and
  • subjected to heterogeneous hydrogenation conditions to produce the indole product 12 through a reductive cyclisation sequence. From the corresponding ester functionalised indole 12 we anticipated that condensation with hydrazine would furnish the corresponding acyl hydrazine 13 which could be cyclised to
  • -toxic byproducts (base·HCl, H2O) and uses industrially favourable hydrogenation protocols in the key cyclisation step. To commence the study we first conducted a comprehensive screening program to determine flow compatible conditions for the formation of compound 11 optimising for solvent, base
PDF
Album
Supp Info
Full Research Paper
Published 29 Nov 2017

Homologated amino acids with three vicinal fluorines positioned along the backbone: development of a stereoselective synthesis

  • Raju Cheerlavancha,
  • Ahmed Ahmed,
  • Yun Cheuk Leung,
  • Aggie Lawer,
  • Qing-Quan Liu,
  • Marina Cagnes,
  • Hee-Chan Jang,
  • Xiang-Guo Hu and
  • Luke Hunter

Beilstein J. Org. Chem. 2017, 13, 2316–2325, doi:10.3762/bjoc.13.228

Graphical Abstract
  • bypassing any diazotization process. Hydrogenation of 41 with 10% Pd/C in the presence of acetic anhydride allowed the isolation of acetanilide 43 in moderate yields (Table 2, entries 4−6). It was found that the acetic anhydride solvent needed to be freshly distilled in every case in order for the reaction
  • ). Thus, compound 40a was dissolved in freshly distilled acetic anhydride and subjected to hydrogenation over Pd/C (Scheme 4). The reaction was monitored by TLC at short time intervals in order to avoid over-reduction. The starting material was consumed within 5 h, but the expected acetanilide product
  • unexpected, it was reasoned that it might still be a suitable substrate for the subsequent oxidation reaction. Accordingly, the product of the hydrogenation reaction was next treated with sodium metaperiodate and ruthenium trichloride (Scheme 4), and gratifyingly this delivered the desired trifluorinated
PDF
Album
Supp Info
Full Research Paper
Published 01 Nov 2017
Other Beilstein-Institut Open Science Activities