Search results

Search for "reactive intermediates" in Full Text gives 128 result(s) in Beilstein Journal of Organic Chemistry.

Inline purification in continuous flow synthesis – opportunities and challenges

  • Jorge García-Lacuna and
  • Marcus Baumann

Beilstein J. Org. Chem. 2022, 18, 1720–1740, doi:10.3762/bjoc.18.182

Graphical Abstract
  • , which also improves safety issues as it traps toxic and explosive reactive intermediates (Scheme 7) [76]. Additional studies include a 3-step reaction to form triazoles in good yields [77], and the synthesis of the bisoxazole natural product siphonazole A using immobilized species [78]. The use of real
PDF
Album
Perspective
Published 16 Dec 2022

Radical cation Diels–Alder reactions of arylidene cycloalkanes

  • Kaii Nakayama,
  • Hidehiro Kamiya and
  • Yohei Okada

Beilstein J. Org. Chem. 2022, 18, 1100–1106, doi:10.3762/bjoc.18.112

Graphical Abstract
  • ; spiro ring system; Introduction Single-electron transfer is one of the simplest modes for small molecule activation, employing a polarity inversion to generate radical ions which have proven to be unique reactive intermediates in the field of synthetic organic chemistry. A radical cation Diels–Alder
PDF
Album
Supp Info
Letter
Published 25 Aug 2022

Complementarity of solution and solid state mechanochemical reaction conditions demonstrated by 1,2-debromination of tricyclic imides

  • Petar Štrbac and
  • Davor Margetić

Beilstein J. Org. Chem. 2022, 18, 746–753, doi:10.3762/bjoc.18.75

Graphical Abstract
  • polycyclic molecules given in Figure 1 are interesting reactive intermediates which could be applied in the Diels−Alder reactions of less reactive or thermally susceptible dienes. Often, these are generated in situ and trapped with dienes in a single pot, such as 7-oxanorbornadiene imides 1–3. For instance
PDF
Album
Supp Info
Full Research Paper
Published 24 Jun 2022

A study of the photochemical behavior of terarylenes containing allomaltol and pyrazole fragments

  • Constantine V. Milyutin,
  • Andrey N. Komogortsev,
  • Boris V. Lichitsky and
  • Valeriya G. Melekhina

Beilstein J. Org. Chem. 2022, 18, 588–596, doi:10.3762/bjoc.18.61

Graphical Abstract
  • -induced processes are of considerable interest in the context of green chemistry [8][9]. At the same time in some cases UV irradiation of organic compounds leads to the formation of highly reactive intermediates. Such objects may, possessing a specific reactivity, which define their further application in
PDF
Album
Supp Info
Full Research Paper
Published 27 May 2022

Tosylhydrazine-promoted self-conjugate reduction–Michael/aldol reaction of 3-phenacylideneoxindoles towards dispirocyclopentanebisoxindole derivatives

  • Sayan Pramanik and
  • Chhanda Mukhopadhyay

Beilstein J. Org. Chem. 2022, 18, 469–478, doi:10.3762/bjoc.18.49

Graphical Abstract
  • important functional group transformation for the synthesis of heterocyclic and carbocyclic building blocks and reactive intermediates. Besides the use of various reducing agents, it is observed that tosylhydrazine develops the transition-metal-free and highly chemoselective conjugate reduction of α,β
PDF
Album
Supp Info
Full Research Paper
Published 27 Apr 2022

A Se···O bonding catalysis approach to the synthesis of calix[4]pyrroles

  • Qingzhe Tong,
  • Zhiguo Zhao and
  • Yao Wang

Beilstein J. Org. Chem. 2022, 18, 325–330, doi:10.3762/bjoc.18.36

Graphical Abstract
  • advances in the research fields of crystal engineering [26], medicinal chemistry [27], anion recognition [28][29][30][31][32] and transport [33][34][35]. In addition, intramolecular chalcogen bonding interactions have been suggested to stabilize reactive intermediates in a range of isothiourea-catalyzed
PDF
Album
Supp Info
Letter
Published 18 Mar 2022

Visible-light-mediated copper photocatalysis for organic syntheses

  • Yajing Zhang,
  • Qian Wang,
  • Zongsheng Yan,
  • Donglai Ma and
  • Yuguang Zheng

Beilstein J. Org. Chem. 2021, 17, 2520–2542, doi:10.3762/bjoc.17.169

Graphical Abstract
  • photoinduced copper-catalyzed reactions. Copper photoredox catalysts are powerful photocatalysts used for cross-coupling reactions. Their function is based on the strong reducing power of copper complexes and the ability of copper complexes to coordinate substrates or trap reactive intermediates. The
PDF
Album
Review
Published 12 Oct 2021

Halides as versatile anions in asymmetric anion-binding organocatalysis

  • Lukas Schifferer,
  • Martin Stinglhamer,
  • Kirandeep Kaur and
  • Olga García Macheño

Beilstein J. Org. Chem. 2021, 17, 2270–2286, doi:10.3762/bjoc.17.145

Graphical Abstract
  • studies revolved around hydrogen bond donor catalysts and their application in N-acyliminium ion reactions. At this point, the mechanistic proposal, albeit speculative, was based on the hypothesis that neutral chloroamide structures I were the reactive intermediates in the reaction. Under this premise, H
PDF
Album
Review
Published 01 Sep 2021

Fritsch–Buttenberg–Wiechell rearrangement of magnesium alkylidene carbenoids leading to the formation of alkynes

  • Tsutomu Kimura,
  • Koto Sekiguchi,
  • Akane Ando and
  • Aki Imafuji

Beilstein J. Org. Chem. 2021, 17, 1352–1359, doi:10.3762/bjoc.17.94

Graphical Abstract
  • reactive intermediates in which both magnesium and chlorine atoms are attached to an alkene carbon atom (Scheme 2a) [10]. Magnesium alkylidene carbenoids 3 can be generated from isopropylmagnesium chloride and 1-chlorovinyl p-tolyl sulfoxides 2, which are prepared from carbonyl compounds 1 and chloromethyl
PDF
Album
Supp Info
Full Research Paper
Published 28 May 2021

A comprehensive review of flow chemistry techniques tailored to the flavours and fragrances industries

  • Guido Gambacorta,
  • James S. Sharley and
  • Ian R. Baxendale

Beilstein J. Org. Chem. 2021, 17, 1181–1312, doi:10.3762/bjoc.17.90

Graphical Abstract
PDF
Album
Review
Published 18 May 2021

When metal-catalyzed C–H functionalization meets visible-light photocatalysis

  • Lucas Guillemard and
  • Joanna Wencel-Delord

Beilstein J. Org. Chem. 2020, 16, 1754–1804, doi:10.3762/bjoc.16.147

Graphical Abstract
PDF
Album
Review
Published 21 Jul 2020

NHC-catalyzed enantioselective synthesis of β-trifluoromethyl-β-hydroxyamides

  • Alyn T. Davies,
  • Mark D. Greenhalgh,
  • Alexandra M. Z. Slawin and
  • Andrew D. Smith

Beilstein J. Org. Chem. 2020, 16, 1572–1578, doi:10.3762/bjoc.16.129

Graphical Abstract
  • trifluoromethyl ketones (Figure 1C) [20]. Over the last twenty years, NHCs have been widely exploited as highly efficient organocatalysts that have found use in numerous applications and were the subject of many extensive reviews [21][22][23][24][25][26]. Among the most common reactive intermediates generated
PDF
Album
Supp Info
Letter
Published 30 Jun 2020

Photocatalyzed syntheses of phenanthrenes and their aza-analogues. A review

  • Alessandra Del Tito,
  • Havall Othman Abdulla,
  • Davide Ravelli,
  • Stefano Protti and
  • Maurizio Fagnoni

Beilstein J. Org. Chem. 2020, 16, 1476–1488, doi:10.3762/bjoc.16.123

Graphical Abstract
  • Photocatalysis is an important tool for the generation and exploitation of reactive intermediates in synthesis. The versatility of this approach allows to form in a straightforward manner several carbon and nitrogen-based radicals useful to forge C–C or C–N bonds (frequently, in an intramolecular fashion) for
PDF
Album
Review
Published 25 Jun 2020

One-pot synthesis of 1,3,5-triazine-2,4-dithione derivatives via three-component reactions

  • Gui-Feng Kang and
  • Gang Zhang

Beilstein J. Org. Chem. 2020, 16, 1447–1455, doi:10.3762/bjoc.16.120

Graphical Abstract
  • thiocarbonyl group source in the multicomponent reaction with aldehydes and other reactive intermediates for the preparation of various triazinethione derivatives by independently varying the individual components thus represents a significant extension in this area. On the other hand, trialkyl orthoformates
PDF
Album
Supp Info
Full Research Paper
Published 24 Jun 2020

Photocatalysis with organic dyes: facile access to reactive intermediates for synthesis

  • Stephanie G. E. Amos,
  • Marion Garreau,
  • Luca Buzzetti and
  • Jerome Waser

Beilstein J. Org. Chem. 2020, 16, 1163–1187, doi:10.3762/bjoc.16.103

Graphical Abstract
  • catalysts. Their great structural variety combined with the easy fine-tuning of their electronic properties has unlocked new possibilities for the generation of reactive intermediates. In this review, we provide an overview of the available approaches to access reactive intermediates that employ
  • organophotocatalysis. Our contribution is not a comprehensive description of the work in the area but rather focuses on key concepts, accompanied by a few selected illustrative examples. The review is organized along the type of reactive intermediates formed in the reaction, including C(sp3) and C(sp2) carbon
  • -, nitrogen-, oxygen-, and sulfur-centered radicals, open-shell charged species, and sensitized organic compounds. Keywords: organic dyes; photocatalysis; photoredox catalysis; radicals; reactive intermediates; Review Introduction In the last decade, synthetic organic chemistry has experienced the
PDF
Album
Review
Published 29 May 2020

Photophysics and photochemistry of NIR absorbers derived from cyanines: key to new technologies based on chemistry 4.0

  • Bernd Strehmel,
  • Christian Schmitz,
  • Ceren Kütahya,
  • Yulian Pang,
  • Anke Drewitz and
  • Heinz Mustroph

Beilstein J. Org. Chem. 2020, 16, 415–444, doi:10.3762/bjoc.16.40

Graphical Abstract
  • excited state possesses several competitive reaction pathways for deactivation. This is a photochemical reaction such as photoinduced electron transfer serving as source to generate reactive intermediates such as initiating radicals or conjugate acid [5]. Photophysical events of S1 occurring after one
  • formed in Equation 4 reacts with DN resulting in back formation of PA while a new reaction intermediate DN+ is formed, Equation 6. This fast decomposes resulting in generation of reactive intermediates and makes the system irreversible. The oxidized species (PA+) also competitively decomposes resulting
  • electron transfer and internal barriers Sensitized generation of reactive intermediates such as radicals and conjugate acid [5] also followed in the case of NIR sensitive materials a photoinduced electron transfer (PET). However, it did not work as smooth as disclosed for UV systems [83] because there was
PDF
Album
Supp Info
Review
Published 18 Mar 2020

Recent developments in photoredox-catalyzed remote ortho and para C–H bond functionalizations

  • Rafia Siddiqui and
  • Rashid Ali

Beilstein J. Org. Chem. 2020, 16, 248–280, doi:10.3762/bjoc.16.26

Graphical Abstract
  • into chemical energy via the generation of reactive intermediates through electron transfer reactions. A photochemical reaction is directed by the photophysical properties of an electronically excited molecule. The first vibrational equilibrated singlet excited state is S1, and it depends on both
  • the nature of the reactive intermediates. Interestingly, without photoredox catalyst, no transformation was observed. In accordance with the plausible mechanism shown in Figure 6, chloride exchange between [RhCp*Cl2]2 and AgSbF6 generated the Rh(III) catalyst, which formed a five-membered rhodacycle
  • products, organic materials, etc., in such a way [116][117]. They used a Pd catalyst and a photoredox catalyst 12a at room temperature to generate reactive intermediates (Scheme 10) [115]. This novel method was applicable to various directing groups and had a high functional group tolerance, whereas the
PDF
Album
Review
Published 26 Feb 2020

A review of asymmetric synthetic organic electrochemistry and electrocatalysis: concepts, applications, recent developments and future directions

  • Munmun Ghosh,
  • Valmik S. Shinde and
  • Magnus Rueping

Beilstein J. Org. Chem. 2019, 15, 2710–2746, doi:10.3762/bjoc.15.264

Graphical Abstract
  • chirally modified electrodes Electrochemical oxidation reactions have long served as substantial synthetic tool because of their ability to increase the functionality of organic molecules via reversing the polarity of electron-rich functional groups and thereby generating highly reactive intermediates
PDF
Album
Review
Published 13 Nov 2019

Acid-catalyzed rearrangements in arenes: interconversions in the quaterphenyl series

  • Sarah L. Skraba-Joiner,
  • Carter J. Holt and
  • Richard P. Johnson

Beilstein J. Org. Chem. 2019, 15, 2655–2663, doi:10.3762/bjoc.15.258

Graphical Abstract
  • . This supports thermodynamic control based on carbocation energies. Keywords: arenium ion; carbocation; density functional theory; microwave reaction; rearrangement; superacid; Introduction Carbocations are enigmatic reactive intermediates of enduring importance in chemistry. No other reactive species
PDF
Album
Supp Info
Full Research Paper
Published 06 Nov 2019

1,5-Phosphonium betaines from N-triflylpropiolamides, triphenylphosphane, and active methylene compounds

  • Vito A. Fiore,
  • Chiara Freisler and
  • Gerhard Maas

Beilstein J. Org. Chem. 2019, 15, 2603–2611, doi:10.3762/bjoc.15.253

Graphical Abstract
  • their isolation and structural characterization are still less common. A very convenient access to such betaines is provided by the nucleophilic addition of tertiary phosphanes to electron-deficient alkenes, alkynes and allenes (phospha-Michael addition), which generates the betaines as reactive
  • intermediates that can be transformed intra- or intermolecularly into a wide array of acyclic, carbocyclic and heterocyclic structures. In these processes, the tertiary phosphanes can act as nucleophilic organocatalysts (for reviews, see [1][2][3][4] or be incorporated in the (pre-)final products, typically as
PDF
Album
Supp Info
Full Research Paper
Published 01 Nov 2019

Thermal stability of N-heterocycle-stabilized iodanes – a systematic investigation

  • Andreas Boelke,
  • Yulia A. Vlasenko,
  • Mekhman S. Yusubov,
  • Boris J. Nachtsheim and
  • Pavel S. Postnikov

Beilstein J. Org. Chem. 2019, 15, 2311–2318, doi:10.3762/bjoc.15.223

Graphical Abstract
  • electrophilic hypervalent iodine atom in its ground state or directly influences its reactivity by stabilizing reactive intermediates or transition states. In recent years, a plethora of cyclic and pseudocyclic iodanes have been developed with covalently attached stabilizing ligands L2 and applied in a variety
PDF
Album
Supp Info
Full Research Paper
Published 27 Sep 2019

An overview of the cycloaddition chemistry of fulvenes and emerging applications

  • Ellen Swan,
  • Kirsten Platts and
  • Anton Blencowe

Beilstein J. Org. Chem. 2019, 15, 2113–2132, doi:10.3762/bjoc.15.209

Graphical Abstract
  • the formation of several different products, although predominantly enol lactones [47][50][51][52] (Scheme 3). Highly reactive intermediates formed during these reactions (Scheme 3) have only been observed spectroscopically at low temperatures (−55 °C) [52]. Heptafulvenes also undergo reactions with
PDF
Album
Review
Published 06 Sep 2019

Reactions of 2-carbonyl- and 2-hydroxy(or methoxy)alkyl-substituted benzimidazoles with arenes in the superacid CF3SO3H. NMR and DFT studies of dicationic electrophilic species

  • Dmitry S. Ryabukhin,
  • Alexey N. Turdakov,
  • Natalia S. Soldatova,
  • Mikhail O. Kompanets,
  • Alexander Yu. Ivanov,
  • Irina A. Boyarskaya and
  • Aleksander V. Vasilyev

Beilstein J. Org. Chem. 2019, 15, 1962–1973, doi:10.3762/bjoc.15.191

Graphical Abstract
  • should be reactive electrophiles. While, in the case of hydroxyalkylbenzimidazoles 3–8, N,O-diprotonated species III, V, VII, VIII, the most probably, may be reactive intermediates. The calculation of electrophilic properties of these cations show that species I and II have higher values of
PDF
Album
Supp Info
Full Research Paper
Published 19 Aug 2019

Inherent atomic mobility changes in carbocation intermediates during the sesterterpene cyclization cascade

  • Hajime Sato,
  • Takaaki Mitsuhashi,
  • Mami Yamazaki,
  • Ikuro Abe and
  • Masanobu Uchiyama

Beilstein J. Org. Chem. 2019, 15, 1890–1897, doi:10.3762/bjoc.15.184

Graphical Abstract
  • ) triggering the biosynthetic cyclization cascade by the elimination of pyrophosphate or by protonation; (ii) preorganization of the substrate to generate the reactive conformation; (iii) protection of reactive intermediates from water; and (iv) termination of the reaction by deprotonation or hydration. We
PDF
Album
Supp Info
Letter
Published 07 Aug 2019

The cyclopropylcarbinyl route to γ-silyl carbocations

  • Xavier Creary

Beilstein J. Org. Chem. 2019, 15, 1769–1780, doi:10.3762/bjoc.15.170

Graphical Abstract
  • ; rearrangement; silicon; Introduction Carbocations, positively charged trivalent carbon compounds and reactive intermediates, have continued to fascinate chemists since the early discoveries of tropylium [1][2] and trityl [3][4][5][6][7] salts. Many of the giants of organic chemistry during the last century
  • ], which have also been termed ”percaudal” interactions [56]. Certain carbenes can also be stabilized in a similar fashion [60][61]. Thus substrates of type 10 solvolyze in protic solvents with large rate enhancements (anchimeric assistance) to generate carbocations 11 as reactive intermediates (Scheme 3
PDF
Album
Supp Info
Full Research Paper
Published 24 Jul 2019
Other Beilstein-Institut Open Science Activities