Search results

Search for "elimination" in Full Text gives 778 result(s) in Beilstein Journal of Organic Chemistry. Showing first 200.

Enolates ambushed – asymmetric tandem conjugate addition and subsequent enolate trapping with conventional and less traditional electrophiles

  • Péter Kisszékelyi and
  • Radovan Šebesta

Beilstein J. Org. Chem. 2023, 19, 593–634, doi:10.3762/bjoc.19.44

Graphical Abstract
  • , transformation to potassium trifluoroborate salt, hydrolysis, C–C cross-coupling, base-mediated elimination, radical C–B cleavage) [72]. Therefore, enantioenriched boronates are commonly applied intermediates in organometallic, medicinal, and other fields of chemistry. At the same time, some organoboronic acid
PDF
Album
Review
Published 04 May 2023

Transition-metal-catalyzed domino reactions of strained bicyclic alkenes

  • Austin Pounder,
  • Eric Neufeld,
  • Peter Myler and
  • William Tam

Beilstein J. Org. Chem. 2023, 19, 487–540, doi:10.3762/bjoc.19.38

Graphical Abstract
  • the case of a carbobicyclic system (Figure 2b), the rigidity of the bicyclic framework restricts β-H elimination. The inability to rotate to achieve an optimal synperiplanar geometry restricts efficient elimination (Figure 2b, Ha). Bridgehead protons are in a more favorable geometry for β-H
  • elimination (Figure 2b, Hb); however, their elimination would generate a highly unstable alkene at the bridgehead, violating Bredt’s rule [9]. For these reasons, carbobicyclic alkenes have been exploited as propagation mediators, as seen in Catellani-type reactions [10][11][12]. In this review, we will focus
  • exo coordination of a metal catalyst with the π system and migratory insertion, the resulting heterobicyclic alkyl metal intermediate is not as kinetically stable as its carbocyclic counterpart. While β-H elimination is still limited, these heterobicyclic alkenes will often undergo β-heteroatom
PDF
Album
Review
Published 24 Apr 2023

Transition-metal-catalyzed C–H bond activation as a sustainable strategy for the synthesis of fluorinated molecules: an overview

  • Louis Monsigny,
  • Floriane Doche and
  • Tatiana Besset

Beilstein J. Org. Chem. 2023, 19, 448–473, doi:10.3762/bjoc.19.35

Graphical Abstract
  • the presence of an electrophilic source or an oxidation/ligand exchange in the presence of a nucleophilic source (i.e., AgSCF3) and an oxidant (B in Scheme 4). Finally, after a reductive elimination step, the expected functionalized product 6 is obtained and the palladium catalyst is regenerated. In
  • (KIE = 2.7). Subsequently palladacycle C is oxidized by Selectfluor® to form a palladium(IV) complex D. After a ligand exchange with AgSCF3, the intermediate E is obtained, which, after reductive elimination, releases the desired product 12 and regenerates the catalyst. Alternatively, a ligand exchange
  • with AgSCF3 occurs before the oxidation step, generating the palladium(II) complex F. After an oxidative addition in the presence of Selectfluor®, the palladium(IV) intermediate E is generated. Finally, after reductive elimination step, the desired product 12 is released and the catalyst regenerated
PDF
Album
Review
Published 17 Apr 2023

Mechanochemical solid state synthesis of copper(I)/NHC complexes with K3PO4

  • Ina Remy-Speckmann,
  • Birte M. Zimmermann,
  • Mahadeb Gorai,
  • Martin Lerch and
  • Johannes F. Teichert

Beilstein J. Org. Chem. 2023, 19, 440–447, doi:10.3762/bjoc.19.34

Graphical Abstract
  • indicated the presence of 5, but also of unwanted side-products that could not be identified. Purification of 5 from this complex mixture turned out not to be feasible. Further modifications of the milling conditions did not lead to the elimination of these side-products, therefore the experiments with NaH
PDF
Album
Supp Info
Letter
Published 14 Apr 2023

Combretastatins D series and analogues: from isolation, synthetic challenges and biological activities

  • Jorge de Lima Neto and
  • Paulo Henrique Menezes

Beilstein J. Org. Chem. 2023, 19, 399–427, doi:10.3762/bjoc.19.31

Graphical Abstract
  • ions. Further demethylation [40] and oxidation of the thioether followed by thermal elimination of the intermediate sulfoxide gave 2 in 98% yield after two steps (Scheme 7). The authors also achieved the synthesis of (±)-1 from combretastatin D-2 (2). Protection of the hydroxy group in compound 2 using
PDF
Album
Review
Published 29 Mar 2023

Group 13 exchange and transborylation in catalysis

  • Dominic R. Willcox and
  • Stephen P. Thomas

Beilstein J. Org. Chem. 2023, 19, 325–348, doi:10.3762/bjoc.19.28

Graphical Abstract
  • -hydroboration of the enone 29 with H-B-9-BBN to give an O-B-9-BBN enolate 30. Electrophilic cyanation of the enolate 30 with NCTS 31, and elimination gave the β-ketonitrile 33 and TsN(Ph)-9-B-BBN 34, which underwent B‒N/B‒H transborylation with HBpin to regenerate the catalyst and give TsN(Ph)-Bpin 35 (Scheme 8
PDF
Album
Review
Published 21 Mar 2023

Recommendations for performing measurements of apparent equilibrium constants of enzyme-catalyzed reactions and for reporting the results of these measurements

  • Robert N. Goldberg,
  • Robert T. Giessmann,
  • Peter J. Halling,
  • Carsten Kettner and
  • Hans V. Westerhoff

Beilstein J. Org. Chem. 2023, 19, 303–316, doi:10.3762/bjoc.19.26

Graphical Abstract
  • the specific example given, elimination of the glucose 6-phosphatase activity would be sufficient to avoid this error. If this is not possible, the use of method 1 where one measures the approach to equilibrium from opposite directions of reaction could be advantageous. Specifically, one can plot the
PDF
Album
Perspective
Published 15 Mar 2023

Strategies to access the [5-8] bicyclic core encountered in the sesquiterpene, diterpene and sesterterpene series

  • Cécile Alleman,
  • Charlène Gadais,
  • Laurent Legentil and
  • François-Hugues Porée

Beilstein J. Org. Chem. 2023, 19, 245–281, doi:10.3762/bjoc.19.23

Graphical Abstract
  • reaction has never been used in the synthesis of natural products before this report, and no β-elimination of the silyloxy group was observed, although this often occurs in such systems [26]. The installation of the two alkenes in 37 required 13 additional steps, and further protecting group manipulations
PDF
Album
Review
Published 03 Mar 2023

An accelerated Rauhut–Currier dimerization enabled the synthesis of (±)-incarvilleatone and anticancer studies

  • Tharun K. Kotammagari,
  • Sweta Misra,
  • Sayantan Paul,
  • Sunita Kunte,
  • Rajesh G. Gonnade,
  • Manas K. Santra and
  • Asish K. Bhattacharya

Beilstein J. Org. Chem. 2023, 19, 204–211, doi:10.3762/bjoc.19.19

Graphical Abstract
  • intermediate A tetrahydrofuran intermediate B with cis-fused ring systems is formed as seen in the existing literature [7]. A proton transfer of enolate moiety B yields another enolate C followed by the β-alkoxy elimination [17] of intermediate C to form intermediate D. The intermediate D on protonation leads
PDF
Album
Supp Info
Full Research Paper
Published 21 Feb 2023

Germacrene B – a central intermediate in sesquiterpene biosynthesis

  • Houchao Xu and
  • Jeroen S. Dickschat

Beilstein J. Org. Chem. 2023, 19, 186–203, doi:10.3762/bjoc.19.18

Graphical Abstract
  • from guaiol (61) by Wallach in 1894 [121] and again prepared by Gandurin in 1908 by elimination of the instable methyl xanthogenate (Scheme 16B) [122], followed by an isolation from Acorus calamus ([α]D20 = +13) by Šorm and co-workers [123]. It is well known that 56 can easily be dehydrogenated, e.g
  • through 1,2-hydride shift to L3a and deprotonation (Scheme 16A). However, this compound itself is not known as a natural product, but has been obtained together with γ-gurjunene (64) from guai-11-en-5-ol (63), a natural product isolated from gurjun wood oil, by elimination (Scheme 16D) [131]. Conclusion
PDF
Album
Review
Published 20 Feb 2023

Sequential hydrozirconation/Pd-catalyzed cross coupling of acyl chlorides towards conjugated (2E,4E)-dienones

  • Benedikt Kolb,
  • Daniela Silva dos Santos,
  • Sanja Krause,
  • Anna Zens and
  • Sabine Laschat

Beilstein J. Org. Chem. 2023, 19, 176–185, doi:10.3762/bjoc.19.17

Graphical Abstract
  • from a haliclona marine sponge [4], and vertinolide (5) from Verticillium intertextum [5] (Scheme 1). As outlined in Scheme 2, a variety of methods has been reported for the synthesis of conjugated dienones, mostly via addition/elimination reactions such as Knoevenagel condensation or Claisen–Schmidt
  • deprotonated with LDA at −78 °C in THF and subsequently methylated to give 34 in 99%, followed by treatment with alkynyl Grignard reagent to give the tertiary alcohol 35 in 71% yield. Final elimination with MsCl and NEt3 yielded the desired enyne 25q (49%). When terpene enynes 25p and 25q were submitted to the
PDF
Album
Supp Info
Full Research Paper
Published 17 Feb 2023

1,4-Dithianes: attractive C2-building blocks for the synthesis of complex molecular architectures

  • Bram Ryckaert,
  • Ellen Demeyere,
  • Frederick Degroote,
  • Hilde Janssens and
  • Johan M. Winne

Beilstein J. Org. Chem. 2023, 19, 115–132, doi:10.3762/bjoc.19.12

Graphical Abstract
  • reverse (3 + 2) cycloaddition which expels a heteroatomic anion via a β-elimination-type mechanism somewhat similar to a classical Grob-type fragmentation. Similarly, 1,3-dithiolanes undergo fragmentation at relatively low reaction temperatures, limiting their synthetic application to alkylation with
  • highly reactive electrophiles. The homologous 1,4-dithianes or 1,4-dioxanes are readily available as simple building blocks, but also undergo a swift β-elimination following the metalation of one of their ring carbons, again limiting their appeal as building blocks [16][17]. In his landmark synthesis of
  • generality in this aspect. In principle, 1,4-dithianes should offer good options for the development as C2-synthons that are complementary in scope to the more widely used 1,3-dithianes, but the β-fragmentation problem (cf. Scheme 2) hampers their easy derivatization. It should be noted that this elimination
PDF
Album
Review
Published 02 Feb 2023

Practical synthesis of isocoumarins via Rh(III)-catalyzed C–H activation/annulation cascade

  • Qian-Ci Gao,
  • Yi-Fei Li,
  • Jun Xuan and
  • Xiao-Qiang Hu

Beilstein J. Org. Chem. 2023, 19, 100–106, doi:10.3762/bjoc.19.10

Graphical Abstract
  • , which undergoes an intramolecular annulation to give 1-F. The final isocoumarin product 3ba can be generated from 1-F by elimination of imine 1-G [39]. Finally, the rapid hydrolysis of the resulting 1-G gives rise to acetaldehyde and dimethylamine as byproducts. Conclusion In summary, an efficient Rh
PDF
Album
Supp Info
Letter
Published 30 Jan 2023

Revisiting the bromination of 3β-hydroxycholest-5-ene with CBr4/PPh3 and the subsequent azidolysis of the resulting bromide, disparity in stereochemical behavior

  • Christian Schumacher,
  • Jas S. Ward,
  • Kari Rissanen,
  • Carsten Bolm and
  • Mohamed Ramadan El Sayed Aly

Beilstein J. Org. Chem. 2023, 19, 91–99, doi:10.3762/bjoc.19.9

Graphical Abstract
  • of Science, Port Said University, 42522-Port Said, Egypt 10.3762/bjoc.19.9 Abstract Cholesterol reacts under Appel conditions (CBr4/PPh3) to give 3,5-cholestadiene (elimination) and 3β-bromocholest-5-ene (substitution with retention of configuration). Thus, the bromination of cholesterol deviates
PDF
Album
Supp Info
Full Research Paper
Published 27 Jan 2023

Improving the accuracy of 31P NMR chemical shift calculations by use of scaling methods

  • William H. Hersh and
  • Tsz-Yeung Chan

Beilstein J. Org. Chem. 2023, 19, 36–56, doi:10.3762/bjoc.19.4

Graphical Abstract
  • . The search for a failure-free functional. Looking at the complete collection of compounds evaluated (Table 2 and Table 3), the best MAD/RMSD (7.1/9.9 ppm) for 1a–34[O] was seen for the M06-2X optimization and B3LYP NMR. As seen in the last row of Table 3, elimination of the failures due to compounds
PDF
Album
Supp Info
Full Research Paper
Published 10 Jan 2023

Combining the best of both worlds: radical-based divergent total synthesis

  • Kyriaki Gennaiou,
  • Antonios Kelesidis,
  • Maria Kourgiantaki and
  • Alexandros L. Zografos

Beilstein J. Org. Chem. 2023, 19, 1–26, doi:10.3762/bjoc.19.1

Graphical Abstract
  • led to common scaffolds 47 and diene 48 after subsequent elimination. Those molecules serve as templates for Ni-based radical-based sp3–sp2 coupling and single-electron transfer (SET)-based [3 + 2] coupling, respectively (Scheme 4). Initial attempts to realize the [3 + 2] radical coupling with CAN led
  • platforms [66], the group considered a system in which a photoexcited catalyst oxidatively cleaves a siloxycyclopropane with endo selectivity [67], leading to aryl–nickel capture and reductive elimination. Thus, when substrates 121 and 122 were photoirradiated with blue LED light at 45 °C in the presence of
PDF
Album
Review
Published 02 Jan 2023

Synthetic study toward tridachiapyrone B

  • Morgan Cormier,
  • Florian Hernvann and
  • Michaël De Paolis

Beilstein J. Org. Chem. 2022, 18, 1741–1748, doi:10.3762/bjoc.18.183

Graphical Abstract
  • chiral tetrahydrofuran (Scheme 1b). To assemble the skeleton of the natural product, we developed a new strategy in which the α,α’-dimethoxy-γ-pyrone motif 2 was first desymmetrized by a sequence encompassing the conjugate addition of 2-lithio-1,3-dithiane, elimination of methoxide lithium, and
  • ambitious coupling, however, met a dead-end and a less direct approach was explored. With a more reactive and less hindered nucleophile, we explored the coupling of lithiocyclopentadiene to compound 2. After conjugate addition and elimination of lithium methoxide, the resulting 6a would be deprotonated by
PDF
Album
Supp Info
Full Research Paper
Published 19 Dec 2022

Synthesis of (−)-halichonic acid and (−)-halichonic acid B

  • Keith P. Reber and
  • Emma L. Niner

Beilstein J. Org. Chem. 2022, 18, 1629–1635, doi:10.3762/bjoc.18.174

Graphical Abstract
  • elimination to form an alkene or intermolecular nucleophilic attack by formic acid (ultimately giving a formate ester) are reasonable mechanistically, only the intramolecular nucleophilic attack by the carbonyl group of the pendent ethyl ester was observed in this system to form the resonance-stabilized
PDF
Album
Supp Info
Full Research Paper
Published 01 Dec 2022

Formal total synthesis of macarpine via a Au(I)-catalyzed 6-endo-dig cycloisomerization strategy

  • Jiayue Fu,
  • Bingbing Li,
  • Zefang Zhou,
  • Maosheng Cheng,
  • Lu Yang and
  • Yongxiang Liu

Beilstein J. Org. Chem. 2022, 18, 1589–1595, doi:10.3762/bjoc.18.169

Graphical Abstract
  • developed the total synthesis of macarpine by Hofmann elimination from protoberberine by introducing rings B and C (Scheme 2a) [11]. In 1995, Ishikawa and co-workers accomplished the total synthesis via a Reformatsky reaction and aromatic nitrosation through the building of rings B and C (Scheme 2b) [12
PDF
Album
Supp Info
Letter
Published 23 Nov 2022

Functionalization of imidazole N-oxide: a recent discovery in organic transformations

  • Koustav Singha,
  • Imran Habib and
  • Mossaraf Hossain

Beilstein J. Org. Chem. 2022, 18, 1575–1588, doi:10.3762/bjoc.18.168

Graphical Abstract
  • elimination pathway (SNHAE), where deoxygenation of imidazole 1-oxide resulted in the formation of perfluoroarylated 2H-imidazoles; and (B) addition–oxidation pathway (SNHAO), where without affecting the N–O bond of imidazole 1-oxides, perfluoroarylated 2H-imidazole 1-oxides were obtained as final products
  • vicinal position of 2H-imidazole and the addition–elimination pathway providing the products 10a–h or addition–oxidation pathway affording the corresponding products 11a–h (Scheme 2). At first, pentafluorophenyllithium (13) which was produced through the reaction between n-BuLi and pentafluorobenzene (12
  • ), acted as the nucleophile to attack the C-5 position of 2H-imidazole 1-oxides 9a–h to form the σH-adduct 14. The use of a deoxygenation agent in the mixture led to the formation of the desired products 10a–h via “addition–elimination” (SNH AE, path A) from the adduct 14 with the elimination of the good
PDF
Album
Review
Published 22 Nov 2022

Simple synthesis of multi-halogenated alkenes from 2-bromo-2-chloro-1,1,1-trifluoroethane (halothane)

  • Yukiko Karuo,
  • Atsushi Tarui,
  • Kazuyuki Sato,
  • Kentaro Kawai and
  • Masaaki Omote

Beilstein J. Org. Chem. 2022, 18, 1567–1574, doi:10.3762/bjoc.18.167

Graphical Abstract
  • difluoroalkyl ethers (1), along with small amounts of fluoroalkenyl ethers (2), which were obtained from 1 via an E2-elimination mechanism (Scheme 1B) [14][15]. The fluoroalkenyl group in 2 is a potentially useful moiety that could participate in cross-coupling reactions for replacement of the bromine atom with
PDF
Album
Supp Info
Full Research Paper
Published 21 Nov 2022

A facile approach to spiro[dihydrofuran-2,3'-oxindoles] via formal [4 + 1] annulation reaction of fused 1H-pyrrole-2,3-diones with diazooxindoles

  • Pavel A. Topanov,
  • Anna A. Maslivets,
  • Maksim V. Dmitriev,
  • Irina V. Mashevskaya,
  • Yurii V. Shklyaev and
  • Andrey N. Maslivets

Beilstein J. Org. Chem. 2022, 18, 1532–1538, doi:10.3762/bjoc.18.162

Graphical Abstract
  • negatively charged [38] C(3) atom of diazooxindoles 2 at the C(3a) atom of FPDs 1 (Scheme 5), and (b) further intramolecular SN2 attack by the oxygen of the aroyl group with ensuing elimination of a nitrogen molecule. To verify our assumption, 3-bromooxindole (4) was involved in the reaction with FPD 1i in
PDF
Album
Supp Info
Full Research Paper
Published 10 Nov 2022

Cyclometalated iridium complexes-catalyzed acceptorless dehydrogenative coupling reaction: construction of quinoline derivatives and evaluation of their antimicrobial activities

  • Hongling Shui,
  • Yuhong Zhong,
  • Renshi Luo,
  • Zhanyi Zhang,
  • Jiuzhong Huang,
  • Ping Yang and
  • Nianhua Luo

Beilstein J. Org. Chem. 2022, 18, 1507–1517, doi:10.3762/bjoc.18.159

Graphical Abstract
  • proposed (Figure 5). Firstly, by the interaction of TC-6 with 1a/2a under the “dehydrogenative” process, the Int-I/Int-II were formed [28][29]. Then, Int-III and 2-aminobenzaldehyde (5)/acetophenone (6) were formed by β-H elimination of Int-I/Int-II. In this process, an amount of liberated H2 would be
PDF
Album
Supp Info
Full Research Paper
Published 27 Oct 2022

One-pot synthesis of 2-arylated and 2-alkylated benzoxazoles and benzimidazoles based on triphenylbismuth dichloride-promoted desulfurization of thioamides

  • Arisu Koyanagi,
  • Yuki Murata,
  • Shiori Hayakawa,
  • Mio Matsumura and
  • Shuji Yasuike

Beilstein J. Org. Chem. 2022, 18, 1479–1487, doi:10.3762/bjoc.18.155

Graphical Abstract
  • . With the elimination of hydrochloric acid, intermediate A is converted to intermediate B. When a base such as Et3N was added, hydrochloric acid was trapped and lowered the reaction yield (Table 1, entry 18). The nucleophilic attack of chloride ions on intermediate B produces D via C, which entails
  • isomerization with the elimination of the sulfur-and-bismuth moiety. Aminophenol then reacts with D to generate intermediate F via E, which is converted to the benzoxazole 8, accompanied by the elimination of 19 by aromatization. The generation of hydrochloric acid was important in this reaction, and the
PDF
Album
Supp Info
Full Research Paper
Published 18 Oct 2022

Oxa-Michael-initiated cascade reactions of levoglucosenone

  • Julian Klepp,
  • Thomas Bousfield,
  • Hugh Cummins,
  • Sarah V. A.-M. Legendre,
  • Jason E. Camp and
  • Ben W. Greatrex

Beilstein J. Org. Chem. 2022, 18, 1457–1462, doi:10.3762/bjoc.18.151

Graphical Abstract
  • elimination of methanol rather than exocyclic elimination of water, and regioisomeric Rauhut–Currier reaction. Compound 7 was found to be unstable after isolation, possibly due to intermolecular reactions of the electron-poor olefin and furan ring. When a slight excess of 1 was used, only 6n was isolated
  • presumed to start with an oxa-Michael initiated aldol reaction promoted by a methoxide nucleophile giving enone 6 via enolate 8 (Scheme 1). A Rauhut–Currier-type reaction of 6 with the addition of another equivalent of 8, followed by a subsequent double β-elimination leads to the observed product 5. When
PDF
Album
Supp Info
Full Research Paper
Published 13 Oct 2022
Other Beilstein-Institut Open Science Activities