Search results

Search for "iodine" in Full Text gives 495 result(s) in Beilstein Journal of Organic Chemistry. Showing first 200.

Synthesis of N-acyl carbazoles, phenoxazines and acridines from cyclic diaryliodonium salts

  • Nils Clamor,
  • Mattis Damrath,
  • Thomas J. Kuczmera,
  • Daniel Duvinage and
  • Boris J. Nachtsheim

Beilstein J. Org. Chem. 2024, 20, 12–16, doi:10.3762/bjoc.20.2

Graphical Abstract
  • mol % raised yields to synthetically useful 74% (Table 1, entry 7). The excess amount of 1a was still necessary as a significant amount of iodobiphenyl is formed under the reaction conditions as a result of an undesired heterolytic iodine–carbon bond cleavage. Other carbonate bases and changing the Cu
PDF
Album
Supp Info
Letter
Published 04 Jan 2024

Recent advancements in iodide/phosphine-mediated photoredox radical reactions

  • Tinglan Liu,
  • Yu Zhou,
  • Junhong Tang and
  • Chengming Wang

Beilstein J. Org. Chem. 2023, 19, 1785–1803, doi:10.3762/bjoc.19.131

Graphical Abstract
  • ), specifically by extracting a hydrogen atom from the α-position of benzyl radicals A. The process described above led to the formation of the corresponding olefins 11, eliminating the need for a carbon–iodine bond formation step. Alkylation Diaziridines are highly versatile building blocks in synthesis, with
  • active natural products. The direct functionalization of C–H bonds in enamides offers a convenient and versatile approach to access a wide range of functionalized enamides. In 2021, Fu and his colleagues successfully developed a novel method for the stereoselective alkylation of enamides 14 using iodine
  • nitroarenes 48 (Scheme 22). The protocol demonstrated excellent tolerance towards a wide range of reducible functional groups, including halogens (such as chlorine, bromine, and even iodine), aldehydes, ketones, carboxyl groups, and cyano groups. Iodination Alkyl iodide is considered to be the most reactive
PDF
Album
Review
Published 22 Nov 2023

Radical chemistry in polymer science: an overview and recent advances

  • Zixiao Wang,
  • Feichen Cui,
  • Yang Sui and
  • Jiajun Yan

Beilstein J. Org. Chem. 2023, 19, 1580–1603, doi:10.3762/bjoc.19.116

Graphical Abstract
  • considered to have two mechanisms, degenerative transfer and reversible termination, which are comparable to RAFT and NMP, respectively (Scheme 7) [70]. Iodine transfer polymerization (ITP) is also a commonly used degenerate chain-transfer method. Its origin can be traced back to the 1970s [71] and it is
  • mostly used for the polymerization of fluorinated olefins. However, the C–I bond of iodoalkyl compounds used as chain-transfer agents is weak and unstable during storage [21]. Therefore, Lacroix-Desmazes et al. [72] used iodine molecules to synthesize iodine chain transfer agents in situ, a process known
  • as reverse iodine transfer polymerization (RITP), which is similar to reverse ATRP. The mechanism of the RITP is shown in Scheme 8. RDRP is applicable to a wide range of monomers and the reaction conditions become milder and more versatile with emerging techniques, such as oxygen tolerance or even
PDF
Album
Review
Published 18 Oct 2023

Consecutive four-component synthesis of trisubstituted 3-iodoindoles by an alkynylation–cyclization–iodination–alkylation sequence

  • Nadia Ledermann,
  • Alae-Eddine Moubsit and
  • Thomas J. J. Müller

Beilstein J. Org. Chem. 2023, 19, 1379–1385, doi:10.3762/bjoc.19.99

Graphical Abstract
  • (aza)indoles. As already shown for N-alkyl 7-azaindole formation in one case, the crucial 7-azaindole anion could be trapped with electrophilic iodine (from N-iodosuccinimide), resulting in a 3-iodo-7-azaindole anion, which could then be alkylated, still in a one-pot fashion [34]. Therefore, we set out
PDF
Album
Supp Info
Full Research Paper
Published 14 Sep 2023

Synthesis of ether lipids: natural compounds and analogues

  • Marco Antônio G. B. Gomes,
  • Alicia Bauduin,
  • Chloé Le Roux,
  • Romain Fouinneteau,
  • Wilfried Berthe,
  • Mathieu Berchel,
  • Hélène Couthon and
  • Paul-Alain Jaffrès

Beilstein J. Org. Chem. 2023, 19, 1299–1369, doi:10.3762/bjoc.19.96

Graphical Abstract
PDF
Album
Review
Published 08 Sep 2023

Exploring the role of halogen bonding in iodonium ylides: insights into unexpected reactivity and reaction control

  • Carlee A. Montgomery and
  • Graham K. Murphy

Beilstein J. Org. Chem. 2023, 19, 1171–1190, doi:10.3762/bjoc.19.86

Graphical Abstract
  • Carlee A. Montgomery Graham K. Murphy Department of Chemistry, University of Waterloo, 200 University Ave W., Waterloo, Ontario, N2L3G1, Canada 10.3762/bjoc.19.86 Abstract Halogen bonding is commonly found with iodine-containing molecules, and it arises when Lewis bases interact with iodine’s σ
  • -holes. Halogen bonding and σ-holes have been encountered in numerous monovalent and hypervalent iodine-containing compounds, and in 2022 σ-holes were computationally confirmed and quantified in the iodonium ylide subset of hypervalent iodine compounds. In light of this new discovery, this article
  • -effect; Introduction Iodonium ylides are a subset of hypervalent iodine (HVI) reagents that were first reported in 1957 by Neiland [1]. These have since been investigated under a variety of thermal, photochemical, radical and transition metal-catalyzed conditions [2], and they have been successfully
PDF
Album
Review
Published 07 Aug 2023

Photoredox catalysis harvesting multiple photon or electrochemical energies

  • Mattia Lepori,
  • Simon Schmid and
  • Joshua P. Barham

Beilstein J. Org. Chem. 2023, 19, 1055–1145, doi:10.3762/bjoc.19.81

Graphical Abstract
PDF
Album
Review
Published 28 Jul 2023

Copper-catalyzed N-arylation of amines with aryliodonium ylides in water

  • Kasturi U. Nabar,
  • Bhalchandra M. Bhanage and
  • Sudam G. Dawande

Beilstein J. Org. Chem. 2023, 19, 1008–1014, doi:10.3762/bjoc.19.76

Graphical Abstract
  • tuning of the ligand and base combinations [18][19]. Thereafter, copper-catalyzed C–N bond-formation reactions have experienced unprecedented development due to mild reaction conditions and the low cost of copper salts [20][21][22]. On the other hand, hypervalent iodine reagents serve as versatile tools
  • in oxidation, C–C, C–X bond formation, rearrangements, and halogenation reactions [23][24][25]. Due to the nontoxic nature, easier preparation, and handling of the hypervalent iodine reagents, many researchers are attracted to unravel the chemistry and reactivity of these reagents. Amongst different
  • types of hypervalent iodine reagents, diaryliodonium salts are commonly used reagents for the N-arylation of nitrogen-containing compounds, particularly for N-arylation of amines under catalyst-free conditions either in the presence of additives or at higher temperatures [26][27][28][29][30][31][32
PDF
Album
Supp Info
Letter
Published 04 Jul 2023

Clauson–Kaas pyrrole synthesis using diverse catalysts: a transition from conventional to greener approach

  • Dileep Kumar Singh and
  • Rajesh Kumar

Beilstein J. Org. Chem. 2023, 19, 928–955, doi:10.3762/bjoc.19.71

Graphical Abstract
  • chemoselective procedure in which the iodine counterion and MeCN played key roles in the unique reactivity of this catalytic system. To optimize the reaction conditions, many catalysts, solvents, and temperatures were studied and finally, 10 mol % MgI2∙(OEt2)n as the catalyst, CH3CN as the solvent, and 80 °C
  • the ability of MgI2 etherate to act as a Lewis acid activator. The iodine counterion is coordinated to the Lewis basic oxygen atom of the acetal group to give the more Lewis acidic cataonic Mg-coordinated intermediate A. Intermediate A upon nucleophilic reaction with amines 20 yields B, which upon
  • protocol is easy to use, cheap and environmentally friendly. (ii) Microwave-assisted reactions under solvent-free conditions: Banik et al. [83] described the synthesis of diverse N-substituted pyrroles using a microwave-assisted and iodine-catalyzed protocol. These pyrrole derivatives were prepared in 75
PDF
Album
Review
Published 27 Jun 2023

Construction of hexabenzocoronene-based chiral nanographenes

  • Ranran Li,
  • Di Wang,
  • Shengtao Li and
  • Peng An

Beilstein J. Org. Chem. 2023, 19, 736–751, doi:10.3762/bjoc.19.54

Graphical Abstract
  • helical bilayer, non-benzenoid nanographene 58 which contains a [10]helicene with two embedded heptagons as a novel chiral moiety (Scheme 11). By using the same intermediate 43, the iodine-NG 101 together with NG 44 was obtained in a 22% yield. Then compound 101 was coupled with 4-tert
PDF
Album
Review
Published 30 May 2023

Direct C2–H alkylation of indoles driven by the photochemical activity of halogen-bonded complexes

  • Martina Mamone,
  • Giuseppe Gentile,
  • Jacopo Dosso,
  • Maurizio Prato and
  • Giacomo Filippini

Beilstein J. Org. Chem. 2023, 19, 575–581, doi:10.3762/bjoc.19.42

Graphical Abstract
  • presents a difluoromethylene group (–CF2–) in the alpha position to the iodine, was performed (see Figure S3 in Supporting Information File 1). Even in this case, an important shift of the fluorine signal was observed. Thus, from a mechanistic point of view, the reaction is driven by the formation of a
PDF
Album
Supp Info
Letter
Published 27 Apr 2023

Combretastatins D series and analogues: from isolation, synthetic challenges and biological activities

  • Jorge de Lima Neto and
  • Paulo Henrique Menezes

Beilstein J. Org. Chem. 2023, 19, 399–427, doi:10.3762/bjoc.19.31

Graphical Abstract
  • alcohol 64. The formation of the double bond from alcohol 64 proved to be problematic, thus, replacement of the hydroxy group by iodine [47] followed by dehydrohalogenation using an excess of KF afforded methyl combretastatin D-2 (28) in 87% yield after two steps (Scheme 11). The authors also described a
PDF
Album
Review
Published 29 Mar 2023

Synthesis and reactivity of azole-based iodazinium salts

  • Thomas J. Kuczmera,
  • Annalena Dietz,
  • Andreas Boelke and
  • Boris J. Nachtsheim

Beilstein J. Org. Chem. 2023, 19, 317–324, doi:10.3762/bjoc.19.27

Graphical Abstract
  • imidazoiodaziniums, we show highly delicate post-oxidation functionalizations retaining the hypervalent iodine center. Keywords: building block; heterocycles; hypervalent compounds; iodonium salts; one-pot synthesis; Introduction The chemistry of hypervalent iodine compounds, in particular aryl-λ3-iodanes, is
  • chemistry of hypervalent iodine species in all their variety, particularly those containing N-heterocycles either as tethered stabilizing ligands or as an inclusive part of a cyclic iodonium salt [26][27][28][29][30][31]. We prepared five-membered, N-heterocycle-containing iodoliums 2 and investigated their
  • novel azoiodazinium salts (Figure 3). An N4–I1 distance of 2.540 Å with a typical T-shape structure (N4–I1–C1 angle 185.74°) implies a significant interaction between the N-heterocycle and the iodine atom for the ortho-pyrazole-substituted derivative 5bb [35]. However, the presence of an ortho-methyl
PDF
Album
Supp Info
Full Research Paper
Published 16 Mar 2023

Revisiting the bromination of 3β-hydroxycholest-5-ene with CBr4/PPh3 and the subsequent azidolysis of the resulting bromide, disparity in stereochemical behavior

  • Christian Schumacher,
  • Jas S. Ward,
  • Kari Rissanen,
  • Carsten Bolm and
  • Mohamed Ramadan El Sayed Aly

Beilstein J. Org. Chem. 2023, 19, 91–99, doi:10.3762/bjoc.19.9

Graphical Abstract
  • visualized by their fluorescence under UV–lamp (λ = 245 and 365 nm) or staining with iodine vapor or 15% H2SO4 or KMnO4 solution, or Ce(IV)SO4 in H2SO4. Melting points were determined on a Gallenkamp apparatus UK and are uncorrected. NMR spectra were recorded on a Bruker 600 MHz spectrometer at the central
PDF
Album
Supp Info
Full Research Paper
Published 27 Jan 2023

Two-step continuous-flow synthesis of 6-membered cyclic iodonium salts via anodic oxidation

  • Julian Spils,
  • Thomas Wirth and
  • Boris J. Nachtsheim

Beilstein J. Org. Chem. 2023, 19, 27–32, doi:10.3762/bjoc.19.2

Graphical Abstract
  • Friedel–Crafts alkylation followed by an anodic oxidative cyclization yielded a defined set of cyclic iodonium salts in a highly substrate-dependent yield. Keywords: electrochemistry; flow chemistry; hypervalent compounds; iodine; oxidation; Introduction Hypervalent iodine compounds (HVI) are well
  • electrochemistry is a highly economical tool that avoids chemical oxidants for synthesizing hypervalent iodine reagents [30]. Iodoarenes are suitable and well-established mediators in either in- or ex-cell electrochemical processes [31][32][33][34][35][36]. Nonetheless, HVIs, DIS and CDIS have been generated by
  • improved the overall yield to 43%. Finally, we investigated a variety of substituted benzyl acetates 3 (Figure 1). Substitutions para to the iodine led with F- and Cl-derivatives 1b and 1c to strongly diminished yields of 15% and 26%, respectively, due to expected lower yields in the Friedel–Crafts step
PDF
Album
Supp Info
Letter
Published 03 Jan 2023

Combining the best of both worlds: radical-based divergent total synthesis

  • Kyriaki Gennaiou,
  • Antonios Kelesidis,
  • Maria Kourgiantaki and
  • Alexandros L. Zografos

Beilstein J. Org. Chem. 2023, 19, 1–26, doi:10.3762/bjoc.19.1

Graphical Abstract
  • reported the flow-controlled divergent synthesis of aporphine and morphinandienone alkaloids based on biomimetic common scaffolds (e.g., 180) using hypervalent iodine(III) reagents. Capitalizing on previously reported mechanistic investigations, they assumed that 180 can rearrange to glaucine (183) through
PDF
Album
Review
Published 02 Jan 2023

Redox-active molecules as organocatalysts for selective oxidative transformations – an unperceived organocatalysis field

  • Elena R. Lopat’eva,
  • Igor B. Krylov,
  • Dmitry A. Lapshin and
  • Alexander O. Terent’ev

Beilstein J. Org. Chem. 2022, 18, 1672–1695, doi:10.3762/bjoc.18.179

Graphical Abstract
  • /peroxide, quinones, and iodine(I/III) compounds are the most developed catalyst types which are covered here. Keywords: CH-functionalization; free radicals; hypervalent iodine; N-oxyl radicals; redox-active molecules; Introduction Organocatalysis can be defined as catalysis by small organic molecules
  • classified according to the catalytically active species or key intermediates: N-oxyl radicals, oxoammonium cations, amine cation radicals, thiyl radicals, quinones, dioxiranes and oxaziridines, hypervalent iodine compounds, etc. However, some examples of organocatalyzed oxidative processes, in which an
  • the key factor for the high chemoselectivity. Hypervalent iodine catalysis Effective hypervalent iodine(III)-catalyzed processes (for example, oxidative double C=C bond functionalization, oxidative cyclizations, CH-functionalization of carbonyl compounds, etc.) employing mainly peroxoacids or electric
PDF
Album
Perspective
Published 09 Dec 2022

One-pot synthesis of 2-arylated and 2-alkylated benzoxazoles and benzimidazoles based on triphenylbismuth dichloride-promoted desulfurization of thioamides

  • Arisu Koyanagi,
  • Yuki Murata,
  • Shiori Hayakawa,
  • Mio Matsumura and
  • Shuji Yasuike

Beilstein J. Org. Chem. 2022, 18, 1479–1487, doi:10.3762/bjoc.18.155

Graphical Abstract
  • reaction of o-alkoxythiobenzamides with iodine in the presence of sodium hydride as the base [11]. Sugita et al. reported an unstable iodoalkyne, pentafluoro(iodoethynyl)benzene, which catalyzed the cyclization of thioamides with 2-aminophenol [12]. These approaches have some drawbacks, such as low yields
PDF
Album
Supp Info
Full Research Paper
Published 18 Oct 2022

Preparation of an advanced intermediate for the synthesis of leustroducsins and phoslactomycins by heterocycloaddition

  • Anaïs Rousseau,
  • Guillaume Vincent and
  • Cyrille Kouklovsky

Beilstein J. Org. Chem. 2022, 18, 1385–1395, doi:10.3762/bjoc.18.143

Graphical Abstract
  • coupling revealed the incompatibility of the lactone function; therefore, it was reduced with DIBAL-H then transformed into 19 by a one pot acetalization–desilylation procedure (91:9 mixture of diastereomers) [17]. Hydrozirconation followed by treatment with iodine furnished the target vinyl iodide 20
  • according to reference [18]. A solution of the alkyne 19 (300 mg, 1.80 mmol) dans in anhydrous dichloromethane (4.2 mL) was added dropwise to a suspension of Cp2ZrHCl (696 mg, 2.70 mmol, 1.5 equiv) in anhydrous dichloromethane (9 mL). After stirring at rt for 15 min, a solution of iodine (777 mg, 3.06 mmol
PDF
Album
Full Research Paper
Published 04 Oct 2022

On drug discovery against infectious diseases and academic medicinal chemistry contributions

  • Yves L. Janin

Beilstein J. Org. Chem. 2022, 18, 1355–1378, doi:10.3762/bjoc.18.141

Graphical Abstract
  • which parts are prone to oxidation/metabolization. A remarkable result, using diluted iodine, was actually reported recently [301]. Concerning another class of “old” drugs, and as depicted in Figure 9 with the (few) structures 49–61, the many generations of β-lactams used in human medicine is certainly
PDF
Album
Perspective
Published 29 Sep 2022

A one-pot electrochemical synthesis of 2-aminothiazoles from active methylene ketones and thioureas mediated by NH4I

  • Shang-Feng Yang,
  • Pei Li,
  • Zi-Lin Fang,
  • Sen Liang,
  • Hong-Yu Tian,
  • Bao-Guo Sun,
  • Kun Xu and
  • Cheng-Chu Zeng

Beilstein J. Org. Chem. 2022, 18, 1249–1255, doi:10.3762/bjoc.18.130

Graphical Abstract
  • and to determine the possible active intermediates involved, several control experiments were carried out. As shown in Scheme 4, when molecular iodine was employed as oxidant, the desired product 3a was obtained in a 67% yield under otherwise identical conditions (Scheme 4a), but without passing
PDF
Album
Supp Info
Full Research Paper
Published 15 Sep 2022

A versatile way for the synthesis of monomethylamines by reduction of N-substituted carbonylimidazoles with the NaBH4/I2 system

  • Lin Chen,
  • Xuan Zhou,
  • Zhiyong Chen,
  • Changxu Wang,
  • Shunjie Wang and
  • Hanbing Teng

Beilstein J. Org. Chem. 2022, 18, 1032–1039, doi:10.3762/bjoc.18.104

Graphical Abstract
  • reducibility of NaBH4. In this work, our goal is to reduce the carbonyl group in N-substituted carbonylimidazoles. The inexpensive NaBH4/I2 system has great attraction because it is more reductive due to the generation of highly reactive BH3–THF by adding iodine to NaBH4 in THF [76][77][78] and the reaction
PDF
Album
Supp Info
Full Research Paper
Published 17 Aug 2022

Introducing a new 7-ring fused diindenone-dithieno[3,2-b:2',3'-d]thiophene unit as a promising component for organic semiconductor materials

  • Valentin H. K. Fell,
  • Joseph Cameron,
  • Alexander L. Kanibolotsky,
  • Eman J. Hussien and
  • Peter J. Skabara

Beilstein J. Org. Chem. 2022, 18, 944–955, doi:10.3762/bjoc.18.94

Graphical Abstract
  • iodine, anhydrous diethyl ether, 45 °C, 2 h, 3-bromothiophene, [1,3-bis(diphenylphosphino)propane]dichloronickel(II), 45 °C, 14.5 h, 40% [47]; b) n-butyllithium, 2,2,6,6-tetramethylpiperidine, anhydrous tetrahydrofuran, −80 °C, iodomethane, then rt, overnight, 86% [48]; c) n-butyllithium, anhydrous
PDF
Album
Supp Info
Full Research Paper
Published 01 Aug 2022

The stereochemical course of 2-methylisoborneol biosynthesis

  • Binbin Gu,
  • Anwei Hou and
  • Jeroen S. Dickschat

Beilstein J. Org. Chem. 2022, 18, 818–824, doi:10.3762/bjoc.18.82

Graphical Abstract
  • . Further conversion by treatment with PPh3, iodine, pyridine, and water [38] gave access to (R)- and (S)-2-methyllinalool (6a and 6b). The materials were subsequently converted into the diphosphates using triethylammonium phosphate and trichloroacetonitrile [39] (Scheme 2). Conversion of enantiomerically
PDF
Album
Supp Info
Letter
Published 08 Jul 2022

Thiophene/selenophene-based S-shaped double helicenes: regioselective synthesis and structures

  • Mengjie Wang,
  • Lanping Dang,
  • Wan Xu,
  • Zhiying Ma,
  • Liuliu Shao,
  • Guangxia Wang,
  • Chunli Li and
  • Hua Wang

Beilstein J. Org. Chem. 2022, 18, 809–817, doi:10.3762/bjoc.18.81

Graphical Abstract
  • resulted in oxidative photocyclization products with two types of configurations wherein two benzene rings were closed in the same and opposite direction, such as DH-1–3 and 6 (Figure 2). However, after the double oxidative photocyclizations of 5a–c in the presence of iodine and propylene oxide in dry
  • toluene (6 mL), iodine (7.3 mg, 0.028 mmol, 2.0 equiv) and excess propylene oxide were added. The reaction solution was irradiated with a 450 W unfiltered Hg medium-pressure lamp for 1.5 h. The reaction was quenched with saturated Na2SO3 solution (5 mL). The reaction mixture was extracted with CH2Cl2 (3
PDF
Album
Supp Info
Letter
Published 08 Jul 2022
Other Beilstein-Institut Open Science Activities